Wood Decay: A Review Including Recent Developments

  • William V. Dashek
  • Nina L. Moore
  • Ann C. Williams
  • Arthur L. Williams
  • Charles E. O’Rear
  • Gerald C. Llewellyn
Part of the Biodeterioration Research book series (BIOR, volume 3)


Wood decay of living trees, which has been explained by the CODIT (corapartmentalization of decay in trees - Shigo and Marx, 1977) model and/or the functional compartmentalization concept (Shigo, 1984), results in substantial losses of revenue to the United States each year. This decay is caused via a succession of micro-organisms (Shigo, 1967) but, in the main, by a group of wood-rotting fungi, the Hymenomycetes (Shigo and Sharon, 1968). The latter belong to the Basidiomycetes, a fungal Division in which fruiting bodies, basidiocarps, are produced. In this connection, fungi appear to be more significant than bacteria in the biodeterioration of wood (Henningsson, 1988).


Polyphenol Oxidase Lignin Degradation Wood Decay Trichoderma Harzianum Syringic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ander, P. and Eriksson, K.E. (1976). The importance of phenol oxidase in lignin degradation of the white-rot fungus Sporotrichum pulverulentum. Arch. of Microbiol., 109, 1–8.CrossRefGoogle Scholar
  2. Baylor, N., Williams, A.L., and Cofie, N. (1983). Molecular characterization of ilv C specialized transducing phases of Escherichia coli. Mol. Gen. Genet., 191, 347–352.CrossRefGoogle Scholar
  3. Belkova, L.P., Grang, V.S., and Mikhailov, A.I. (1985). Free radical tracer study of the molecular dynamics of the components of wood substance. 2. The molecular dynamics of wood substance and the interaction of its components. Khimiya Drevesing, 118, 3–8.Google Scholar
  4. Benner, R., Moran, M.A., and Hodson, R.E. (1986). Importance of bacteria to the degradation of the lignin and polysaccharide components of ligninocellulose in aquatic ecosystems. Biodeteriorioration 6. pp. 517–523. (Llewellyn, G.C. and O’Rear, C.E., eds.), CAB International Mycological Institute, The Cambriani News Ltd, Aberystwyth.Google Scholar
  5. Bollag, J.M. and Leonowicz, A. (1984). Comparative studies of extracellular laccases. Appl. Environ. Microbiol., 48, 849–854.Google Scholar
  6. Butcher, J.A. (1988). Recent trends in wood preservation research. In: Biodeterioration 7. pp. 714–720. (Houghton, D.R., Smith, R.N., and Eggins, H.O.W., eds.). Elsevier Applied Science, London.CrossRefGoogle Scholar
  7. Buisman, C. (1935). The anatomy of elms infected with Graphium ulmi. Plantenzichten, 410, 104–120.Google Scholar
  8. Chupka, E.I. and Rykova, T.M. (1980). Change in the concentration of free radicals on the photolysis of lignin. Chem. Natural Compounds, 16, 188–190.CrossRefGoogle Scholar
  9. Fric, F. (1976). Oxidative enzymes. Physiol. Plant Pathol., pp. 617–631. (Heitefuss, R. and Williams, P.H., (eds.), Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  10. Greaves, H. (1971). The effect of substrate availability on cellulolytic enzyme production by selected wood-rotting micro-organisms. Australian J. of Biol. Sci., 24, 1169–1180.Google Scholar
  11. Hale, M.D. and Eaton, R.A. (1985a). Soft-rot decay of wood: the infection and cavity-forming processes of Phialophora hoffmannii. In: Biodeterioration 5. pp. 54–63. (Oxley, T.A. and Barry, S., eds.), John Wiley and Sons, Chichester.Google Scholar
