Patulin: Mycotoxin or Fungal Metabolite? (Current State of Knowledge)

  • Leonard Friedman
Part of the Biodeterioration Research book series (BIOR, volume 3)


Following the discovery of penicillin by Fleming in 1929 a flurry of work ensued in which similar approaches were applied to the search for other antibiotics. One of the products of this search was the compound patulin, initially isolated from filtrates of a strain of Penicillium claviforme by Chain et al. (1942). The compound, originally referred to as clariformin and possessing potent antibacterial activity, was the subject of numerous chemical and biological studies soon after its isolation from a strain of Penicillium patulum Painier and characterization by Birkinshaw et al. (1943). Elucidation of the structure was made by Woodward and Singh (1949). It has since been shown to be produced by several species of Aspergillus and Penicillium and at least one species of Byssochlamys, as reviewed by Ciegler (1977) and Stott and Bullerman (1975).


Chromosomal Aberration Apple Juice Sister Chromatid Exchange Oral Gavage Renal Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, B. N., Furton, W. E., Yamazaki, E., and Lee, G. D. (1973). Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA, 70, 2281–2285.CrossRefGoogle Scholar
  2. Andraud, G., Tronche, P., Couquelet, J., and Dorel, M. (1965). Inhibition de l’activite de l’urease par la patinine, 1’isopatuline et la dimethylisopatuline. C. R. Soc. Biol., 159, 686–688.Google Scholar
  3. Arafat, W., Kern, D., and Dirheimer, G. (1985). Inhibition of aminoacyltRNA synthetases by the mycotoxin patulin. Chem. Biol. Interact., 56, 333–349.CrossRefGoogle Scholar
  4. Ashoor, S. H., and Chu, F. S. (1973a). Inhibition of alcohol and lactic dehydrogenases by patulin and penicillic acid in vitro. Food Cosmet.Toxicol., 11, 617–624.CrossRefGoogle Scholar
  5. Ashoor, S. H., and Chu, F. S. (1973b). Inhibition of muscle aldolase by penicillic acid and patulin in vitro. Food Cosmet. Toxicol., 11, 995–1000.Google Scholar
  6. Auffray, Y., and Boutibonnes, P. (1986). Evaluation of the genotoxic activity of some mycotoxins using Escherichia coli in the SOS spot test. Mutat. Res., 171, 79–82.CrossRefGoogle Scholar
  7. Auffray, Y., and Boutibonnes, P. (1987). Genotoxic activity of some mycotoxins using the SOS chromotest. Mycopathologia, 100, 49–53.CrossRefGoogle Scholar
  8. Becci, P. J., Hess, F. G., Johnson, W. D., Gallo, M. A., Babish, J. G., Dailey, R. E., and Parent, R. A. (1981). Long-term carcinogenicity and toxicity studies of patulin in the rat. J. Appl. Toxicol., 1, 256–261.CrossRefGoogle Scholar
  9. Belitsky, G. A., Khovanova, E. M., Budunova, I. V., and Sharuptis, H. G. (1985). Mycotoxin induction of somatic mosaicism in Drosophila and DNA repair in mammalian liver cell cultures. Cell. Biol. Toxicol., 1, 133–143.CrossRefGoogle Scholar
  10. Bennett, J. W. (1987). Mycotoxins, mycotoxicoses, mycotoxicology and mycopathologia. Mycopathologia, 100, 3–5.CrossRefGoogle Scholar
  11. Birkinshaw, J. H., Michael, S. E., Bracken, A., and Raistrick, H. (1943). Patulin in the common cold. Collaborative research on a derivative of Penicillium patulum Bainier. II. Biochemistry and chemistry. Lancet, ii, 625–630.CrossRefGoogle Scholar
  12. Braunberg, R. C., Gantt, O. O., and Friedman, L. (1982). Toxicological evaluation of compounds found in food using rat renal expiants. Food Chem. Toxicol. 20, 541–546.CrossRefGoogle Scholar
