Systems for Efficient Delivery of Microbial Biocontrol Agents to Soil

  • Deborah R. Fravel
Part of the NATO ASI Series book series (NSSA, volume 230)


Efficient delivery of microbial biocontrol agents implies a process that requires the least amount of time, effort, and product (and therefore, the least cost), while still delivering the agent in a way that is efficacious. To accomplish this goal, a sufficient quantity of the agent must be delivered in an appropriate state of activity and to the right place at the right time to effect economical control. Activity state of a given microbial biocontrol agent and proper timing and placement of the inoculum are usually more important than introduction of a large population of the agent. Thus, for efficient delivery, we need to consider plant-pathogen-agent interactions in terms of time and space. The choice of delivery system will be dictated by both control strategies and characteristics of the organisms and cropping systems involved.


Biological Control Biocontrol Agent Biological Control Agent Verticillium Wilt Crown Gall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, P. B., and Ayres, W. A., 1982, Biological control of Sclerotinia lettuce drop in the field by Sporidesmium sclerotivorum, Phytopathology 72: 485.Google Scholar
  2. Adams, P. B., and Fravel, D. R., 1990, Economical control of Sclerotinia lettuce drop by Sporidesmium sclerotivorum, Phytopathology 80: 1120.Google Scholar
  3. Ahmad, J. S., and Baker, R., 1988, Rhizosphere competence of benomyl-tolerant mutants of Trichoderma spp., Can. J. Microbiol. 34: 694.Google Scholar
  4. Beagle-Ristaino, J., and Papavizas, G. C., 1985, Biological control of Rhizoctonia stem canker and black scurf of potato, Phytopathology 75: 560.Google Scholar
  5. Burr, T. J., Schroth, M. N., and Suslow, T. V., 1978, Increased potato yield by treatment of seedpieces with specific strains of Pseudomonas fluorescens and P. putida, Phytopathology 68: 1377.Google Scholar
  6. Gallan, N. W., Mathre, D. E., and Miller, J. B., 1990, Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh2 sweet corn, Plant Dis. 74: 368.Google Scholar
  7. Chao, W. L., Nelson, ET-B., Harman, G. E., and Hoch, H., 1986, Colonization of the rhizosphere by biological control agents applied to seeds, Phytopathology 76: 60.Google Scholar
  8. Chang, I., and Kommendahl, T., 1968, Biological control of seedling blight of corn by coating kernels with antagonistic microorganisms, Phytopathology 58: 1395.Google Scholar
  9. Connick, W. J. Jr., Pepperman, A. B., Jr., Kuan, J. W., Nickle, W. R., and Boyette, C. D., 1990, A new process to make granular products containing chemical and biological pesticides, American Society of Testing Materials, Nov. 11–16, San Antonio, Texas (abstract).Google Scholar
  10. Conway, K. E., 1986, Use of fluid-drilling gels to deliver biological control agents to soil, Plant Dis., 70: 835.Google Scholar
  11. Couteaudier, Y., and Alabouvette, C., 1990, Quantitative comparison of Fusarium oxysporum competitiveness in relation to carbon utilization, FEMS Microbial. Ecol., 74: 261.Google Scholar
  12. Currier, T. C., Skwara, J. E., and McIntyre, J. L., 1988, The development of a Pseudomonas fluorescens product (Dagger G) for the control of Pythium and Rhizoctonia on cotton, Proc. Beltwide Cotton Production Res. Conf., 1988: 18.Google Scholar
  13. DeLucca, A. J. III, Connick, W. J. Jr., Fravel, D. R., Lewis, J. A., and Bland, J. M., 1990, The use of bacterial alginates to prepare bio-control formulations, J. Indust. Microbiol. 6: 129.Google Scholar
  14. Fahima, T., and Henis, Y., 1990, Interactions between pathogen, host and biocontrol agent: Multiplication of Trichoderma hamatum and Talaromyces flavus on roots of diseased and healthy hosts, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., C. A. B. International, Wallingford, UK.Google Scholar
  15. Fravel, D. R., 1990, Effects of sublethal metham sodium treatments on microsclerotia of Verticillium dahliae, Phytopathology 80: 670.Google Scholar
  16. Fravel, D. R., Biological maangement of soilborne plant pathogens, in: “Epidemiology and Management of Root Diseases”, C. L. Campbell and D. M. Benson, eds., Springer-Verlag, Heidelberg, (in press).Google Scholar
