Improvement of Trichoderma and Gliocladium by Genetic Manipulation

  • C. K. Hayes
Part of the NATO ASI Series book series (NSSA, volume 230)


Biocontrol is a needed technique in plant disease management, because of the public concern regarding use of chemical pesticides. Several factors must be considered when developing biocontrol systems for commercial use.


Biocontrol Agent Protoplast Fusion Trichoderma Reesei Rhizoctonia Solani Trichoderma Harzianum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahmad, J. S., and Baker, R., 1988, Implications of rhizosphere competence of Trichoderma harzianum, Can. J. Microbiol. 34: 694.Google Scholar
  2. Armeleo, D., Ye, G. N., Johnston, S. A., Klein, T. M., Shark, K. B., and Sanford, J. C., 1990, Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi, Curr. Gen. 17: 97.Google Scholar
  3. Chet, I., 1987, Trichoderma-application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi, pages 137–160 in: “Innovative Approaches to Plant Disease Control”, I. Chet, ed., John Wiley and Sons, New York.Google Scholar
  4. Chet, I., Harman, G. E., and Baker, R., 1981, Trichoderma hamatum. its hyphal interactions with Rhizoctonia solani and Pythium spp., Microbiol. Ecol. 7: 29.Google Scholar
  5. Davis, B., 1985, Factors influencing protoplast isolation, pages 45–72, in: “Fungal Protoplasts, Application in Biochemistry and Genetics”Google Scholar
  6. J. F. Peberyd, and L. Ferenczy, eds., Marcel Dekker Inc., New York.Google Scholar
  7. Evaleigh, D. E., 1985, Trichoderma. pages 487–507 in: “Biology of IndustrialGoogle Scholar
  8. Microorganisms“, A. L. Dermain, and N. A. Soloman, eds., Benjamin Cummings Co., Los Angeles, CA.Google Scholar
  9. Fincham, J. R. S., 1989, Transformation in fungi, Microbiol. Rev. 3: 148.Google Scholar
  10. Freifelder, D., 1987, “Molecular Biology”, 2nd ed., Jones and Bartlett Publishers. Inc., Boston.Google Scholar
  11. Goldman, G. H., Van Montagu, M., and Herrera-Estrella, A., 1990, Transformation of filamentous-fungi by high-voltage electroporation, Bio-Rad Laboratories Bulletin. 1352.Google Scholar
  12. Gracheck, S. J., and Emert, G. H., 1984, Protoplast formation and fusion using Trichoderma reesei mutants, in: “Developments in Industrial Microbiology”, C. H. Nash, and L. A. Underkofler, eds., Victor Graphics Inc., Baltimore, MD.Google Scholar
  13. Gruber, F., Visser, J., Kubicek, C. P., and de Graaff, L. H., 1990, The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain, Curr. Gen., 18: 71.Google Scholar
  14. Harman, G. E., 1990, Deployment tactics for biocontrol agents in pathology, pages 779–792, in: “New Directions in Biocontrol: Alternatives for Suppressing Agricultural Pest and Disease”, R. R. Baker and P. E. Dunn, eds., Alan R. Liss Inc., New York.Google Scholar
  15. Harman, G. E., and Lumsden, R. D., 1990, Biological disease control, pages 259–280, in: “The Rhizosphere”, J. M. Lynch, ed., John Wiley and Sons Ltd., Baffins Lane, Chichester West Sussex, England.Google Scholar
  16. Harman, G. E., and Stasz, T. E., 1991, Protoplast fusion for the production of superior biocontrol fungi, pages 171–188, in: “Microbial Control of Weeds”, D. O. TeBeest, ed., Chapman and Hall, New York.Google Scholar
  17. Herrera-Estrella, A., Goldman, G. H., and Van Montagu, M., 1990, High efficiency transformation system for the biocontrol agents, Trichoderma spp., Molec. Microbiol. 4: 839.Google Scholar
  18. Hong, S. W., Hah, Y. C., Park, H. M., and Cho, N. J., 1984, Intraspecific protoplast fusion in Trichoderma koningii, Kor. J. Microbiol. 22: 103.Google Scholar
  19. Howell, C. R., and Stipanovic, R. D., 1983, Gliovirin, a new antibiotic from Gliocladium virens and its role in the biological control of Pythium ultimum, Can. J. Microbiol. 29: 321.Google Scholar
  20. Jin, X., Hayes, C. K., and Harman, G. E., 1991 Principles in the development of biological control systems employing Trichoderma species against soil-borne plant pathogenic fungi, in: “Symposium on Industrial Mycology”, G. F. Leatham, ed., Mycological Society of America, Brock/ Springer Series in Contemporary Biosciences (In press).Google Scholar
  21. Keller, N. P. Bergstrom, G. C., and Yoder, 0. C., 1990, Effects of genetic transformation on fitness of Cochliobolus heterostrophus, Phytopathology 80: 1166.Google Scholar
  22. Kirimura, K., Masatoshi, I., Lee, S. P., Kato, Y., and Usami, S., 1989, Intergeneric hybridization between Aspergillus niger and Trichoderma viride by protoplast fusion, Agric. Biol. Chem. 53: 1589.Google Scholar