  12. Hale, M.D. and Eaton, R.A. (1985b). The ultrastructure of soft-rot fungi. I. Fine hyphae in wood cell walls. Mycol., 77, 447–463.CrossRefGoogle Scholar
  13. Hale, M.D. and Eaton, R.A. (1985c). The ultrastructure of soft-rot fungi. II. Cavity-forming hyphae in wood cell walls. Mycol., 77, 594–605.CrossRefGoogle Scholar
  14. Hale, M.D. and Eaton, R.A. (1986). Soft-rot cavity formation in five preservative-treated hardwood species. Trans. Brit. Mycol. Soc., 86, 585–590.CrossRefGoogle Scholar
  15. Hale, M.D.C. and Eaton, R.A. (1988). Soft-rot decay of treated hardwoods. pp. 749–754 (Houghton, D.R., Smith, R.N. and Eggins, H.O.W., eds.). In: Biodeterioration 7, Elsevier Applied Science, London.CrossRefGoogle Scholar
  16. Harborne, J.B. (1980). Phenolic compounds derived from shikimate. Biosyn. 6, 40–75.CrossRefGoogle Scholar
  17. Henningsson, B.O. (1988). The importance of microfungi and bacteria in the deterioration of timber. In: Biodeterioration 7. pp. 703–708. (Houghton, D.R., Smith, R.N. and Eggins, H.O.W., eds.), Elsevier Applied Science, London.CrossRefGoogle Scholar
  18. Highley, T.L. and T.K. Kirk. (1979). Mechanism of wood-decay and the unique factors of heartrot. Phytopathol., 69, 1151–1156.CrossRefGoogle Scholar
  19. Higuchi, T. 1985. Biosynthesis and Biodegradation of Wood Components. Academic Press, NY, pp. 704.Google Scholar
  20. Hodson, R.E. and Benner, R. (1986). Anaerobic biodegradation of natural ligninocelluloses and synthetic lignin. In: Biodeterioration 6. pp. 510–516. (Llewellyn, G.C. and O’Rear, C.E., eds.), CAB International Mycological Institute, The Cambriam News Ltd, Aberystwyth.Google Scholar
  21. Hodson, E. (1986). Biodegradation of lignocellulose and related polymers by terrestrial and aquatic micro-organisms. In: Biodeterioration 6. p. 509. (Llewellyn, G.G. and O’Rear, C.E., eds.), CAB International Mycological Institute, The Cambridge News Ltd, Aberystwyth.Google Scholar
  22. Hon, D.N.S. and Frist, W.C. (1981). Free radical formation in wood the role of water. Wood Sci., 14, 41–48.Google Scholar
  23. Hon, D.N.S. (1981). Photochemical degradation of lignocellulosic materials. Developments in Polymer Degradation 3, 229–281.Google Scholar
  24. Illman, B.L., Meinholtz, D.C., and Highley, T.L. (1990). Oxygen free radical detection in wood colonized by the brown-rot fungus, Postia placenta. In: Biodeterioration Research III. (Llewellyn, G.C. and O’Rear, C.E., eds.), Plenum Press, NY, (in press).Google Scholar
  25. Illman, B.L. and Highley, T.L. (1990). Decomposition of wood by brownrot fungi. In: Biodeterioration Research III. (Llewellyn, G.C. and O’Rear, C.E., eds.), Plenum Press, NY, (in press).Google Scholar
  26. Ishihara, T. and Miyasaki, M. (1972). Oxidation of milled wood lignin by fungal laccase. Mokuzai Gakkaishi., 22, 371–375.Google Scholar
  27. Jager, A., Croan, S., and Kirk, T.K. (1985). Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl. Environ. Mlcrobiol., 50, 1274–1278.Google Scholar
  28. Jekel, J., Pavlikova, M., Lubke, H. and Kozlik, I. (1981). Free radicals in spruce wood damaged by wood destroying fungi II. White-rot fungi. Drevarsky Vyskum, 26, 23–31.Google Scholar
  29. Kirk, K.T. and Kelman, A. (1965). Lignin degradation as related to polyphenol oxidases of selected wood decaying basidiomycetes. Phytopathol., 55, 739–745.Google Scholar