  13. Brian, P. W., Elson, G. W., and Lowe, D. (1956). Production of patulin in apple fruits by Penicillium expansum. Nature, 178, 263–264.CrossRefGoogle Scholar
  14. Burger, M. G., Brakhage, A. A., Creppy, E. E., Dirheimer, G., and Roschenthaler, R. J. (1988). Toxicity and mutagenicity of patulin in different test systems. Arch. Toxicol. Suppl., 12, 347–351.CrossRefGoogle Scholar
  15. Cavallito, C. J., and Bailey, J. H. (1944). Preliminary note on the inactivation of antibiotics. Science, 100, 390.CrossRefGoogle Scholar
  16. Chain, E., Florey, H. W., Jennings, M. A., and Callow, D. (1942). An antibacterial substance produced by Penicillium claviforme. Br. J. Exp. Pachol., 23, 202–205.Google Scholar
  17. Ciegler, A. (1977). Patulin, In: Mycotoxins in Human and Animal Health, pp. 609–624, (J. V. Rodricks, C. W. Hesseltine, M. A. Mehlman, eds.), Pathotox Publishers, Park Forest South, IL.Google Scholar
  18. Ciegler, A., Beckwith, A. C., and Jackson, L. K. (1976). Teratogenicity of patulin and patulin adducts formed with cysteine. Appl. Environ. Microbiol., 31, 664–667.Google Scholar
  19. Cooray, R., Kiessling, K. H., and Kiessling, K. L. (1982). The effects of patulin and patulin-cysteine mixtures on DNA synthesis and the frequency of sister chromatid exchanges in human lymphocytes. Food Chem. Toxicol., 20, 893–898.CrossRefGoogle Scholar
  20. Dailey, R. E., Brouwer, E., Blaschka, A. M., Reynaldo, E. F., Green, S., Monlux, W. S., and Ruggles, D. I. (1977a). Intermediate-duration toxicity study of patulin in rats. J. Toxicol. Environ. Health, 2, 713–725.CrossRefGoogle Scholar
  21. Dailey, R. E., Blaschka, A. M., and Brouwer, E. A. (1977b). Absorption, distribution, and excretion of 14C patulin by rats. J. Toxicol. Environ. Health, 3, 479–489.CrossRefGoogle Scholar
  22. Daltn, J. E. (1952). Keloid resulting from a positive patch test. AMA Arch. Dermatol. Syphilol., 65, 53.CrossRefGoogle Scholar
  23. Delaunay, P. A., Daniel, P., Roquefeuil, C., and Henon, M. (1955). Effects exerces par la patuline et des melanges patuline-cysteine sur less proprietes physiologiques des cellules phagocytaires. Ann. Inst. Pasteur, 88, 699–712.Google Scholar
  24. De Rosnay, C. D., Martin-Dupont, C., and Jensen, R. (1952). Etude d’une substance antibiotique la “Mycoine C.”. J. Med. Bordeaux, 129, 189–199.Google Scholar
  25. Devaraj, H., and Devaraj, N. (1987). Rat intestinal lipid changes in patulin toxicity. Indian J. Exp. Biol., 25, 637–638.Google Scholar
  26. Devaraj, H., Shanmugasundaram, K. R., and Shanmugasundaram, E. R. B. (1982). Neurotoxic effect of patulin. Indian J. Exp. Biol., 20, 230–231.Google Scholar
  27. Devaraj, H., Suseela, R. E., and Devaraj, N. (1986a). Patulin toxicosis in chicks. Curr. Sci., 55, 998–999.Google Scholar
  28. Devaraj, H., Shanmugasundaram, K. R., and Shanmugasundaram, E. R. B. (1986b). Role of patulin as a diabetogenic lactone. Indian J. Exp. Biol., 24, 458–459.Google Scholar
  29. de Wit, J. J. (1946). In: Modem Development of Chemotheraphy, p. 158 (E. Havinga and H. Veldstra, eds.), Monographs on the progress of research in Holland during the war. Elsevier, New York and Amsterdam.Google Scholar
  30. Di Sabato, G., and Kaplan, N. O. (1963). The role of the sulfhydryl groups of lactic dehydrogenases. Biochemistry, 2, 776–780.CrossRefGoogle Scholar
  31. Dickens, F., and Jones, H. E. H. (1961). Carcinogenic activity of a series of reactive lactones and related substances. Br. J. Cancer, 15, 85–100.CrossRefGoogle Scholar
