The Genetic Mechanism of Hypovirulence in Cryphonectria (Endothia) Parasitica

  • Pierre Pfeiffer
  • Neal K. Van Alfen
Part of the NATO ASI Series book series (NSSA, volume 230)


Infections caused by plant pathogenic fungi are responsible for about 70% of the major crop diseases, and consequently they are in many cases a nightmare to farmers or greenhouse growers. Occassionally, the right combination of a susceptible host with a virulent isolate of a fungus can lead to devastating epidemics, with entire crops being wiped out. The socioeconomic consequences that such large-scale diseases leave in their wake can be disastrous. One of the most dramatic examples is certainly the potato blight pandemic caused by Phytophtora infestans that hit Ireland in the 1840’s. A similar scenario repeated itself in the 1970’s in the U.S. when the “T” race of Helminthosporium maydis spread like wildfire through entire regions where maize lines with the “Texas” (T) cytoplasm for male sterility were used. While these two examples illustrate vividly the dangers of monoculture, let alone of genetic uniformity, the loss of an annual crop can be overcome provided sufficient alternative food supplies or buffer stocks exist; the following year the farmer can grow a cultivar resistant to this pathogen, or best, a non-host crop.


Vegetative Compatibility American Chestnut Vegetative Compatibility Group Chestnut Tree Chestnut Blight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anagnostakis, S. L., 1977, Vegetative incompatibility in Endothia parasitica, Exp. Mycol., 1: 306.CrossRefGoogle Scholar
  2. Anagnostakis, S. L., 1981, Stability of double-stranded RNA components of Endothia parasitica through transfer and subculture, Exp. Mycol., 5: 236.CrossRefGoogle Scholar
  3. Anagnostakis, S. L., 1982, Genetic analysis of Endothia parasitica: Linkage data for four genes and three vegetative compatibility types, Genetics, 102: 25.PubMedGoogle Scholar
  4. Anagnostakis, S. L., 1984, Nuclear gene mutation in Endothia (Cryphonectria) parasitica that affect morphology and virulence, Phytopathology, 74: 561.CrossRefGoogle Scholar
  5. Anagnostakis, S. L., 1987, Chestnut blight: the classical problem of an introduced pathogen, Mycologia, 79: 23.CrossRefGoogle Scholar
  6. Anagnostakis, S. L., and Day, P. R., 1979, Hypovirulence conversion in Endothia parasitica, Phytopathology, 69: 1226.CrossRefGoogle Scholar
  7. Biraghi, A., 1953, Possible active resistance to Endothia parasitica in Castanea sativa. Report to the 11th Congress of the International Union of Forest Research Organization, Rome.Google Scholar
  8. Burgyan, J., Rubino, L., and Russo, M., 1991, De novo generation of Cymbidium Ringspot Virus defective interfering RNA, J. Gen. Viral., 72: 505.CrossRefGoogle Scholar
  9. Carrington, J. C., Cary, S. M., Parks, T. D., and Dougherty, W. G., 1989, A second proteinase encoded by a plant potyvirus genome, EMBO J., 8: 365.PubMedGoogle Scholar
  10. Choi, G. H., Shapira, R., and Nuss, D. L., 1991a, Cotranslational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus, Proc. Natl. Acad. Sci. U.S.A., 88: 1167.PubMedCrossRefGoogle Scholar
  11. Choi, G. H., Pawlyk, D. M., and Nuss, D. L., 1991b, The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the Potyvirus-encoded protease HC-Pro, Virology, 183: 747.PubMedCrossRefGoogle Scholar
  12. Churchill, A. C. L., Ciuffetti, L. M., Hansen, D. R., Van Etten, H. D., and Van Alfen, N. K., 1990, Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids, Curr. Genet., 17: 25.CrossRefGoogle Scholar
  13. Condit, C. M., and Meagher, R. B., 1986, A gene encoding a novel glycine-rich structural protein of petunia, Nature, 323: 178.CrossRefGoogle Scholar
  14. Day, P. R., Dodds, J. A., Elliston, J. E., Jaynes, R. A., and Anagnostakis, S. L., 1977, Double-stranded RNA in Endothia parasitica, Phytopathology, 67: 1393.CrossRefGoogle Scholar