  30. Kirk, T.K., Croan, S., Tien, M., Murtagh, K.E., and Fawell, R.L. (1985). Production of multiple lignases by Phaneorchaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzy. Mlcrobiol. Technol., 8, 27–32.CrossRefGoogle Scholar
  31. Kirkpatrick, and Palmer, J.M. (1987). Semi-continuous ligninase production using foam immobolized Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol., 27, 129–133.CrossRefGoogle Scholar
  32. Koenings, J.W. (1971). Production of extracellular hydrogen peroxide and peroxidase by wood-rotting fungi. Phytopathol., 62, 100–110.CrossRefGoogle Scholar
  33. Kuc, J. (1967). Shifts in oxidative metabolism during pathogenesis. The Dynamic Role of Molecular Constituents in Plant-Parasite Interaction. In: pp. 183–202 (Mirocha, C.J. and Uritani, I., eds.), Bruce Publishing Company, St. Paul, MN.Google Scholar
  34. Leisola, M., Thanei-Wyss, U., and Fletcher, A. (1985). Strategies for production of high ligninase activities by Phanerochaete chrysosporium. J. Biotechnol., 3, 97–107.CrossRefGoogle Scholar
  35. Linko, Y.Y., Leisola, M., Lindholm, N., Troller, J., Linko, P. and Flechter, A. (1986). Continuous production of lignin peroxidase by Phanerochaete chrysosorium. J. Biotechnol., 4, 283–291.CrossRefGoogle Scholar
  36. Liu, Shu-Yen, Minard, R.D., and Bollag, J-M. (1981). Oligomerization of syringic acid, a lignin derivative, by phenoloxidase. Soil Sci. Soc. Amer. J., 45, 1100–1105.CrossRefGoogle Scholar
  37. Maniatis, T.E., Fritsch, T., and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY.Google Scholar
  38. McGinnes, E.A., Phelps, J.E., Szopa, P.S., and Shigo, A.L. (1977). Wood anatomy after tree injury a pictorial study. Univ. Missouri, Columbia, Res. Bull., 1025, 1–35.Google Scholar
  39. Merrill, W. and Shigo, A.L. (1979). An expanded concept of tree decay. Phytopathol., 69, 1158–1160.CrossRefGoogle Scholar
  40. Moore, N.L., Mariam, D.H., Williams, A.L., and Dashek, W.V. (1989). Substrate specificity, de novo synthesis and partial purification of polyphenol oxidase from the wood decay fungus, Coriolus versicolor. J. Indust. Microbiol., 4:349–363.CrossRefGoogle Scholar
  41. Mulhern, J, Shortle, W., and Shigo, A. (1979). Barrier zones in red maple; an optical and scanning microscopic examination. For. Sci., 5, 311–316.Google Scholar
  42. Nilsson, T. (1979). Cellulolytic activity and the taxonomic position of selected brown-rot fungi. Mycol. LXXI, 170–177.CrossRefGoogle Scholar
  43. Nilsson, T. and Daniel, G. (1988). Bacterial attack of wood cell walls. Biodeterioration 7. pp. 739–742. (Houghton, D.R., Smith, R.N. and Eggins, H.O.W., eds., Elsevier Applied Science, London.CrossRefGoogle Scholar
  44. Nobles, M.K. (1958). A rapid test for extracellular oxidase in cultures of wood-inhabiting hymenoraycetes. Can. J. Bot., 36, 91–99.CrossRefGoogle Scholar
  45. Ou, N.H., Zhen, Z.Y., Hou, G. and Xu, G.Z. (1984). An ESR investigation on free radicals occurring on wood surfaces. Scientia Silvae Sinicae 20, 50–56.Google Scholar
  46. Palfreyraan, J.W., Bruce, A., Button, D., Glancy, H., Vigrow, A., and King, B. (1988). Immunological methods for the detection and characterization of wood decay basidiomycetes. In: Biodeterioration 7. pp. 739–742 (Houghton, D.R., Smith, R.N., and Eggins, H.O.W., eds.), Elsevier Applied Science, London.Google Scholar
  47. Pearce, R.B. and Holloway, P.J. (1984). Suberin in the sapwood of oak (Quercus rolur L.), its composition from a corapartmentalization barrier and its occurrence in tyloses in undecayed wood. Physiol. Plant Pathol., 24, 71–81.CrossRefGoogle Scholar