  32. Dulaney, E. L., and Jacobsen, C. A. (1987). Synergy of patulin with other antibiotics. J. Antibiot. 40, 1211–1212.CrossRefGoogle Scholar
  33. Eliasson, R. (1958). The spasmolytic effect of patulin. Experientia, 14, 460–461.CrossRefGoogle Scholar
  34. Escoula, L., More, J., and Baradat, C. (1977). The toxins of Byssochlamys nivea Westling. 1. Acute toxicity of patulin in adult rats and mice. Ann. Rech. Vet., 7, 41–49.Google Scholar
  35. Escoula, L., Thomsen, M., Bourdiol, D., Pipy, B., Peuriere, S., and Roubinet, F. (1988a). Patulin immunotoxicology: Effect on phagocyte activation and the cellular and humoral immune system of mice and rabbits. Int. J. Immunopharmacol., 10, 983–989.CrossRefGoogle Scholar
  36. Escoula, L., Bourdiol, D., Linas, M. D., Recco, P., and Seguela, J. P. (1988b). Enhancing resistance and modulation of humoral immune response to experimental Candida albicans infection by patulin. Mycopathologia, 103, 153–156.CrossRefGoogle Scholar
  37. Fondy, T. P., Everse, J., Riscoll, G. A., Castillo, F., Stolzenbach, F. E., and Kaplan, N. O. (1965). The comparative enzymology of lactic dehydrogenases. IV. Function of sulfhydryl groups in lactic dehydrogenases and the sequence around the essential group. J. Biol. Chem., 240, 4219–4234.Google Scholar
  38. Freerksen, E., and Bonicke, R. (1951). Die inaktivierung des patulins in vivo. Z. Hyg., 132, 274–291.CrossRefGoogle Scholar
  39. Friedman, L. (1989). Unpublished data. Division of Toxicological Studies, U.S. Food and Drug Administration, Beltsville, MD.Google Scholar
  40. Friedman, L., Peters, E. L., Gaines, D. W., and Braunberg, R. C. (1990). Application of macromolecular synthesis measurements in mycotoxin toxicity studies, In: Cellular and Molecular Mode of Action of Selected Microbial Toxins in Foods and Feeds. (A. E. Pohland, ed.), Plenum Press, New York, in press.Google Scholar
  41. Fuks-Holmberg, D. (1980). The influence of patulin on rat fetus and human placenta enzymes. Toxicon, 18, 437–442.CrossRefGoogle Scholar
  42. Gabridge, M. G., and Legator, M. S. (1969). A host-mediated microbial assay for the detection of mutagenic compounds. Proc. Soc. Exp. Biol. Med., 130, 831–834.CrossRefGoogle Scholar
  43. Geiger, W. B., and Conn, J. E. (1945). The mechanism of the antibiotic action of clavacin and penicillic acid. J. Am. Chem. Soc., 67, 112–116.CrossRefGoogle Scholar
  44. Gottlieb, D., and Singh, J. (1964). The mechanism of patulin inhibition of fungi. Riv. Patol. Veg., 4, 455–479.Google Scholar
  45. Green, S., Sauro, F. M., and Friedman, L. (1975). Lack of dominant lethality in rats treated with polychlorinated biphenyls (Arochlors 1242 and 1254). Food Cosmet. Toxicol., 13, 507–510.CrossRefGoogle Scholar
  46. Hatey, F., and Gaye, P. (1978). Inhibition of translation in reticulocyte lysate by the mycotoxin patulin. FEBS Lett., 95, 252–256.CrossRefGoogle Scholar
  47. Hatey, F., and Moulé, Y. (1979). Protein synthesis inhibition in rat liver by the mycotoxin patulin. Toxicology, 13, 223–231.Google Scholar
  48. Hayes, A. W., Phillips, T. D., Williams, W. L., and Ciegler, A. (1979). Acute toxicity of patulin in mice and rats. Toxicology, 13, 91–100.Google Scholar
  49. Hinton, D. M., Riley, R. T., Showker, J. L., and Rigsby, W. E. (1989). Patulin-induced ion flux in cultured renal cells and reversal by dithiothreitol and glutathione: A scanning electron microscopy (SEM) x-ray microanalysis study. J. Biochem. Toxicol., 4, 1–8.CrossRefGoogle Scholar
  50. Hoffmann-Ostenhof, O., and Lee, W. H. (1946). Untersuchungen uber bakteriostatische chinone und andere antibiotica, 1. Mitteilung: hemmwirkung verschiedener antibiotica auf die harnstoffzersetzung durch urease. Monatsh. Chem., 76, 180.CrossRefGoogle Scholar
  51. Hofmann, K., Mintzlaff, H.-J., Alperden, I., and Leistner, L. (1971). Untersuchung uber die inaktivierung des mykotoxins patulin durch sulfhydrylgruppen. Fleischwirtschaft, 51, 1534–1536.Google Scholar
  52. Holscher, H. A. (1950). Uber den nachweis von dehydrasen der tumorzella mittels tetrazoliumsalzen. Z. Krebsforsch, 56, 587–595.CrossRefGoogle Scholar
  53. IARC (1986). Patulin, In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 40, pp. 83–89, Lyon, France.Google Scholar
  54. Jelinek, C. F., Pohland, A. E., and Wood, G. E. (1989). Worldwide occurrence of mycotoxins in foods and feeds—An update. J. Assoc. Off. Anal. Chem., 72, 223–230.Google Scholar
  55. Kahn, J. B. (1957). Effects of various lactones and related compounds on cation transfer in incubated cold-stored human erythrocytes. J. Pharmacol. Exp. Ther., 121, 234–251.Google Scholar
  56. Kangsadalampai, K., Salunkhe, D. K., and Sharma, R. P. (1981). Patulin and rubratoxin B: Interactions of toxic and hepatic effects and mutagenic potential. J. Food Prot., 44, 39–42.Google Scholar
  57. Karrer, P., and Viscontini, M. (1947). EinfluB verschiedener zusatze auf die Wirksamkeit der cocarboxylase. Helv. Chim. Acta, 30, 268–271.CrossRefGoogle Scholar
  58. Katzman, P. A., Hays, E. E., Cain, C. K., Van Wyk, J. J., Reithel, F. J., Thayer, S. A., Dorsy, E. H., Gaby, W. L., Carroll, C. J., Muir, R. D., Jones, L. R., and Wade, N. J. (1944). Clavacin, an antibiotic substance from Aspergillus clavatus. J. Biol. Chem., 154, 475–486.Google Scholar
  59. Kawasaki, I., Oki, T., Umeda, M., and Saito, M. (1972). Cytotoxic effect of penicillic acid and patulin on HeLa cells. Jpn. J. Exp. Med., 42, 327–340.Google Scholar
  60. Keilova-Rodova, H. (1949). The effect of patulin on tissue cultures. Experientia, 6, 242.CrossRefGoogle Scholar
  61. Korte, A. (1980). Comparative analysis of chromosomal aberrations and sister chromatid exchanges in bone marrow cells of Chinese hamsters after treatment with aflatoxin Bl, patulin and cyclophosphamide. Mutat. Res., 74, 164.Google Scholar
  62. Korte, A., and Ruckert, G. (1980). Chromosomal analysis in bone marrow cells of Chinese hamsters after treatment with mycotoxins. Mutat. Res., 78, 41–49.CrossRefGoogle Scholar
  63. Korte, A., Slacik-Erben, R., and Obe, G. (1979). The influence of ethanol treatment on cytogenetic effects in bone marrow cells of Chinese hamsters by cyclophosphamide, aflatoxin B1 and patulin. Toxicology, 12, 53–61.CrossRefGoogle Scholar
  64. Krivobok, S., Olivier, P., Marzin, D. R., Seigle-Murandi, F., and Steiman, R. (1987). Study of the genotoxic potential of 17 mycotoxins with the SOS chromotest. Mutagenesis, 2, 433–439.CrossRefGoogle Scholar
  65. Kubiak, R., and Kosz-Vnenchak, M. (1983). Mutagenic properties of mycotoxins as naturally occurring mutagens: Chromosome aberrations and SCEs induced by patulin. Mutat. Res., 113, 273.Google Scholar
  66. Kuczuk, M. H., Benson, P. M., Heath, H., and Hayes, A. W. (1978). Evaluation of the mutagenic potential of mycotoxins using Salmonella typhimurium and Saccharomyces cerevisiae. Mutat. Res., 53, 11–20.CrossRefGoogle Scholar
  67. Lee, K., and Roschenthaler, R. J. (1986). DNA-damaging activity of patulin in Escherichia coli. Appl. Environ. Microbiol., 52, 1046–1054.Google Scholar
  68. Lee, K., and Roschenthaler, R. (1987). Strand scissions of DNA by patulin in the presence of reducing agents and cupric ions. J. Antibiot., 40, 692–696.CrossRefGoogle Scholar
  69. Lembke, A., and Han, B. (1954). The action of metabolic products of Penicillium claviforme on cells and tissues varying in their stage of development. Kiel. Milchwirtsch. Forschungsber, 6, 41–58, 219-241.Google Scholar
  70. Lillehoj, E. B., and Ciegler, A. (1975). Mycotoxin synergism, In: Microbiology, pp. 334–358 (D. Schlessinger, ed.), American Society for Microbiology, Washington, DC.Google Scholar
  71. Lindroth, S., and von Wright, A. (1978). Comparison of the toxicities of patulin and patulin adducts formed with cysteine. Appl. Environ. Microbiol., 35, 1003–1007.Google Scholar
  72. Lovett, J. (1972). Patulin toxicosis in poultry. Poult. Sci., 51, 2097–2098.CrossRefGoogle Scholar
  73. Lovett, J., and Peeler, J. T. (1973). The effect of pH on the thermal destruction kinetics of patulin in aqueous solution. J. Food Sci., 38, 1094–1095.CrossRefGoogle Scholar
  74. Mayer, V. W., and Legator, M. S. (1969). Production of petite mutants of Saccharomyces cerevisiae by patulin. J. Agric. Food Chem., 17, 454–456.CrossRefGoogle Scholar
  75. McKinley, E. R., and Carlton, W. W. (1980a). Patulin mycotoxicosis in the Syrian hamster. Food Cosmet. Toxicol. 18, 173–179.CrossRefGoogle Scholar
  76. McKinley, E. R., and Carlton, W. W. (1980b). Patulin mycotoxicosis in Swiss ICR mice. Food Cosmet. Toxicol., 18, 181–187.CrossRefGoogle Scholar
  77. McKinley, E. R., Carlton, W. W., and Boon, G. D. (1982). Patulin mycotoxicosis in the rat: Toxicology, pathology and clinical pathology. Food Chem. Toxicol., 20, 289–300.CrossRefGoogle Scholar
  78. Monks, T. J., and Lau, S. S. (1989). Sulphur conjugate-mediated toxicity, In: Reviews In Biochemical Toxicology, Vol. 10, pp. 41–90. (E. Hodgson, J.R. Bend, R.M. Philpot, eds.), Elsevier, Austin, TX.Google Scholar
  79. Mori, H., Kawai, K., Ohbayashi, F., Kuniyasu, T., Yamazaki, M. H. T., and Williams, G. M. (1984). Genotoxicity of a variety of mycotoxins in the hepatocyte primary culture/DNA repair test using rat and mouse hepatocytes. Cancer Res., 44, 2918–2923.Google Scholar
  80. Moulé, Y., and Hatey, F. (1977). Mechanism of the in vitro inhibition of transcription by patulin, a mycotoxin from Byssochlamys nivea. FEBS Lett., 74, 121–125.CrossRefGoogle Scholar
  81. Osswald, H., Frank, H. K., Komitowski, D., and Winter, H. (1978). Long-term testing of patulin administered orally to Sprague-Dawley rats and Swiss mice. Food Cosmet. Toxicol., 16, 243.CrossRefGoogle Scholar
  82. Perlman, D., Giuffre, N. A., Jackson, P. W., and Giardinello, F. E. (1959). Effects of antibiotics on multiplication of L cells in suspension culture. Proc. Soc. Exp. Biol. Med., 102, 290–292.CrossRefGoogle Scholar
  83. Peters, E. L., Keys, J. E., and Friedman, L. (1977). Comparative in vitro biochemical effects of patulin and aflatoxin Bl. Fed. Proc., 36, 397.Google Scholar
  84. Phillips, T. D., and Hayes, A. W. (1977). Effects of patulin on adenosine triphosphatase activities in the mouse. Toxicol. Appl. Pharmacol., 42, 175–187.CrossRefGoogle Scholar
  85. Phillips, T. D., and Hayes, A. W. (1979). Inhibition of electrogenic sodium transport across toad urinary bladder by the mycotoxin patulin. Toxicology, 13, 17–24.Google Scholar
  86. Pohland, A. E., and Allen, R. (1970). Stability studies with patulin. J. Assoc. Off. Anal. Chem., 53, 688–691.Google Scholar
  87. Polacco, J. C, and Sands, D. C. (1977). The mycotoxin patulin inhibits respiration of higher plant cells. Plant Sci. Lett., 9, 121–128.CrossRefGoogle Scholar
  88. Powell, A. K. (1966). Effects of propiolactone on rat fibrocytes. Nature, 209, 77–78.CrossRefGoogle Scholar
  89. Quillardet, P., Huisman, O., D’Arl, R., and Hofnung, M. (1982). SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc. Nati. Acad. Sci. USA, 79, 5971–5975.CrossRefGoogle Scholar
  90. Reddy, C. S., Chan, P. K., and Hayes, A. W. (1978). Teratogenic and dominant lethal studies of patulin in mice. Toxicology, 11, 219–223.CrossRefGoogle Scholar
  91. Reib, J. (1975). Mycotoxin poisoning of Allium cepa root tips. II. Reduction of mitotic index and formation of chromosomal aberrations and cytological abnormalities by patulin, rubratoxin B and diacetoxyscirpenol. Cytologia, 40, 703–708.Google Scholar
  92. Reiss, J. (1979). Inhibitory action of the mycotoxins patulin and penicillic acid on urease. Food Cosmet. Toxicol., 17, 145–146.CrossRefGoogle Scholar
  93. Rihn, B., Lugnier, A. A. J., and Dirheimer, G. (1986). Morphological alterations induced by patulin on cultured hepatoma cells. Arch. Toxicol., 9, 275–278.CrossRefGoogle Scholar
  94. Riley, R. T. (1989). Personal communication. Russell Research Center, U. S. Department of Agriculture, Athens, GA.Google Scholar
  95. Riley, R. T., Hinton, D. M., Showker, J. L., Rigsby, W., and Norred, W. P. (1989). Chronology of patulin induced alterations in membrane function of cultured renal cells, LLC-PK1. Toxicol. Appl. Pharmacol., in press.Google Scholar
  96. Robbana-Barnat, S., LaFarge-Frayssinet, C., and Frayssinet, C. (1989). Use of cell culture for predicting the biological effects of mycotoxins. Cell Biol. Toxicol., 5, 217–226.CrossRefGoogle Scholar
  97. Rondanelli, E. G., Gorini, P., Strosselli, E., and Pecorari, D. (1957). Inibizione dell’effetto metafasico della patulina mediante sostanze tioliche. Ricerche sperimentali in vivo ed in vitro. Haematologica, 42, 1427–1440.Google Scholar
  98. Schaeffer, W. I., Smith, N. E., and Payne, P. A. (1975). Physiological and biochemical effects of the mycotoxin patulin on Chang liver cell cultures. In Vitro, 11, 69–77.CrossRefGoogle Scholar
  99. Schweitzer, A. (1946). Pharmacological studies of the effects of clavatin. Exp. Med. Surg., 4, 290–305.Google Scholar
  100. Sentein, P. (1955). Alterations du fuseau mitotique et fragmentation des chromosomes par l’action de la patuline sur l’oeuf d’urodeles en segmentation. C. R. Soc. Biol., 149, 1621–1622.Google Scholar
  101. Singh, J. (1967). Patulin. Antibiotics, 1, 621–630.Google Scholar
  102. Skou, J. C. (1964). Enzymatic aspects of active linked transport of Na+ and K+ through the cell membrane. Progr. Biophys., 14, 131–166.CrossRefGoogle Scholar
  103. Sorenson, W. G., Simpson, J., and Castranova, V. (1985). Toxicity of the mycotoxin patulin for rat alveolar macrophages. Environ. Res., 38, 407–416.CrossRefGoogle Scholar
  104. Sorenson, W. G., and Simpson, J. (1986). Toxicity of penicillic acid for rat alveolar macrophages in vitro. Environ. Res., 41, 505–513.CrossRefGoogle Scholar
  105. Stetina, R., and Votava, M. (1986). Induction of DNA single-strand breaks and DNA synthesis inhibition by patulin, ochratoxin A, citrinin, and aflatoxin Bl in cell lines CHO and AWRF. Folia Biol., 32, 128–144.Google Scholar
  106. Stott, W. T., and Bullerman, L. B. (1975). Patulin: A mycotoxin of potential concern in foods. J. Milk Food Technol., 38, 695–705.Google Scholar
  107. Sumbu, Z. L., Thornart, P., and Bechet, J. (1983). Action of patulin on a yeast. Appl. Environ. Microbiol., 45, 110–115.Google Scholar
  108. Tashiro, F., Hirai, K., and Ueno, Y. (1979). Inhibitory effects of carcinogenic mycotoxins on deoxyribonucleic acid-dependent ribonucleic acid polymerase and ribonuclease H. Appl. Environ. Microbiol., 38, 191–196.Google Scholar
  109. Thust, R., Kneist, S., and Mendel, J. (1982). Patulin, a further clastogenic mycotoxin, is negative in the SCE assay in Chinese hamster V79-E cells in vitro. Mutat. Res., 103, 91–97.CrossRefGoogle Scholar
  110. U.S. Government Printing Office (1988). User’s guide, In: Registry of Toxic Effects of Chemical Substances (1985–1986 Edition), pp. XXXIV-XXXV, (D.V. Sweet, ed.), Washington, DC.Google Scholar
  111. Ueno, Y., Hosoya, M., and Ishikawa, Y. (1969). Inhibitory effects of mycotoxins on the protein synthesis in rabbit reticulocytes. J. Biochem., 6, 419–422.Google Scholar
  112. Ueno, Y., and Kubota, K. (1976). DNA-attacking ability of carcinogenic mycotoxins in recombination-deficient mutant cells of Bacillus subtilis. Cancer Res., 36, 445–451.Google Scholar
  113. Ueno, Y., Kubota, K., Ito, T., and Nakamura, Y. (1978). Mutagenicity of carcinogenic mycotoxins in Salmonella typhimurium. Cancer Res., 38, 536–542.Google Scholar
  114. Ueno, Y., Matsumoto, H., Ishii, K., and Kukita, K. (1976). Inhibitory effects of mycotoxins on Na+-dependent transport of glycine in rabbit reticulocytes. Biochem. Pharmacol., 25, 2091–2095.CrossRefGoogle Scholar
  115. Umeda, M., Yamamoto, T., and Saito, M. (1972). DNA-strand breakage of HeLa cells induced by several mycotoxins. Jpn. J. Exp. Med., 42, 527–535.Google Scholar
  116. Vick, R. L. (1959). Effects of some steroid and nonsteroid lactones on potassium exchange and physiological properties of the isolated perfused guinea pig ventricle. J. Pharmacol. Exp. Ther., 125, 40–48.Google Scholar
  117. Wallen, L. L., Lyons, A. J., and Pridham, T. G. (1980). Antimicrobial activity of patulin derivatives: A preliminary report. J. Antibiot., 33, 767–769.CrossRefGoogle Scholar
  118. Wehner, F. C., Theil, P. G., van Rensburg, S. J., and Demasius, I. P. C. (1978). Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins. Mutat. Res., 58, 193–203.CrossRefGoogle Scholar
  119. Williams, G. M. (1976). Carcinogen-induced DNA repair in primary rat liver cell cultures: A possible screen for chemical carcinogens. Cancer Lett., 1, 231–236.CrossRefGoogle Scholar
  120. Wilson, D. M., and Nuovo, G. J. (1973). Patulin production in apples decayed by Penicillium expansum. Appl. Microbiol., 26, 124–125.Google Scholar
  121. Withers, R. F. J. (1966). The action of some lactones and related compounds on human chromosomes, In: Mechanism of Mutation and Inducing Factors, pp. 359–364 (Z. Landa, ed.), Academia, Prague.Google Scholar
  122. Woodward, R. B., and Singh, G. (1949). The structure of patulin. J. Am. Chem. Soc., 71, 758–759.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Leonard Friedman
    • 1
  1. 1.Division of Toxicological StudiesCenter for Food Safety and Applied Nutrition Food and Drug AdministrationBeltsvilleUSA

Personalised recommendations