Skip to main content

Molecular Aspects of the Neurotransmission by the Acetylcholine Receptor System

  • Chapter
  • 100 Accesses

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 51))

Abstract

The nicotinic acetylcholine receptor (AcChR) is the key protein in the rapid signal transmission between cholinergic nerves and the innervated target cells of vertebrate muscles and of the electric organs of many electric fishes [1,2]. The trans-synaptic signal transfer (see Fig. 1), finally resulting in muscle contraction or in electric organ discharge, is initiated by the neuronally triggered release of the neurotransmitter acetylcholine (AcCh). According to the historical concept by Nachmanson [1] this cationic activator molecule binds to the AcCh receptor and causes a conformational change. Thereby a pathway (channel) for the flow of Na+ and K+ ions is opened that causes depolarisation of the postsynaptic membrane. Rapid depolarisation, in turn, triggers the action potentials that are necessary for the muscle cell contraction or the discharge of the electric organ electrocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Nachmansohn, Harvey Lect., 49, 57 (1955).

    Google Scholar 

  2. J.P. Changeux, J. Giraudat and M. Dennis, TIPS, 8, 459 (1987).

    CAS  Google Scholar 

  3. J. Cartaud, in Ontogenesis and Functional Mechanisms of Peripheral Synapses, J. Taxi (Editor) Elsevier, New York, (1980) pp. 199–210.