  48. Ranby, B. (1969). The free radical content in wood and lignins. Acta Chemica Scandanavia, 23, 3257–3259.CrossRefGoogle Scholar
  49. Reddy, C.A. and Kelly, R.L. (1986). The central role of hydrogen peroxide in lignin degradation by Phanerochaeta chrysosporium. In: Biodeterioration 6. pp. 535–542. (Llewellyn, G.C. and O’Rear, C.E., eds.), CAB International Mycological Institute, The Cambrian News, Ltd, Aberystwyth.Google Scholar
  50. Rosenberg, S.L. (1979). Physiological studies of lignocellulose by the thermotolerant mold Chrysosporium pruinosum. Dev. Indust. Microbiol., 20, 133–142.Google Scholar
  51. Scheffer, T. and Cowling, E.B. (1966). Natural resistance of wood to microbial deterioration. Ann. Rev. Phytopathol., 4, 147–170.CrossRefGoogle Scholar
  52. Shevenell, B.J. and Shortle, W.C. (1986). An ion profile of wounded red maple. Phytopathol., 76, 132–135.CrossRefGoogle Scholar
  53. Shigo, A.L. (1967). Succession of organisms in discoloration and decay of wood. Int. Rev. For. Res., 2, 237–239.Google Scholar
  54. Shigo, A.L. and Sharon, E.M. (1968). Discoloration and decay in hardwoods following inoculation with Hymenomycetes. Phytopathol., 58, 1493–1498.Google Scholar
  55. Shigo, A.L. (1972). Successions of micro-organisms and patterns of discoloration and decay after wounding in red and white oak. Phytopathol., 62, 256–259.CrossRefGoogle Scholar
  56. Shigo, A.L. and Hillis, E.W. (1973). Heartwood, discolored wood, and micro-organisms in living trees. Ann. Rev. Phytopathol., 11, 197–222.CrossRefGoogle Scholar
  57. Shigo, A.L. and Marx, H. (1977). Compartmentalization of decay in trees (CODIT). U.S. Dept. Agric. Inf. Bull. 405, 74 pp.Google Scholar
  58. Shigo, A.L. (1984). Compartmentalization: A conceptual framework for understanding how trees grow and defend themselves. Ann. Rev. Phytopathol., 22, 181–214.CrossRefGoogle Scholar
  59. Shortle, W.C., Tattar, T.A., and Rich, A.E. (1971). Effects of some phenolic compounds on the growth of Phialoohora melini and Fomes connatus. Phytopathol. 61, 522–555.CrossRefGoogle Scholar
  60. Shortle, W.C. and Cowling, E.B. (1978). Interaction of live sapwood and fungi commonly found in discolored and decayed wood. Phytopathol., 61, 552–555.CrossRefGoogle Scholar
  61. Shortle, W.C. (1979). Mechanisms of compartraentalization of decay in living trees. Phytopathol., 69, 1147–1151.CrossRefGoogle Scholar
  62. Shortle, W.C. (1984). Biochemical mechanisms of discoloration, decay, and corapartmentalization of decay in trees. IAWA Bulletin 5, 100–104.Google Scholar
  63. Shortle, W.C. and Smith, K.T. (1987). Electrical properties and role of decay in spruce and fir wood. Phytopathol., 77, 811–814.CrossRefGoogle Scholar
  64. Shortle, W.C. and Cowling, E.B. (1973). Interaction of live sapwood and fungi commonly found in discolored and decayed wood. Phytopathol., 58, 617–623.Google Scholar
  65. Smith, K.T., Blanchard, R.O., and Shortle, W.C. (1981). Postulated mechanism of biological control of decay fungi in red maple wounds treated with Trichoderma harzianum. Phytopathol., 71, 496–498.CrossRefGoogle Scholar
  66. Smith, K.T., Shortle, W.C., and Hoyle, M.C. IAA oxidase, peroxidase and barrier zone formation in red maple. Plant Physiol. (submitted).Google Scholar