  23. Kubicek, C. P., Eveleigh, D. E., Asterbauer, H., Steiner, W., and KubicekPranz, E. M., eds., 1990, “Trichoderma reesei Cellulases, Biochemistry, Genetics and Application”, Thomas Graham House, Cambridge.Google Scholar
  24. Leong, A. A., and Berka, R. M., 1991, eds., “Molecular Industrial Mycology”, Marcel Dekker Inc., New York.Google Scholar
  25. Lewin, B., 1990, “Genes IV”, Oxford University Press, New York.Google Scholar
  26. Manczinger, L., and Ferenczy, L., 1985, Somatic cell fusion of Trichoderma reesei resulting a new genetic combinations, Appl. Microbiol. and Biotech. 22: 72.Google Scholar
  27. Nevalainen, K. M. H., Penttila, M. E., Harkki, A., Teeri, T. T., and Knowles, J., 1991, The molecular biology of Trichoderma and its application to the expression of both homologous and heterologous genes, pages 129–148, in: “Molecular Industrial Mycology”, S. A. Leong, and R. M. Berka, eds., Marcel Dekker Inc., New York.Google Scholar
  28. Ogawa, K., Brown, J. A., and Wood, M., 1987, Intraspecific hybridization of Trichoderma reesei QM 9414 by protoplast fusion using colour mutants, Enzy. Microbiol. Technol. 9: 229.Google Scholar
  29. Ossana, N., and Mischke, S., 1990 Genetic transformation of the biocontrol fungus Gliocladium virens to benomyl resistance, Appl. Environ. Microbiol. 56: 3052.Google Scholar
  30. Papavizas, G. C., 1985, Trichoderma and Gliocladium. biology, ecology, and potential for biocontrol, Annu. Rev. Phytopath. 23: 23.Google Scholar
  31. Papavizas, G. C., Lewis, J. A., and Abd-El Moity, T. H., 1982, Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities, Phytopathology 72: 126.Google Scholar
  32. Papavizas, G. C., Roberts, D. P., and Kim, K. K., 1990, Development of mutants of Gliocladium virens tolerant to benomyl, Can. J. Microbiol. 36: 484.Google Scholar
  33. Pe’er, S., and Chet, I., 1990, Trichoderma protoplast fusion: a tool for improving biocontrol agents, Can. J. Microbiol. 36: 6.Google Scholar
  34. Penttila, M., Nevalainen, H., Ratto, M., Salminen, E., and Knowles, J., 1987., A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei, Gene 61: 155.Google Scholar
  35. Pontecorvo, G., 1956, The parasexual cycle in fungi, Annu. Rev. Microbial. 10: 393.Google Scholar
  36. Sanford, J. C., 1990, Biolostic plant transformation: a critical assessment, Physiologia Plantarum 79: 206.Google Scholar
  37. Seh, M. L., and Kenerley, C. M., 1988, Protoplast isolation and regeneration and nuclear staining of mycoparasitic Gliocladium species, J. Microbiol. Meth. 8: 12.Google Scholar
  38. Sivan, A., Harman, G. E., and Stasz, T. E., 1990, Transfer of isolated nuclei into protoplasts of Trichoderma harzianum, Appl. Environ. Microbiol. 56: 2404.Google Scholar
  39. Sivan, A., and Harman, G. E., 1991, Improved rhizosphere competence in a protoplast fusion progeny of Trichoderma harzianum, J. Gen. Microbial. 137: 23.Google Scholar
  40. Sivan, A., Stasz, T. E., Hemmat, M., Hayes, C. K., and Harman, G. E., 1991, Transformation of Trichoderma spp. with plasmids conferring hygromycin B resistance, Submitted to Mycologia.Google Scholar
  41. Smith, V. L., Wilcox, W. F., and Harman, G. E., 1990, Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp., Phytopathology 80: 880.Google Scholar
  42. Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Molec. Biol. 98: 503.Google Scholar
  43. Stasz, T. E., Harman, G. E., and Weeden, N. F., 1988, Protoplast preparation and fusion in two biocontrol strains of Trichoderma harzianum, Mycologia 80: 141.Google Scholar
  44. Stasz, T. E., Harman, G. E., and Gullino, M. L., 1989, Limited vegetative compatibility following intra-and interspecific protoplast fusion in Trichoderma, Exp. Mycol. 13: 364.Google Scholar
  45. Stasz, T. E., and Harman, G. E., 1990, Nonparental progeny resulting from protoplast fusion in Trichoderma in the absence of parasexuality, Exp. Mycol. 14: 145.Google Scholar
  46. Thomas, M. D., and Keenrley, C. M., 1989, Transformation of the mycoparasite Gliocladium Curr. Gen., 15: 415.Google Scholar
  47. Thomashow, L. S., and Wel er, D. M., 1988, Role of a phenazine antibiotic from Rseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici, J. Bacteriol. 170: 3499.Google Scholar
  48. Toyama, H., Yamaguchi, K., Shinmyo, A., and Okada, H., 1984, Protoplast fusion of Trichoderma reesei using immature conidia, Appl. Environ. Microbiol. 47: 363.Google Scholar
  49. Tronsmo, A., 1986, Use of Trichoderma spp. in biological control of necrotrophic pathogens, in: “Microbiology of the Phyllosphere”, N. J. Fokkema, and J. Van den Heuvel, eds., Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • C. K. Hayes
    • 1
  1. 1.Cornell UniversityGenevaUSA

Personalised recommendations