Factors Associated with Decay Capacity of the Brown-Rot

  • J. A. Micales
  • T. L. Highley
Part of the Biodeterioration Research book series (BIOR, volume 3)


Brown-rot basidiomycetes are a major cause of decay and decomposition of wood and wood products throughout the world. The rapid depolymerization of cellulose associated with brown rot results in serious strength losses of wood early in the decay process (Cowling, 1961); brown-rotters thus cause more damage in less time than the more prevalent white-rotters. Knowledge of the physiology and biochemistry of brown rot has lagged behind that of white rot. A better understanding of the mechanisms of brown rot could pinpoint specific metabolic pathways necessary for decay development and form the bases of future control strategies.


Culture Filtrate Schizophyllum Commune Decay Capacity Mycelial Weight Basal Salt Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amburgey, T.L. (1967). Decay capacities of monokaryotic and dikaryotic isolates of Lenzites trabea. Phytopathology, 57, 486–491.Google Scholar
  2. Amburgey, T.L. (1969). The genetics of Lenzites trabea with special reference to its capacity to cause decay. Ph.D. Thesis, North Carolina State Univ., Raleigh, NC, 87 p.Google Scholar
  3. American Society for Testing and Materials (1971). Standard method for accelerated laboratory test of natural decay resistance of woods. ASTM Des. D 2017, Philadelphia, PA.Google Scholar
  4. Axelsson, K., Bjorndal, H., and Eriksson, K.E. (1968). An extracellular glucan produced by the rot fungus Stereum sanguinolenturn. Acta Chem. Scand., 22, 1363–1364.CrossRefGoogle Scholar
  5. Bes, B., Petterson, B., Lennholm, H., Iverson, T., and Eriksson, K.E. (1987). Synthesis, structure, and enzymatic degradation of an extracellular glucan produced in nitrogen-starved cultures of the white rot fungus Phanerochaete chrysosporium. Biotechnol. Appl. Biochem., 9, 310–318.Google Scholar
  6. Buchala, A.J. and Leisola, M. (1987). Structure of the α-D-glucan secreted by Phanerochaete chrysosporium in continuous culture. Carbohydr. Res., 165, 146–149.CrossRefGoogle Scholar
  7. Cowling, E.B. (1961). Comparative biochemistry of the decay of sweetgum by white-rot and brown-rot fungi. U.S. Pep. Agric. Tech. Bull. 1258, 79 p.Google Scholar
  8. Eriksson, K.E., and Goodwll, B. (1974). Pleiotropic mutants of the wood-rotting fungus Polyporus adustus lacking cellulase, mannanase + xylanase. Can. J. Microbiol., 20, 371–378.CrossRefGoogle Scholar
  9. Foisner, R., Messner, K., and Roehr, M. (1985a). Wood decay by basidiomycetes: extracellular tripartite membranous structures. Trans. Br. Mycol. Soc., 85, 257–266.CrossRefGoogle Scholar
  10. Foisner, R., Messner, K., Stachelberger, H., and Roehr, M. (1985b). Isolation and characterization of extracellular three-lamellar structures of Sporotrichum pulverulentum. J. Ultrastruct. Res., 92, 36–46.CrossRefGoogle Scholar
  11. Green, F., Larsen, M.J., Murmanis, L.L., and Highley, T.L. (1989). Proposed model for the penetration and decay of wood by the hyphal sheath of the brown-rot fungus Postia placenta. The International Research Group on Wood Preservation, Doc. No. IRG/WP/1391, 16 pp.Google Scholar
  12. Highley, T.L. (1973). Influence of carbon source on cellulase activity of white-rot and brown-rot fungi. Wood Fiber, 5, 50–58.Google Scholar
  13. Highley, T.L. (1987). Biochemical aspects of white-rot and brown-rot decay. The International Research Group on Wood Preservation, Doc. No. IRG/WP/1319, 22 p.Google Scholar
  14. Kikumoto, S., Miyajima, T., Yoshizumi, S., Fujimoto, S., and Kimura, K. (1970). Polysaccharide produced by Schizophyllum commune. Gann, 60, 137–144.Google Scholar
  15. Leary, J.V. (1964). Studies on concentric and thin mutants of Schizophyllum commune. M.A. Thesis, S.U.N.Y., Buffalo, N.Y.Google Scholar
  16. Lowry, O.H., Rosebrough, N.J., Farr, A.J., and Randall, R.J. (1951). Protein measurements with the folin phenol reagent. J. Biol. Chem., 193, 265–275.Google Scholar