  67. Smith, R.N. and Ingleby, A.J. (1985). Assessment of surface-applied prophylactic fungicides in wood. In: Biodeterioration 5. (Oxley, T.A. and Barry, S., eds.), John Wiley and Sons, Chichester.Google Scholar
  68. Smith, K.T. (1990). Dynamics of decay in trees and timber. In: Biodeterioration Research III (Llewellyn, G.C. and O’Rear, C.E., eds.), Plenum Press, NY, (in press).Google Scholar
  69. Tattar, T.A., Shortle, W.C., and Rich, A.E. (1971). Sequence of micro-organisms and changes in constituents associated with discoloration and decay of sugar maple infested with Fomes connatus. Phytopathol., 61, 556–558.CrossRefGoogle Scholar
  70. Taylor, R., Llewellyn, G.C., Mayfield, J.E., Shortle, W.C., and Dashek, W.V. (1937a). Time-dependent appearance of extracellular polyphenol oxidase in relation to the bimodal growth response of Coriolus versicolor to catechol. In: Biodeterioration Research I, pp. 63–74. (Llewellyn, G.C. and O’Rear, C.E., eds.), Plenum Press, NY.Google Scholar
  71. Taylor, R., Mayfield, J.E., Shortle, W.C., Llewellyn, G.C., and Dashek, W.V. (1987b). Attempts to determine whether the products of extracellular polyphenol oxidase modulate the catechol-induced bimodal growth response of Coriolus versicolor. In: Biodeterioration Research I, pp. 43–62. (Llewellyn, G.C. and O’Rear, C.E., eds.), Plenum Press, NY.CrossRefGoogle Scholar
  72. Taylor, R., Dashek, W.V., Williams, A.L., Llewellyn, G.G., Shortle, W.C., O’Rear, C.E. and Mayfield, J.E. (1938). Ultrastructure of the wood decay fungus, Coriolus versicolor, in relation to a catechol-induced bimodal growth response. International Biodeterioration 24, 343–358.CrossRefGoogle Scholar
  73. Taylor, R., Llewellyn, G.G., O’Rear, C.E., Mayfield, J.E., Smith, K.T. Williams, A.L., and Dashek, W.V. (1989). In vitro growth of Coriolus versicolor, a wood-decay fungus, responds differentially to catechol and tannic acid. In: Biodeterioration Research II, Plenum Press, NY, pp. 451–454.CrossRefGoogle Scholar
  74. Tien, N., Kirk, T.K., Bull, C, and Fee, J.A. (1986). Steady-state and transient-state kinetic studies on the oxidation of 3–4 dimethoxybenzyl alcohol catalyzed by the lignlnase of Phaneorchaete chrysosporium. J. Bio. Chem., 261, 1687–1693.Google Scholar
  75. Tippett, J.T. and Shigo, A.L. (1981). Barrier zone formation: a mechanism of tree defense against vascular pathogens. IAWA Bull. 2, 163–168.Google Scholar
  76. Williams, A., Baylor, N., and Ensor, M. (1981). Evidence for the site of lambda insertion in the ilv gene cluster of Escherichia coli K-12. J. Bacteriol., 147, 691–693.Google Scholar
  77. Williams, G.R. and Eaton, R.A. (1988). Studies on the toxicity of biocides towards mold and sapstain fungi. In: Biodeterioration 7. pp. 755–761. (Houghton, D.R., Smith, R.N. and Eggins, H.O.W., eds.), Elsevier Applied Science, London.CrossRefGoogle Scholar
  78. Wu, R., Grassman, L., and Moldave, K. (1983). Recombinant DNA Parts B and C, Academic Press, NY.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • William V. Dashek
    • 1
  • Nina L. Moore
    • 1
  • Ann C. Williams
    • 1
  • Arthur L. Williams
    • 1
  • Charles E. O’Rear
    • 2
  • Gerald C. Llewellyn
    • 3
  1. 1.Biology DepartmentClark Atlanta UniversityAtlantaUSA
  2. 2.Department of Forensic SciencesGeorge Washington UniversityUSA
  3. 3.Bureau of Toxic Substances InformationVirginia Department of HealthRichmondUSA

Personalised recommendations