  17. Fravel, D. R., Adams, P. B., and Potts, W., 1991, Effect of the biocontrol agent Sporidesmium sclerotivorum on disease progress of Sclerotinia lettuce drop, Phytopathology 81: (in press) (abstract).Google Scholar
  18. Fravel, D. R., Davis, J. R., and Sorensen, L. H., 1986, Effect of Talaromyces flavus and metham on Verticillium wilt incidence and potato yield, 1984–1985, Biol. Cult. Tests 1: 17.Google Scholar
  19. Fravel, D. R., and Lewis, J. A., 1990, Production, formulation and delivery of beneficial microbes for biocontrol of plant pathogens, in: “Pesticide Formulation and Application Systems: 11th vol., ASTM STP 1112”, D. G. Chasin and L. E. Bode, eds., Amer. Soc. Tets. Materials, Philadelphia.Google Scholar
  20. Fravel, D. R., Marois, J. J., Lumsden, R. D., and Connick, W. J. Jr., 1985, Encapsulation of potential biocontrol agents in an alginate-clay matrix, Phytopathology 75: 774.Google Scholar
  21. Fravel, D. R., and Roberts, D. P., 1991, In situ evidence for the contribu- tion of glucose oxidase to biocontrol of Verticillium wilt by Talaromyces flavus, Biocontrol Sci. and Technol. 1: (in press).Google Scholar
  22. Harman, G. E., and Taylor, A. G., 1988, Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming, Phytopathology 78: 520.Google Scholar
  23. Harman, G. E., and Taylor, A. G., 1990, Development of an effective seed treatment system, in: “Biological control of soil-borne plant pathogens”, D. Hornby, ed., C.A.B. International, Wallingford, UK.Google Scholar
  24. Hubbard, J. P., Harman, G. E., and Eckenrode, C. J., 1982, Interaction of a biological control agent, Chaetomium globosum, with seed coat micro-flora, Can. J. Microbiol. 28: 431.Google Scholar
  25. Huber, D. M., El-Nasshar, H., Moore, L. W., Mathre, D. E., and Wagner, J. E., 1989, Interaction between a peat carrier and bacterial seed treatments evaluated for biological control of take-all disease of wheat (Triticum aestivum L.), Biol. Fertil. Soils 8: 166.Google Scholar
  26. Keinath, A. P., Fravel, D. R., and Papavizas, G. C., 1990, Evaluation of formulations of Talaromyces flavus for biocontrol of Verticillium wilt of potato, Biol. Cult. Tests 5: 30.Google Scholar
  27. Kerr, A., 1980, Biological control of crown gall through production of Agrocin 84, Plant Dis. 64: 25.Google Scholar
  28. Ko, W. H., 1971, Biological control of seedling root rot of papaya caused by Phytophthora palmivora, Phytopathology 61: 780.Google Scholar
  29. Lemaire, J. M., Alabouvette, C., Davet, P., and Tramier, R., 1986, Problems posed by the large scale application of microorganisms for biological control of soil-borne plant pathogens, Symbiosis 2: 287.Google Scholar
  30. Lewis, J. A., 1991, Formulations and delivery systems of biocontrol agents with emphasis on fungi, in: “The Rhizosphere and Plant Growth”, D. L. Keister and P. B. Creegan, eds., Kluwer, Boston.Google Scholar
  31. Lewis, J. A., and Papavizas, G. C., 1985, Characteristics of alginate pellets formulated with Trichoderma and Gliocladium and their effect on the proliferation of the fungi in soil, Plant Pathol. 34: 571.Google Scholar
  32. Lewis, J. A., and Papavizas, G. C., 1987, Application of Trichoderma and Gliocladium in alginate pellets for control of Rhizoctonia damping-off, Plant Pathol. 36: 438.Google Scholar
  33. Lewis, J. A., and Papavizas, G. C., 1991, Biocontrol of cotton damping-off caused by Rhizoctonia solani in the field with formulations of Trichoderma spp. and Gliocladium virens, Crop Prot. (in press).Google Scholar
  34. Locke, J. C., Marois, J. J., and Papavizas, G. C., 1985, Biological control of Fusarium wilt of greenhouse-grown chrysanthemums, Plant Dis. 69: 167.Google Scholar
  35. Lumsden, R. D., 1991, Ecology of Mycoparasitism, in: “The Fungal Community”, G. C. Carroll and D. T. Wicklow, eds., Marcell Dekker, NY (in press).Google Scholar
  36. Lumsden, R. D., and Locke, J. C., 1989, Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix, Phytopathology 79: 361.Google Scholar
  37. Lutchmeah, R. S., and Cooke, R. C., 1985, Pelleting of seed with the antagonist Pythium oligandrum for biological control of damping-off, Plant Pathol. 34: 528.Google Scholar