  15. Dodds, J. A., 1980, Association of type I viral-like dsRNA with club-shaped particles in hypovirulent strains of Endothia parasitica, Virology, 107: 1.PubMedCrossRefGoogle Scholar
  16. Elliston, J. E., 1985, Characteristics of dsRNA-free and dsRNA-containing strains of Endothia parasitica in relation to hypovirulence, Phytopathology, 75: 151.CrossRefGoogle Scholar
  17. Franssen, H., Goldbach, R., and Van Kammen, A., 1984, Translation of bottom component RNA of Cowpea Mosaic Virus in reticulocyte lysate: faithful proteolytic processing of the primary translation product, Virus Research, 1: 39.CrossRefGoogle Scholar
  18. Fried, H. M., and Fink, G. R., 1978, Electron microscopic heteroduplex analysis of “killer” double-stranded RNA species from yeasts, Proc. Ntl. Acad. Sci. U.S.A., 75: 4224.CrossRefGoogle Scholar
  19. Fulbright, D. W., 1984, Effect of elimination dsRNA in hypovirulent Endothia parasitica, Phytopathology, 74: 722.CrossRefGoogle Scholar
  20. Gobbi, E., Wang, Y., Martin, R. M., Powell, W. A., and Van Alfen, N. K., 1990, Mitochondrial DNA of Cryphonectria parasitica: Lack of migration between vegetatively compatible strains, Molec. Plant. Microb. Inter., 3: 66.CrossRefGoogle Scholar
  21. Grente, J., 1965, Les formes hypovirulentes d’Endothia parasitica et les espoirs de lutte contre le chancre du châtaignier, C. R. Hebd. Séances Acad. Agr. France, 51: 1033.Google Scholar
  22. Grente, J., and Sauret, S., 1969a, L’hypovirulence exclusive, phénomène original en pathologie végétale, C. R. Hebd. Séances Acad. Sci. France, Sér. D 268: 2347.Google Scholar
  23. Grente, J., and Sauret, S., 1969b, L’hypovirulence exlusive est-elle contrôlée par des déterminants cytoplasmiques? C. R. Hebd. Séances Acad. Sci. France, Sér. D 268: 3173.Google Scholar
  24. Hansen, D. R., Van Alfen, N. K., Gillies, K., and Powell, W. A., 1985, Naked dsRNA associated with hypovirulence of Endothia parasitica is packaged in fungal vesicles, J. Gen. Virol., 66: 2605.CrossRefGoogle Scholar
  25. Havir, E. A., and Anagnostakis, S. L., 1983, Oxalate production by virulent but not hypovirulent strains of Endothia parasitica, Physiol. Plant Pathol., 23: 369.CrossRefGoogle Scholar
  26. Hiremath, S., L’Hostis, B., Ghabrial, S. A., and Rhoads, R. E., 1986, Terminal structure of hypovirulence-associated dsRNA in the chestnut blight fungus Endothia parasitica, Nucl. Acids Res., 14: 9877.PubMedCrossRefGoogle Scholar
  27. Keller, B., Templeton, M. D., and Lamb, C. J., 1989, Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system, Proc. Natl. Acad. Sci. U.S.A., 86: 1529.PubMedCrossRefGoogle Scholar
  28. Koonin, E. V., Choi, G. H., Nuss, D. L., Shapira, R., and Carrington, J. C., 1991, Evidence for a common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses, Proc. Natl. Acad. Sci. U.S.A., (in press).Google Scholar
  29. Kostura, M., and Matthews, M. B., 1989, Purification and activation of the double-stranded RNA-dependent eIF-2 kinase DAI, Molec. Cell Biol., 9: 1576.PubMedGoogle Scholar
  30. Lee, M., Pietras, D. F., Nemeroff, M. E., Corstanjo, B. J., Field, L. J., and Burenn, J. A., 1986, Conserved regions in defective interfering viral double-stranded RNAs from a yeast virus, J. Virol., 58: 402.PubMedGoogle Scholar
  31. L’Hostis, B., Hiremath, S. T., Rhoads, R. E., and Ghabrial, S. A., 1985, Lack of sequence homology between double-stranded RNA from Europe and American strains of Endothia parasitica, J. Gen. Virol., 66: 351.CrossRefGoogle Scholar
  32. Martin, R. M., and Van Alfen, N. K., 1991, The movement of double-stranded RNA between colonies of Cryphonectria parasitica, (in press).Google Scholar
