Protein Translocation Across Biological Membranes

  • Franz-Ulrich Hartl
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 51)

Abstract

Several thousand different polypeptides are synthesized within an eukaryotic cell. In general, protein synthesis takes place in the cytosol, but many proteins have their functional location in subcellular compartments that are separated from the cytosol by at least one membrane. Certain proteins, for example, those residing in the lumen of chloroplast thylakoids, have to be translocated across as many as three bilayers to reach their destination. Others, for example, proteins exerting transport functions, become integrated into membranes, often in arrangements spanning the bilayer many times. How are proteins targeted to the correct membrane compartment? What are the signals involved, and how can polypeptides, i.e. macromolecules containing many hydrophilic groups, penetrate lipid bilayers at all? By describing the main principles of protein translocation across biological membranes I shall try to answer some of these basic questions in molecular cell biology.

Keywords

Precursor Protein Endoplasmic Reticulum Membrane Contact Site Intermembrane Space Signal Recognition Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.L. Randall, S.J.S. Hardy and I.R. Thom, Annu. Rev. Microbiol., 41, 507 (1987).CrossRefGoogle Scholar
  2. [2]
    W.T. Wickner, Biochemistry, 27, 1081 (1988).CrossRefGoogle Scholar
  3. [3]
    P. Walter, and V. Lingappa, Annu. Rev. Cell Biol, 2, 499 (1986).CrossRefGoogle Scholar
  4. [4]
    N. Pfanner, F.U. Hartl and W. Neupert, Eur. J. Biochem., 175, 205 (1988).CrossRefGoogle Scholar
  5. [5]
    F.U. Hartl, N. Pfanner, D.W. Nicholson and W. Neupert, Biochim. Biophys. Acta, 988, 1 (1989).CrossRefGoogle Scholar
  6. [6]
    T.H. Lubben, S.M. Theg, and K. Keegstra, Photosynthesis. Res., 17, 173 (1988).CrossRefGoogle Scholar
  7. [7]
    P.B. Lazarow and Y. Fujiki, Annu. Rev. Cell Biol, 1, 489 (1985).CrossRefGoogle Scholar
  8. [8]
    P. Borst, Biochim. Biophys. Acta., 866, 179 (1986).CrossRefGoogle Scholar
  9. [9]
    W.W. Just and F.U. Hartl, in Peroxisomes in Biology and Medicine, H.D. Fahimi and H. Sies (Editors), Springer-Verlag, Berlin (1987), pp. 402–416.CrossRefGoogle Scholar
  10. [10]
    W. Wickner and H.F. Lodish, Science, 230, 400 (1985).CrossRefGoogle Scholar
  11. [11]
    R. Zimmermann and D.I. Meyer, Trends Biochem. Sci., 11, 512 (1986).CrossRefGoogle Scholar
  12. [12]
    K. Verner and G. Schatz, Science, 241, 1307 (1988).CrossRefGoogle Scholar
  13. [13]
    R.D. Palmiter, J. Gagnon and K.A. Walsh, Proc. Natl. Acad. Sci. USA, 75, 94 (1987).CrossRefGoogle Scholar
  14. [14]
    Y. Ebina, F. Kishi, F. Miki, H. Kagamiyama, T. Nakazawa and A. Nakazawa, Gene, 15, 119 (1988).CrossRefGoogle Scholar
  15. [15]
    R. Zimmermann, U. Paluch, and W. Neupert, FEBS Lett., 108, 141 (1979).CrossRefGoogle Scholar
  16. [16]
    S.J. Gould, G.A. Keller and S. Subramani, J. Cell Biol., 105, 2923 (1987).CrossRefGoogle Scholar
  17. [17]
    S.J. Gould, G.A. Keller and S. Subramani, J. Cell Biol, 107, 897 (1988).CrossRefGoogle Scholar
  18. [18]
    M. Tropschug, D.W. Nicholson, F.U. Hartl, H. Köhler, N. Pfanner, E. Wachter and W. Neupert, J. Biol. Chem., 263, 14433 (1988).Google Scholar
  19. [19]
    E.C. Hurt, B. Pesold-Hurt and G. Schatz, EMBO J., 3, 3149 (1984).Google Scholar
  20. [20]
    A.L. Horwich, F. Kalousek, I. Mellmann and L.E. Rosenberg, EMBO J., 4, 1129 (1985).Google Scholar
  21. [21]
    V.R. Lingappa, I. Chaidez, C.S. Yost and I. Hedgpeth, Proc. Natl. Acad. Sci. USA, 81, 456 (1984).CrossRefGoogle Scholar
  22. [22]
    C. Watts, W. Wickner, and R. Zimmermann, Proc. Natl. Acad. Sci. USA, 80, 2809 (1983).CrossRefGoogle Scholar
  23. [23]
    M.S. Briggs, L.M. Gierasch, A. Zlotnik, J.D. Lear and W.F. De Grado, Science, 228, 1096 (1985).CrossRefGoogle Scholar
  24. [24]
    G. Von Heijne, Eur. J. Biochem., 116, 419 (1981).CrossRefGoogle Scholar
  25. [25]
    G. Von Heijne, J. Mol. Biol., 192 287 (1986).CrossRefGoogle Scholar
  26. [26]
    C. Milstein, G.G. Rowntee, T.M. Harrison and M. Mathews, Nature (London), 239, 117 (1972).CrossRefGoogle Scholar
  27. [27]
    G. Von Heijne, Eur. J. Biochem., 133, 17 (1983).CrossRefGoogle Scholar
  28. [28]
    A. Ito, T. Ogishima, W. Ou, T. Omura, H. Aoyagi, S. Lee, H. Mihara and N. Izumiya, J. Biochem, 98, 1571 (1985).Google Scholar
  29. [29]
    G. Von Heijne, EMBO J., 5, 1335 (1986).Google Scholar
  30. [30]
    G. Von Heijne, Biochim. Biophys. Acta, 947, 307 (1988).CrossRefGoogle Scholar
  31. [31]
    E.C. Hurt, N. Soltanifar, M. Goldschmidt-Clermont, I.D. Rochaix and G. Schatz, EMBO J. 5, 1343 (1986)Google Scholar
  32. [32]
    A. Grossmann, S. Barthelt and N.H. Chua, Nature (London), 285, 625 (1980).CrossRefGoogle Scholar
  33. [33]
    C. Dingwall and R.A. LaskeyAnnu. Rev. Cell Biol., 2, 367 (1986).CrossRefGoogle Scholar
  34. [34]
    K. Talmadge, S. Stahl and W. Gilbert, Proc. Natl. Acad. Sci, 77, 3369 (1980).CrossRefGoogle Scholar
  35. [35]
    R. Zimmermann, M. Sagstetter, M.J. Lewis and H.R.B. Pelham, EMBO J., 7, 2875 (1988).Google Scholar
  36. [36]
    G. Blobel and B. Dobberstein, J. Cell Biol., 67, 852 (1975).CrossRefGoogle Scholar
  37. [37]
    P. Walter, R. Gilmore and G. Blobel, Cell, 38, 5 (1984).CrossRefGoogle Scholar
  38. [38]
    R. Gilmore and G. Blobel, Cell, 42, 497 (1985).CrossRefGoogle Scholar
  39. [39]
    D.I. Meyer, E. Krane and B. Dobberstein, Nature (London), 297, 647 (1982).CrossRefGoogle Scholar
  40. [40]
    R. Gilmore, P. Walter and G. Blobel, J. Cell., Biol, 95, 470 (1982).CrossRefGoogle Scholar
  41. [41]
    M. Wiedmann, T.V. Kurzchalia, E. Hartmann and T.A. Rapoport, Nature (London), 328, 830 (1987).CrossRefGoogle Scholar
  42. [42]
    F.A. Evans, R. Gilmore and G. Blobel, Proc. Natl. Acad. Sci. USA, 83, 581 (1986).CrossRefGoogle Scholar
  43. [43]
    H.P. Wessels and M. Spiess, Cell, 55, 61 (1988).CrossRefGoogle Scholar
  44. [44]
    P. Brennwald, X. Liao, K. Holm, G. Porter and J. A. Wise, Mol. Cell Biol, 8, 1580 (1988).Google Scholar
  45. [45]
    R.J. Deshaies, B.D. Koch and R. Schekman, Trends Biochem. Sci., 13, 384 (1988).CrossRefGoogle Scholar
  46. [46]
    C. Zwizinski and W. Wickner, J. Biol. Chem., 255, 7973 (1980).Google Scholar
  47. [47]
    P.B. Wolfe, W. Wickner and J. M. Goodman, J. Biol, Chem., 258, 12073 (1983).Google Scholar
  48. [48]
    T. Date, J.M. Goodman and W. Wickner, Proc. Natl. Acad. Sci. USA, 77, 4669 (1980).CrossRefGoogle Scholar
  49. [49]
    E.P. Barker and L.L. Randall, EMBO J., 3, 895 (1984).Google Scholar
  50. [50]
    B.L. Geller, N.R. Mowa and W. Wickner, Proc. Natl. Acad. Sci. USA, 83, 4219 (1986).CrossRefGoogle Scholar
  51. [51]
    L. Chen and P.C. Tai, Proc. Natl. Acad. Sci. USA, 82, 4384 (1985).CrossRefGoogle Scholar
  52. [52]
    Y. Ohno-Iwashita and W. Wickner, J. Biol. Chem., 258, 1895 (1987).Google Scholar
  53. [53]
    D.B. Oliver and J. Beckwith, Cell, 25, 765 (1981).CrossRefGoogle Scholar
  54. [54]
    K. Ito, M. Wittekind, M. Nomura, K. Shiba, T. Yura, A. Miura and H. Nashimoto, Cell, 32, 789 (1983).CrossRefGoogle Scholar
  55. [55]
    E. Crooke and W. Wickner, Proc. Natl. Acad. Sci. USA, 84, 5216 (1987).CrossRefGoogle Scholar
  56. [56]
    E. Crooke, L. Brundage, M. Rice and W. Wickner, EMBO J., 7, 1831 (1988).Google Scholar
  57. [57]
    E. Crooke, B. Guthrie, S. Lecker, R. Lill and W. Wickner, Cell, 54, 1003 (1988).CrossRefGoogle Scholar
  58. [58]
    R. Lill, E. Crooke, B. Guthrie and W. Wickner, Cell, 54, 1013 (1988).CrossRefGoogle Scholar
  59. [59]
    T.A. Rapoport and M. Wiedmann in Current Topics in Membranes and Transport, P.A. Knauf and J.S. Cook, (Editors), Academic Press, New York, (1985), Vol. 24, pp. 1–63.Google Scholar
  60. [60]
    J. Coleman, M. Inukai and M. Inouye, Cell, 43, 351 (1985).CrossRefGoogle Scholar
  61. [61]
    M. Zerial, D. Huyseboeck and H. Garoff, Cell, 48, 147 (1987).CrossRefGoogle Scholar
  62. [62]
    G. Blobel, Proc. Natl. Acad. Sci. USA, 77, 1496 (1980).CrossRefGoogle Scholar
  63. [63]
    D.D. Sabatini, G. Kreibich, T. Moromoto and M. Adesmik, J. Cell Biol, 92, 1 (1982).CrossRefGoogle Scholar
  64. [64]
    W. Wickner, Annu. Rev. Biochem., 48, 23 (1979).CrossRefGoogle Scholar
  65. [65]
    N. Overbecke, H. Bergmans, F. von Mansfeld and B. Lugtenberg, J. Mol. Biol, 163, 513 (1983).CrossRefGoogle Scholar
  66. [66]
    M. Schleyer and W. Neupert, Cell, 43, 339 (1985).CrossRefGoogle Scholar
  67. [67]
    H. Arakawa, M. Takiguchi, Y. Amaya, S. Nagata, H. Hayashi and M. Mori, EMBO J., 6, 1361 (1987).Google Scholar
  68. [68]
    R.A. Stuart, W. Neupert and M. Tropschug, EMBO J., 6, 2131 (1987).Google Scholar
  69. [69]
    C. Zwizinski, M. Schleyer and W. Neupert, J. Biol. Chem., 258, 4071 (1983).Google Scholar
  70. [70]
    C. Zwizinski, M. Schleyer and W. Neuperr, J. Biol. Chem., 259, 7850 (1984).Google Scholar
  71. [71]
    R. Pfaller and W. Neupert, EMBO J., 6, 2635 (1987).Google Scholar
  72. [72]
    R. Pfaller, H.F. Steger, J. Rassow, N. Pfanner and W. Neupert, J. Cell Biol., 107, 2483 (1988).CrossRefGoogle Scholar
  73. [73]
    R. Pfaller, N. Pfanner and W. Neupert, J. Biol. Chem., 264, 34 (1989).Google Scholar
  74. [74]
    D. Pain, Y.S. Kanwar and G. Blobel, Nature (London), 331, 232 (1988).CrossRefGoogle Scholar
  75. [75]
    N. Pfanner and W. Neupert, J. Biol. Chem., 262, 7528 (1988).Google Scholar
  76. [76]
    N. Pfanner, M. Tropschug and W. Neupert, Cell, 49, 815 (1987).CrossRefGoogle Scholar
  77. [77]
    D.W. Nicholson, H. Köhler and W. Neupert, Eur. J. Biochem., 164, (1987).Google Scholar
  78. [78]
    D.W. Nicholson, C. Hergersberg and W. Neupert J. Biol. Chem., 263, 19034 (1989).Google Scholar
  79. [79]
    M. Schleyer, B. Schmidt and W. Neupert, Eur. J. Biochem., 125, 109 (1982).CrossRefGoogle Scholar
  80. [80]
    S.M. Gasser, G. Daum and G. Schatz, J. Biol. Chem., 257, 13034 (1982).Google Scholar
  81. [81]
    N. Pfanner and W. Neupert, EMBO J., 4, 2819 (1985).Google Scholar
  82. [82]
    M. Schwaiger, V. Herzog and W. Neupert, J. Cell Biol., 105, 235 (1987).CrossRefGoogle Scholar
  83. [83]
    N. Pfanner, F.U. Hartl, B. Guiard and W. Neupert, Eur. J. Biochem., 169, 289 (1987).CrossRefGoogle Scholar
  84. [84]
    J. Rassow, B. Guiard, V. Herzog, F.U. Hartl and W. Neupert, Submitted.Google Scholar
  85. [85]
    P. Böhni, S. Gasser, C. Leaver and G. Schatz in The Organization and Expression of the Mitochondrial Genome, A.M. Kroon and C. Saccone (Editors), Elsevier/ North-Holland, Amsterdam. (1980), pp. 423–433.Google Scholar
  86. [86]
    B. Schmidt, E. Wachter, W. Sebald and W. Neupert, Eur. J. Biochem., 144, 581 (1984).CrossRefGoogle Scholar
  87. [87]
    G. Hawlitschek, H. Schneider, B. Schmidt, M. Tropschug, F.U. Hartl and W. Neupert, Cell, 53, 795 (1988).CrossRefGoogle Scholar
  88. [88]
    R.A. Pollock, F.U. Hartl, M.Y. Cheng, J. Ostermann, A. Horwich and W. Neupert, EMBO J., 7, 3493 (1988).Google Scholar
  89. [89]
    C. Witte, R.E. Jensen, M.P. Yaffe and G. Schatz, EMBO J. 7, 1439 (1988).Google Scholar
  90. [90]
    F.U. Hartl, B. Schmidt, E. Wachter, H. Weiss and W. Neupert, Cell, 47, 939 (1986).CrossRefGoogle Scholar
  91. [91]
    F.U. Hartl, J. Ostermann, B. Guiard and W. Neupert, Cell, 51, 1027 (1987).CrossRefGoogle Scholar
  92. [92]
    M.Y. Cheng, F.U. Hartl, J. Martin, R.A. Pollock, F. Kalousek, W. Neupert, E.M. Hallberg, R.L. Hallberg and A.L. Horwich, Nature (London), 337, 620 (1989).CrossRefGoogle Scholar
  93. [93]
    S.M. Hemmingsen, C. Woolford, S.M. van der Vies, K. Tilly, D.T. Dennis, C.P. Georgopoulos, R.W. Hendrix and R.J. Ellis, Nature (London), 333, 330 (1988).CrossRefGoogle Scholar
  94. [94]
    L.L. Randall and S.J.S. Hardy, Cell, 46, 921 (1986).CrossRefGoogle Scholar
  95. [95]
    M. Eilers and G. Schatz, Nature (London), 322, 228 (1986).CrossRefGoogle Scholar
  96. [96]
    M. Eilers, S. Hwang and G. Schatz, EMBO J., 7, 1139 (1988).Google Scholar
  97. [97]
    J.E. Rothman and R.D. Kornberg, Nature (London), 322, 209 (1986).CrossRefGoogle Scholar
  98. [98]
    R.J. Deshaies, B.D. Koch, M. Werner-Washburne, E.A. Craig and R. Shekman, Nature (London), 332, 800 (1988).CrossRefGoogle Scholar
  99. [99]
    W.J. Chirico, M.G. Waters and G. Blobel, Nature (London), 332, 805 (1988).CrossRefGoogle Scholar
  100. [100]
    H. Murakami, D. Pain and G. Blobel, J. Cell Biol, 107, 2051 (1988).CrossRefGoogle Scholar
  101. [101]
    H.R.B. Pelham, Cell, 46, 959 (1986).CrossRefGoogle Scholar
  102. [102]
    H.R.B. Pelham, Nature (London), 332, 776 (1988).CrossRefGoogle Scholar
  103. [103]
    D.I. Meyer, Trends Biochem. Sci., 13, 471 (1988).CrossRefGoogle Scholar
  104. [104]
    N. Pfanner, R. Pfaller, R. Kleene, M. Ito, M. Tropschug and W. Neupert, J. Biol. Chem., 263, 4049 (1988).Google Scholar
  105. [105]
    S. Munro and H.R.B. Pelham, Cell, 46, 291 (1986).CrossRefGoogle Scholar
  106. [106]
    C.K. Kassenbrock, P.D. Garcia, P. Walter and R.D. Kelly, Nature (London), 333, 90 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Franz-Ulrich Hartl
    • 1
  1. 1.Institut für Physiologische ChemieUniversität MünchenMünchen 2Germany

Personalised recommendations