  38. Marois, J. J., and English, J. T., 1989, Integration of biological control of plant pathogens into IPM programs, in: Proc National Integrated Pest Management Symposium/Workshop, 25–28 April, 1989.Google Scholar
  39. Marois, J. J., Fravel, D. R., Connick, W. J. Jr., Walker, L. and Quimby, P. C. Jr., 1988, Preparation of pellets containing fungi for control of soilborne diseases, U. S. Patent No. 4, 724, 147.Google Scholar
  40. Marois, J. J., Fravel, D. R., Connick, W. J. Jr., Walker, L., and Quimby, P. C. Jr., 1989, Preparations of pellets containing fungi for control of soilborne diseases, U. S. Patent No. 4, 818, 530.Google Scholar
  41. Marois, J. J., Johnston, S. A., Dunn, M. T., and Papavizas, G. C., 1982, Biological control of Verticillium wilt of eggplant in the field, Plant Dis. 66: 1166.Google Scholar
  42. Marois, J. J., and Mitchell, D. J., 1981, Effects of fumigation and fungal antagonists on the relationships of inoculum density to infection incidence and disease severity in Fusarium crown rot of tomato, Phytopathology 71: 167.Google Scholar
  43. Marx, D. H., 1972, Ectomycorrhizae as biological deterrents to pathogenic root infections, Annu. Rev. Phytopathol. 10: 429.Google Scholar
  44. Nelson, E. B., 1991, Exudate molecules initiating fungal responses to seeds and roots, in: “The Rhizosphere and Plant Growth”, D. L. Keister and P. B. Creegan, eds., Kluwer, Boston.Google Scholar
  45. Page, W. J., and Dale, P. L., 1986, Stimulation of Agrobacterium tumefaciens growth by Azotobacter vinelandii ferrisiderophores, Appl. Environ. Microbiol. 51: 451.Google Scholar
  46. Papavizas, G. C., 1985, Trichoderma and Gliocladium: Biology, ecology and potential for biocontrol, Annu.Rev. Phytopathol. 23: 23.Google Scholar
  47. Papavizas, G. C., Fravel, D. R., and Lewis, J. A., 1987, Proliferation of Talaromyces flavus in soil and survival in alginate pellets, Phytopathology 77: 131.Google Scholar
  48. Paulitz, T. C., 1990, The stimulation of Pythium ultimum by seed volatiles and the interaction of Pseudomonas putida, Phytopathology 80: 994 (abstract).Google Scholar
  49. Ricard, J. L., 1988, Biocontrol of pathogenic fungi in wood and trees, with particular emphasis on the use of Trichoderma, Biocontrol News Info. 9: 133.Google Scholar
  50. Sivan, A., and Chet, I., 1989, The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization, Phytopathology 79: 198.Google Scholar
  51. Sivan, A., and Harman, G. E., 1991, Improved rhizosphere competence in a protoplast fusion progeny of Trichoderma harzianum, J. Gen. Microbiol. 137: 23.Google Scholar
  52. Spink, D. S., and Rowe, R. C., 1989, Evaluation of Talaromyces flavus as a biological control agent against Verticillium dahliae in potato. Plant Dis. 73: 230.Google Scholar
  53. Tahvonen, R., 1986, The microbial control of plant diseases with Streptomyces sp., EPPO Conf. Strategies and Achievement in Microbial Control of Plant Dis. Dijon, France.Google Scholar
  54. Thomashow, L. S., Weller, D. M., Bonsall, R. F., and Pherson, L. S. III, 1990, Production of the antibiotic phenazine-l-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat, Appl. Environ. Microbiol. 56: 908.Google Scholar
  55. Thompson, J. A., 1987, The use of agrocin-producing bacteria in the biolo-gical control of crown gall, in: “Innovative approaches to Plant Disease Control”, I. Chet, ed., John Wiley und Sons, New York.Google Scholar
  56. Tjamos, E. C., and Paplomatas, E. J., 1988, Long-term effect of soil solari-zation in controlling Verticillium wilt of artichokes in Greece, Plant Pathol. 37: 507.Google Scholar
  57. Wells, H. D., Bell, D. K., and Jaworski, C. A., 1972, Efficacy of Trichoderma harzianum as a biocontrol for Sclerotium rolfsii, Phytopathology 62: 422.Google Scholar
  58. van der Plank, J. E., 1963, “Plant Diseases: Epidemics and Control”, Academic Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Deborah R. Fravel
    • 1
  1. 1.Biocontrol of Plant Disease Laboratory Plant Sciences Institute Agricultural Research ServiceU. S. Department of AgricultureBeltsvilleUSA

Personalised recommendations