  17. Messner, K., Srebotnik, E., Ertler, G., Foisner, R., Pettersson, B., and Stachelberger, H. (1987). Cell wall systems, extracellular membranous structures and ligninase of wood rotting fungi. In: Lignin Enzymic and Microbial Degradation, pp. 243–249 (E. Odier, ed.), INRA Publications, Paris.Google Scholar
  18. Micales, J.A., Green, F. III, Larsen, M.J., and Highley, T.L. (1989). Physiological and structural characteristics of the brown-rot fungus Postia placenta (Abst.). Phytopathol., 79, (In press).Google Scholar
  19. Micales, J.A., and Highley, T.L. (1989). Some physiological characteristics of a nondegradative strain of Postia (=Poria) placenta. Mycologia, 81, 205–215.CrossRefGoogle Scholar
  20. Micales, J.A., Highley, T.L., and Richter, A.L. (1989). Extracellular glucan production by Postia (= Poria) placenta. Mater Organ., (In press).Google Scholar
  21. Nelson, N. (1944). A photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Chem., 153, 375–380.Google Scholar
  22. Niederpruem, D., Marshall, C, and Speth, J.L. (1977). Control of extracellular slime accumulation in monokaryons and resultant dikaryons of Schizophyllum commune. Sabouraudia, 15, 283–295.CrossRefGoogle Scholar
  23. Pettersen, R.C., Schwandt, V.H., and Effland, M.J. (1984). An analysis of the wood sugar assay using HPLC: A comparison with paper chromatography. J. Chromatogr. Sci., 22, 478–484.CrossRefGoogle Scholar
  24. Raper, J.R., and Miles, P.G. (1958). The genetics of Schizophyllum commune. Genetics, 43, 530–546.Google Scholar
  25. Schwalb, M.N. and Miles, P.G. (1967). Morphogenesis of Schizophyllum commune. I. Morphological variation and mating behavior of the thin mutation. Amer. J. Bot., 54, 440–446.CrossRefGoogle Scholar
  26. Steel, C.C., Baloch, R.I., Mercer, E.I., and Baldwin, B.C. (1989). The intracellular location and physiological effects of abnormal sterols in fungi grown in the presence of morpholine and functionally related fungicides. Pest. Biochem. Physiol., 33, 101–111.CrossRefGoogle Scholar
  27. Steiner, W., Lafferty, R.M., Gomes, I., and Esterbauer, H. (1987). Studies on a wild strain of Schizophyllum commune: cellulase and xylanase production and formation of the extracellular polysaccharide schizophyllan. Biotechnol. Bioeng., 30, 169–178.CrossRefGoogle Scholar
  28. Van der Valk, P., Marchant, R., and Wessels, J.G.H. (1977). Ultrastructural localization of polysaccharides in the wall and septum of the basidiomycete Schizophyllum commune. Exp. Mycol., 1, 69–82.CrossRefGoogle Scholar
  29. Wang, C.S. and Miles, P.G. (1964). The physiological characterization of dikaryotic mycelia of Schizophyllum commune. Physiol. Plant., 17, 573–588.CrossRefGoogle Scholar
  30. Weete, J.D. (1987). Mechanism of fungal growth suppression by inhibitors of ergosterol biosynthesis. In: Ecology and Metabolism of Plant Lipids, pp. 268–285 (G. Fuller and W.D. Nes, eds.), American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  31. Weete, J.D., El Mougith, A., and Touze-Soulet, J.M. (1989). Inhibition of growth, lipid, and sterol biosynthesis by monensin in fungi. Exp. Mycol., 13, 85–94.CrossRefGoogle Scholar
  32. Wessels, J.G.H. (1969). Biochemistry of sexual morphogenesis in Schizophyllum commune: Effect of mutations affecting the incompatibility system on cell-wall metabolism. J. Bacteriol., 98, 697–704.Google Scholar
  33. Wessels, J.G.H. (1978). Incompatibility factors and the control of biochemical processes. In: Genetics and Morphogenesis in the Basidiomycetes, pp. 81–104 (M.N. Schwalb and P.G. Miles eds.). Academic Press, New York.CrossRefGoogle Scholar
  34. Wessels, J.G.H., Kreger, D.R., Marchant, R., Regensburg, B.A., and Devries, O.M.H. (1972). Chemical and morphological characterization of the hyphal wall surface of the basidiomycete Schizophyllum commune. Biochemica N. Biophysica ACTA, 273, 346–358.CrossRefGoogle Scholar
  35. Wessels, J.G.H. and Niederpruem, D.J. (1967). Role of a cell-wall glucandegrading enzyme in mating of Schizophyllum commune. J. Bacteriol., 94, 1594–1602.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. A. Micales
    • 1
  • T. L. Highley
    • 1
  1. 1.Forest Products LaboratoryUSDA, Forest ServiceMadisonUSA

Personalised recommendations