    Google Scholar 

  4. H.W. Chang, E. Bock and E. Neumann, Biochemistry, 23, 4546 (1984).

    Article  CAS  Google Scholar 

  5. E. Neumann, E. Boldt, B. Rauer, H. Wolf and H.W. Chang, Bioelectrochem. Bioenerg., 20, 45 (1988).

    Article  CAS  Google Scholar 

  6. R. Kiehl, M. Varsányi and E. Neumann, Biochem. Biophys. Res. Commun., 147, 1251 (1987).

    Article  CAS  Google Scholar 

  7. H.W. Chang and E. Bock, Biochemistry, 16, 4513 (1977).

    Article  CAS  Google Scholar 

  8. S.L. Hamilton, M. McLaughlin and A. Karlin, Biochem. Biophys. Res. Commun., 79, 692 (1977).

    Article  CAS  Google Scholar 

  9. J.P. Changeux, A. Devillers-Thiéry and P. Chemouilli, Science, 225, 1335 (1984).

    Article  CAS  Google Scholar 

  10. C. Toyoshima and N. Unwin, Nature (London), 336, 247 (1988).

    Article  CAS  Google Scholar 

  11. H. Schindler, F. Spillecke and E. Neumann, Proc. Natl. Acad. Sci. USA, 81, 6222 (1984).

    Article  CAS  Google Scholar 

  12. F. Spillecke, Thesis, University of Konstanz, Martinsried, G.F.R. (1984).

    Google Scholar 

  13. V. Volz, Diploma thesis, University of Bielefeld, G.F.R. (1987).

    Google Scholar 

  14. R. Rüchel, D. Waiters and A. Maelicke, Eur. J. Biochem., 119, 215 (1981).

    Article  Google Scholar 

  15. H. Schindler and U. Quast, Proc. Natl. Acad. Sci. USA, 77, 3052 (1980).

    Article  CAS  Google Scholar 

  16. A. Karlin and E. Bartels, Biochim. Biophys. Acta, 126, 525 (1966).

    Article  CAS  Google Scholar 

  17. J.W. Walker, R.J. Lukas and M.G. McNamee, Biochemistry, 20, 2191 (1981).

    Article  CAS  Google Scholar 

  18. T. Schürholz, J. Weber and E. Neumann, Bioelectrochem. Bioenerg., 21, 71 (1989).

    Article  Google Scholar 

  19. O.P. Hamil and B. Sakmann, Nature (London), 294, 462 (1981).

    Article  Google Scholar 

  20. B. Sakmann, J. Patlak and E. Neher, Nature (London), 286, 71 (1980).

    Article  CAS  Google Scholar 

  21. I. Silman and A. Karlin, Science, 164, 1420 (1969).

    Article  CAS  Google Scholar 

  22. R.N. Cox, M. Kawai, A. Karlin and P.W. Brandt, J. Membr. Biol., 51, 145 (1979).

    Article  CAS  Google Scholar 

  23. H.A. Lester, M.E. Krouse, M.M. Nass, N.H. Wassermann and B.F. Erlanger, J. Gen. Physiol., 75, 207 (1980).

    Article  CAS  Google Scholar 

  24. A. Maelicke, Angew. Chem., 96, 193 (1984).

    Article  CAS  Google Scholar 

  25. J.M. Wolosin, A. Lyddiatt, J.O. Dolly and E.A. Barnard, Eur. J. Biochem., 109, 495 (1980).

    Article  CAS  Google Scholar 

  26. H.W. Chang, E. Bock and E. Neumann, in Molecular Basis of Nerve Activity, J.P. Changeux, F. Hucho, A. Maelicke and E. Neumann, (Editors), W. de Gruyter, Berlin, (1985), pp. 369–385.

    Google Scholar 

  27. R.R. Neubig, N.D. Boyd and J.B. Cohen, Biochemistry, 21, 3460 (1982).

    Article  CAS  Google Scholar 

  28. P. Pennefather and D.M. Quastel, Br. J. Pharmacol., 77, 395 (1982).

    Article  CAS  Google Scholar 

  29. T. Heidmann, J. Bernhardt, E. Neumann and J.P. Changeux, Biochemistry, 22, 5452 (1983).

    Article  CAS  Google Scholar 

  30. G. Boheim, W. Hanke, F.J. Barrantes, H. Eibl, B. Sakmann, G. Fels and A. Maelicke, Proc. Natl Acad. Sci., USA, 78, 3586 (1981).

    Article  CAS  Google Scholar 

  31. M. Montal, P. Labarca, D.F. Fredkin, B.A. Suarez-Isla and J. Lindstrom, Biophys. J., 45, 165 (1984).

    Article  CAS  Google Scholar 

  32. M. Spondheim and E. Neumann, Biophys. Chem., 3, 109 (1975).

    Article  Google Scholar 

  33. D. Thiele and W. Guschlbauer, Biopolymers, 8, 361 (1969).

    Article  CAS  Google Scholar 

  34. A. Katchalsky and R. Spangler, Q. Rev. Biophys., 1, 127 (1968).

    Article  CAS  Google Scholar 

  35. A. Katchalsky and E. Neumann, Int. J. Neurosci., 3, 175 (1972).

    Article  CAS  Google Scholar 

  36. E. Neumann, Angew. Chem., 85, 430 (1973);

    Article  CAS  Google Scholar 

  37. E. Neumann, Angew. Chem., Int. Ed. Engl, 12, 356 (1973).

    Article  CAS  Google Scholar 

  38. D.H. Everett, Trans. Faraday Soc., 51, 1551 (1955).

    Article  CAS  Google Scholar 

  39. D.H. Everett, in The Solid-Gas Interface, E.A. Flood (Editor), Marcel Dekker, New York, (1967) Vol. 2, p. 1055.

    Google Scholar 

  40. E. Neumann, in Nicotinic Acetylcholine Receptor, A. Maelicke (Editor), NATO ASI Serien, (1986), Vol. H3, pp. 177–196.

    Chapter  Google Scholar 

  41. N.D. Boyd and J.B. Cohen, Biochemistry, 19, 5344 (1980).

    Article  CAS  Google Scholar 

  42. B. Katz, Release of Neural Transmitter Substances, Liverpool University Press, Liverpool, (1969) p. 55.

    Google Scholar 

  43. E. Neumann and J. Bernhardt, J. Physiol. (Paris), 77, 1061 (1981).

    CAS  Google Scholar 

  44. B. Sakmann, J. Patlack and E. Neher, Nature (London), 286, 71 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Neumann, E. (1990). Molecular Aspects of the Neurotransmission by the Acetylcholine Receptor System. In: Milazzo, G., Blank, M. (eds) Bioelectrochemistry III. Ettore Majorana International Science Series, vol 51. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9459-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9459-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9461-8

  • Online ISBN: 978-1-4757-9459-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics