Immunotoxicity of Trichothecene Mycotoxins

  • Michael J. Taylor
Part of the Biodeterioration Research book series (BIOR, volume 3)


The trichothecene mycotoxins are sesquiterpene alcohols or esters. Several genera of imperfect fungi, including; Trichoderma, Trichothecium, Myrothecium, Stachybotrys, Cephalosporium, and Verticimonosporium are known to produce trichothecene mycotoxins, most notable, however, are several Fusarium species. To date approximately 100 naturally occurring trichothecene mycotoxins have been identified. However, the rarity of most has limited toxicology research, primarily, to the study of; 4-deoxynivalenol (DON, vomitoxin), 3-acetyl-deoxynivalenol (3-acetyl-DON), diacetoxyscirpenol (DAS, anguidine), fusarenon-X (FUS-X), nivalenol (NIV) , and T-2 toxin (T-2). Often described as secondary, plant metabolites, without obvious benefit to the organism, mycotoxins are believed to be produced in response to various environmental stresses. Trichothecene-producing fungi are distributed widely, and found in temperate as well as subtropical climates.


Alveolar Macrophage Peritoneal Macrophage Glucocorticoid Hormone Infectious Organism Secondary Lymphoid Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anaissie, E., Kantarjian, H., Jones, P., Barlogie, B., Luna, M., Lopez Berestein, G., and Bodey, G.P. (1986). Fusarium: A newly recognized fungal pathogen in immunosuppressed patients. Cancer, 57, 2141–2145.CrossRefGoogle Scholar
  2. Anderson, D.W., Black, R.M., Lee, C.G., Pottage, C, Rickard, R.L., Sandford, M.S., Webber, T.D., and Williams, N.E. (1989). Structure-activity studies of trichothecenes: cytotoxicity of analogues and reaction products derived from T-2 toxin and neosolaniol. J. Med. Chem., 32, 555–562.CrossRefGoogle Scholar
  3. Atkinson, H.A.C. and Miller, K. (1984). Inhibitory effect of deoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone on induction of rat and human lymphocyte proliferation. Tox. Lett., 23, 215–221.CrossRefGoogle Scholar
  4. Beasley, V.R. (1989). Trichothecene Mycotoxicosis: Pathophysiologic Effects, I & II, CRC Press, Boca Raton, FL.Google Scholar
  5. Bhat, R.V., Beedu, S.R., Ramakrishna, Y., and Munshi, K.L. Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat products in Kashmir Valley, India. Lancet, January 7, 35-37.Google Scholar
  6. Burgess, A. and Nicola, N. (1983). Growth Factors and Stem Cells, Academic Press, New York, NY.Google Scholar
  7. Carroll, B.J., Person, M.J., and Martin, F.I.R. (1969). Evaluation of three acute tests of hypothalamic-pituitary-adrenal function. Metabolism, 18, 476–483.CrossRefGoogle Scholar
  8. Claman, H.N. (1972). Corticosteroids and lymphoid cells. New Engl. J. Msol., 287, 388–397.CrossRefGoogle Scholar
  9. Cooray, R. (1984). Effects of some mycotoxins on mitogen-induced blastogenesis and SCE frequency in human lymphocytes. Fd. Chem. Toxicol., 22, 529–534.CrossRefGoogle Scholar
  10. Cooray, R. and Lindahl-Kiessling, K. (1987). Effect of T-2 toxin on the spontaneous antibody-secreting cells and other non-lymphoid cells in the murine spleens. Fd. Chem. Toxicol., 25, 25–29.CrossRefGoogle Scholar
  11. Corrier, D.E., Holt, P.S., and Mollenhauer, H.H. (1987). Regulation of murine macrophage phagocytosis of sheep erythrocytes by T-2 toxin. Am. J. Vet. Res., 48, 1304–1307.Google Scholar
  12. Corrier, D.E., Zip-rin, R.L., and Mollenhauer, H.H. (1987). Modulation of cell-mediated resistance to listeriosis in mice given T-2 toxin. Toxicol. Appl. Pharmacol., 89, 323–331.CrossRefGoogle Scholar
  13. Desiderio, J.V., Kiener, P.A., Lin, P.F., and Warr, G.A. (1989). Protection of mice against Listeria monocytogenes infection by recombinant human tumor necrosis factor-alpha. Infect. Immun., 57, 1615–1617.Google Scholar
  14. Doyle, T.W. and Bradner, W.T. (1980). Trichothecanes, In: Anticancer Agents Based on Natural Product Models, pp.43–72 (J.M. Cassady and J.D. Douros, eds.), Academic Press, New York, NY.Google Scholar
  15. Efrat, S., Zelig, S., Yagen, B., and Kaempfer, R. (1984). Superinduction of human Interleukin-2 messenge RNA by inhibitors of translation. Biochem. Biophys. Res. Comm., 123, 842–848.CrossRefGoogle Scholar
  16. Forsell, J.H., Kateley, J.R., Yoshizawa, T., and Pestka, J.J. (1985). Inhibition of mitogen-induced blastogenesis in human lymphocytes by T-2 toxin and its metabolites. Appl. Environ. Microbiol., 49, 1523–1526.Google Scholar
  17. Friend, S.C.E., Babuik, L.A., and Schieffer, H.B. (1983). The effects of dietary T-2 toxin on the immunological function and Herpes Simplex reactivation in Swiss mice. Toxicol. Appl. Pharmacol., 69, 234–244.CrossRefGoogle Scholar
  18. Fromentin, H., Salazar-Mejicanos, S., and Mariat, F. (1980). Pouvoir pathogene de Candida albicans pour la souris normale ou deprimee par une mycotoxine: le diacetoxyscirpenol. Ann. Microbiol., 131 b, 39–46.Google Scholar
  19. Gerberick, G.F., Sorenson, W.G., and Lewis, D.M. (1984). The effects of T-2 toxin on alveolar macrophages function in vitro. Environ. Res., 33, 246–260.CrossRefGoogle Scholar
  20. Gerberick, G.F. and Sorenson, W.G. (1983). Toxicity of T-2 toxin, a Fusarium mycotoxin, to alveolar macrophages in vitro. Environ. Res., 32, 269–285.CrossRefGoogle Scholar
  21. Goodwin, J.W., Bottomley, R.H., Vaughn, C.B., Frank, J., and Pugh, R.P. (1983). Phase 2 evaluation of anguidine in central nervous system tumors: a southwest oncology group study. Canc. Treat. Rep., 67, 285–286.Google Scholar
  22. Jacobs, D.M. (1981). Immunomodulatory effects of bacterial lipopolysaccharides. J. Immunopharmacol., 3, 119–132.CrossRefGoogle Scholar
  23. Jelinek, C.F., Pohland, A.E., and Wood, G.E. (1989). Worldwide occurrence of mycotoxins in foods and feeds-an update. J. Assoc. Off. Anal. Chem., 72, 223–230.Google Scholar
  24. Kanai, K. and Kondo, E. (1984). Decreased resistance to mycobacterial infection in mice fed a trichothecene compound (T-2 toxin). Japan. J. Med. Sci. Biol., 37, 97–104.Google Scholar
  25. Kaneko, T., Schmitz, H., Essery, J.M., Rose, W., Howell, H.G., O’Herron, F.A., Nachfolger, S., Huftalen, J., Bradner, W.T., Partyka, R.A., Doyle, TW., Davies, J., and Cundliffe, E. (1982). Structural Modifications of anguidine and anti-tumor activities of its analogues. J. Med. Chem., 25, 579–589.CrossRefGoogle Scholar
  26. Liao, L.L., Grollman, A.P., and Horwitz, S.B. (1976). Mechanisms of action of the 12, 13 epoxy trichothecene anguidine, an inhibitor of protein synthesis. Biochim. Biophys. Acta., 454, 273–284.CrossRefGoogle Scholar
  27. Loenzana, R.M., Beasley, V.R., Buck, W.B., Ghent, A.W., Lundeen, G.R., and Poppenga, R.H. (1985). Experimental T-2 toxicosis in swine. I. Changes in cardiac output, aortic mean pressure, catecholamines, 6-keto-PGF, thromboxane B2 and acid-base parameters. Fund. Appl. Toxicol., 5, 879–892.CrossRefGoogle Scholar
  28. Masuda, E., Takemoto, T., Tatsuno, T., and Obara, T. (1982). Immunosuppressive effect of a trichothecene mycotoxin, fusarenon-X in mice. Immunology, 45, 743–749.Google Scholar
  29. Mayer, C.F. (1953). Endemic panmyelotoxicosis in the Russian grain belt. Part I: The clinical aspects of alimentary toxic aleukia (ATA) a comprehensive review. Milit. Surg., 113, 173–189.Google Scholar
  30. McLaughlin, C.S., Vaughan, M.H., Campbell, I.M., Wei, C.M., Stafford, M.E., and Hansen, B.S. (1977). Inhibition of protein synthesis by trichothecenes, In: Mycotoxins in Human and Animal Health, pp. 263–273 (J.V. Rodricks, C.W. Hesseltine, and M.A. Mehlman, eds.), Pathtox Publishers, Inc., Park Forest South, IL.Google Scholar
  31. Melmed, R.N., Ishai-Micheali, R., and Yagen, B. (1985). Differential inhibition by T-2 toxin of total protein, DNA and isoprenoid synthesis in the culture macrophage cell line J774. Biochem. Pharmacol., 34, 2809–2812.CrossRefGoogle Scholar
  32. Miller, K., and Atkinson, H.S.C. (1986). The in vitro effects of trichothecenes on the immune system. Fd. Chem. Toxicol., 24, 545–549.CrossRefGoogle Scholar
  33. Nakane, A., Minagawa, T., and Kato, K. (1988). Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect. Immun., 56, 2563–2569.Google Scholar
  34. Niyo, K. A., Richard, J. L., Niyo, Y., and Tiffany, L. H. (1988). Effects of T-2 mycotoxin ingestion on phagocytosis of Aspergillus fumigatus conidia by rabbit alveolar macrophages and on hematologic, serum biochemical, and pathological changes in rabbits. Am. J. Vet. Res., 49, 1766–1773.Google Scholar
  35. Otokawa, M. (1983). Immunological disorders, In: Trichothecenes, Chemical, Biological, and Toxicological Aspects, Developments in Food Science 4, pp. 163–176 (Y. Ueno, ed.), Elsevier, New York, NY.Google Scholar
  36. Rafai, P. and Tuboly, S. (1982). Effect of T-2 toxin on adrenocortical function and immmune response in growing pigs. Zbl. Vet. Med., 29, 558–565.CrossRefGoogle Scholar
  37. Robbana-Barnat, S., Lafarge-Frayssinet, C., Cohen, H., Neish, G.A., and Frayssinet, C. (1988). Immunosuppressive properties of deoxynivalenol. Toxicology, 48, 155–166.CrossRefGoogle Scholar
  38. Rodricks, J.V., Hesseltine, C.W., and Mehlman, M.A. (1977). Mycotoxins in Human and Animal Health, Pathtox Publishers, Inc., Park Forest South, IL.Google Scholar
  39. Rosenstein, Y., Kretschmer, R.R., and Lafarge-Frayssinet, C. (1981). Effect of Fusarium toxins, T-2 toxin and diacetoxyscripenol on murine T-dependent immune responses. Immunology, 44, 555–560.Google Scholar
  40. Rosenstein, Y., Lafarge-Frayssinet, C., Lespinats, G., Loisillier, F., Lafont, P., and Frayssinet, C. (1979). Immunosuppressive activity of Fusarium toxins. Effects on antibody synthesis and skin grafts of crude extracts, T2-toxin and diacetoxyscirpenol. Immunology, 36, 111–117.Google Scholar
  41. Rosenstein, Y. and Lafarge-Frayssinet, C. (1983). Inhibitory effect of Fusarium T-2 toxin on lymphoid DNA and protein synthesis. Toxicol. Appl. Pharmacol., 70, 283–288.CrossRefGoogle Scholar
  42. Ryu, J., Ohtsubo, K., Izumiyama, N., Nakamura, K., Tanaka, T., Yamamura, H., and Ueno, Y. (1988). The acute and chronic toxicities of nivalenol in mice. Fund. Appl. Toxicol., 11, 38–47.CrossRefGoogle Scholar
  43. Schiefer, H.B., Rousseaux, C.G., Hancock, D.S., and Blakely, B.R. (1987). Effects of low-level long-term oral exposure to T-2 toxin in CD-1 mice. Fd. Chem. Toxicol., 25, 593–601.CrossRefGoogle Scholar
  44. Strum, A.W., Grave, W., and Kwee, W.S. (1989). Disseminated Fusarium oxysporum infection patient with heatstroke. Lancet, April 29, 968.CrossRefGoogle Scholar
  45. Tai, J.H., and Pestka, J.J. (1988a). Impaired murine resistance to Salmonella typhimurium following oral exposure to the trichothecene T-2 toxin. Fd. Chem. Toxicol., 26, 691–698.CrossRefGoogle Scholar
  46. Tai, J.H., and Pestka, J.J. (1988b). Synergistic interaction between the trichothecene T-2 toxin and Salmonella typhimurium lipopolysaccharide in C3H/HeN and C3H/HeJ mice. Tox. Lett., 44, 191–200.CrossRefGoogle Scholar
  47. Taylor, M.J., Pang, V.F., and Beasley, V.R. (1989a). The immunotoxicity of trichothecene mycotoxins, In: Trichothecene Mycotoxicosis: Pathophysiologic Effects, II, pp. 1–37 (V. Beasley, ed.), CRC Press, Boca Raton, FL.Google Scholar
  48. Taylor, M.J., Smart, R.A., and Sharma, R.P. (1989b). Relationship of the hypothalamic-pituitary-adrenal axis with chemically induced immunomodulation. I. Stress-like response after exposure to T-2 toxin. Toxicology, 56, 179–195.CrossRefGoogle Scholar
  49. Taylor, M.J., Warren, R. P., and Sharma, R.P. (1989c). Relationship of the hypothalamic-pituitary-adrenal axis with chemically induced immunomodulation. II. Effects of T-2 toxin on T-independent and T-dependent antibody responses. In manuscript.Google Scholar
  50. Tomar, R.S., Blakely, B.R., and Decoteau, W.E. (1988). Antibody-producing ability of mouse spleen cells after subacute dietary exposure to T-2 toxin. Int. J. Immunopharmacol., 10, 145–151.CrossRefGoogle Scholar
  51. Tomar, R.S., Blakely, B.R., and Decoteau, W.E. (1987). Immunological responsiveness of mouse spleen cells after in vivo or in vitro exposure to 3-acetydeoxynivalenol. Fd. Chem. Toxicol., 25, 393–398.CrossRefGoogle Scholar
  52. Tomar, R.S., Blakely, B.R., Schieffer, H.B., and Decoteau, W.E. (1986). In vitro effects of 3-acetyldeoxynivalenol on the immune response of human peripheral blood lymphocytes. Int. J. Immunopharmacol., 8, 125–130.CrossRefGoogle Scholar
  53. Tremel, H., Strugala, G., Forth, W., and Fichtl, B. (1985). Dexamethasone decreases lethality of rats in acute poisoning with T-2 toxin. Arch. Toxicol. Google Scholar
  54. Ueno, Y. (1983). Trichothecenes: Chemical, Biological and Toxicological Aspects, Developments in Food Science 4, Elsevier, New York, NY.Google Scholar
  55. Ueno, Y., Nakajima, M., Sakai, K., Ishii, K., Sato, N., and Shimada, N. (1973). Comparative toxicology of trichothecene mycotoxins: Inhibition of protein synthesis in animal cells. J. Biochem., 74, 285–296.Google Scholar
  56. Vidal, D. and Mavet, S. (1989). In vitro and in vivo toxicity of T-2 toxin, a Fusarium mycotoxin, to mouse peritoneal macrophages. Infect. Immun., 57, 2260–2264.Google Scholar
  57. Wyllie, T.D. and Morehouse, L.G. (1978). Mycotoxic Fungi, Mycotoxins, Mycotoxicoses: An Encyclopedic Handbook. Mycotoxicoses of Domestic and Laboratory Animals, Poultry, and Aquatic Invertebrates and Vertebrates, 2, Marcel Dekker, Inc., New York, NY.Google Scholar
  58. Yap, H., Murphy, W., DiStefano, A., Blumenschein, G., and Bodey, G. (1979). Phase II study of anguidine in advanced breast cancer. Canc. Treat. Rep., 63, 789–791.Google Scholar
  59. Yarom, R., Sherman, Y., More, R., Ginsburg, I., Borinski, R., and Yagen, B. (1984). T-2 toxin effect on bacterial infection and leukocyte functions. Toxicol. Appl. Pharmacol., 75, 60–68.CrossRefGoogle Scholar
  60. Ziprin, R.L. and Corrier, D.E. (1987). Listeriosis in diacetoxyscirpenol-treated mice. Am. J. Vet. Res., 48, 1516–1519.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Michael J. Taylor
    • 1
  1. 1.National Institutes of Health, National Institute of Environmental Health Science, DTRT, STBResearch Triangle ParkUSA

Personalised recommendations