  33. McCarroll, D. R., and Thor, E., The role of oxalic acid in the pathogenesis of Endothia parasitica, pages 60–63, in: Proceedings of the American Chestnut Symposium, W. L. MacDonald, F. C. Cech, J. Luchok, and C. Smith, eds., West Virginia University, Morgantown.Google Scholar
  34. Moffitt, E. M., and Lister, R. M., 1975, Application of a serological screening test for detecting double-stranded RNA mycoviruses, Phytopathology, 65: 851.CrossRefGoogle Scholar
  35. Newhouse, J. R., Hoch, H. C., and MacDonald, W. L., 1982a, The ultrastructure of Endothia parasitica. Comparison of a virulent with a hypovirulent isolate, Can. J. Bot., 61: 389.CrossRefGoogle Scholar
  36. Newhouse, J. R., Hoch, H. C., and MacDonald, W. L., 1982b, Virus-like particles in Endothia parasitica: evidence for RNA content and as site of replication. Proceedings of the Mycological Society of America, Ames, Iowa, June 26–30, 1983, abstract.Google Scholar
  37. Nuss, D. L., and Summers, D., 1984, Variant dsRNA associated with transmission-defective isolates of wound tumor virus represent terminally conserved remnants of genome segments, Virology, 133: 176.CrossRefGoogle Scholar
  38. Paul, C. P., and Fulbright, D. W., 1988, Double-stranded RNA molecules from Michigan hypovirulent isolates of Endothia parasitica vary in size and sequence homology, Malec. Plant Pathol., 73: 751.Google Scholar
  39. Powell, W. A., and Van Alfen, N. K., 1987, Differential accumulation of poly (A)+RNA between virulent and double-stranded RNA-induced hypovirulent strains of Cryphonectria (Endothia) parasitica, Mol. Cell. Biol., 7: 3688.PubMedGoogle Scholar
  40. Powell, W. A., and Van Alfen, N. K., 1987, Two nonhomologous viruses of Cryphonectria (Endothia) parasitica reduce accumulation of specific virulence-associated polypeptides, J. Bacterial., 169: 5324.Google Scholar
  41. Rae, B. R., Hillman, B. I., Tartaglia, J., and Nuss, D. L., 1989, Characterization of double-stranded RNA genetic elements associated with biological control of chestnut blight: organization of terminal domains and identification of gene products, EMBO J., 8: 657.PubMedGoogle Scholar
  42. Rigling, D., Heiniger, U., and Hohl, H. R., 1989, Reduction of laccase activity in dsRNA-containing hypovirulent strains of Cryphonectria (Endothia) parasitica, Phytopathology, 79: 219.CrossRefGoogle Scholar
  43. Shapira, R., and Nuss, D. L., 1991, Gene expression of a hypovirulenceassociated virus of the chestnut blight fungus involves two papainlike protease activities, J. Biol. Chem., (in press).Google Scholar
  44. Shapira, R., Choi, G. H., and Nuss, D. L., 1991a, Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight, EMBO J., 10: 731.PubMedGoogle Scholar
  45. Shapira, R., Choi, G. H., Hillman, B. I., and Nuss, D. L., 1991b, The contribution of defective RNAs to the complexity of viral-encoded double-stranded RNA populations present in hypovirulent strains of the chestnut blight fungus, Cryphonectria parasitica, EMBO J., 10: 741.PubMedGoogle Scholar
  46. Tartaglia, J., Paul, C. P., Fulbright, D. W., and Nuss, D., 1986, Structural properties of double-stranded RNA genetic elements associated with biological control of chestnut blight fungus, Proc. Natl. Acad. Sci. U.S.A., 77: 5201.Google Scholar
  47. Van Alfen, N. K., 1988, Viruses of Endothia parasitica, pages 371–386, in: “Viruses of fungi and simple eukaryotes”, Y. Koltin,and M. J. Leibowitz, eds., Marcel Dekker, Inc., New York and Basel.Google Scholar
  48. Van Alfen, N. K., Jaynes, R. A., Anagnostakis, S. L., and Day, P. R., 1975, Chestnut blight: Biological control by transmissible hypovirulence in Endothia parasitica, Science, 189: 890.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Pierre Pfeiffer
    • 1
  • Neal K. Van Alfen
    • 2
  1. 1.Institut de Biologie Moléculaire des PlantesC.N.R.S.StrasbourgFrance
  2. 2.Department of Plant Pathology and MicrobiologyTexas A and M UniversityCollege StationUSA

Personalised recommendations