Polyamine Biosynthesis in the Brown-Rot Fungus Postia placenta

  • Barbara L. Illman
Part of the Biodeterioration Research book series (BIOR, volume 3)

Abstract

Polyamines are aliphatic polycations that have been shown to be essential for optimal growth and development of a wide variety of living organisms (McCann et al., 1987). Ornithine decarboxylase (ODC) (EC 4.1.1.17) and arginine decarboxylase (ADC) (EC 4.1.1.19) control the rate-limiting steps responsible for biosynthesis of the polyamines putrescine, spermidine, and spermine. The enzymes ODC and ADC catalyze the decarboxylation of ornithine and arginine, respectively. Both reactions lead to the formation of the polyamine putrescine, the precursor of spermine and spermidine (McCann et al., 1987).

Keywords

Mycelial Growth Ornithine Decarboxylase Arginase Activity Polyamine Metabolism Polyamine Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM. (1961). ASTM methods. ASTM designation D 1413-61. Standard method of testing wood preservatives by laboratory soil-block cultures. American Society for Testing and Materials, Philadelphia, PA.Google Scholar
  2. Birecka, H., Garraway, M.D., Baumann, R.J., and McCann, P.P. (1986). Inhibition of ornithine decarboxylase and growth of the fungus Helminthosporium maydis. Plant Physiol., 80, 798–800.CrossRefGoogle Scholar
  3. Bitonti, A.J., and McCann, P.P. (1987). Inhibition of polyamine biosynthesis in microorganisms. In: Inhibition of Polyamine Metabolism, pp. 259–275 (P.P. McCann, E.E. Pegg, and A. Sjoerdsma, eds.) Academic Press, Orlando.Google Scholar
  4. Boyle, S.M., Sriranganathan, N., and Cordes, D. (1988). Susceptibility of Microsporum and Trichophyton species to suicide inhibitors of polyamine biosynthesis. J. of Med. and Vet. Mycology, 26, 227–235.CrossRefGoogle Scholar
  5. Flores, H.D., Protacio, C.M., and Signs, M.W. (1989). Primary and secondary metabolism of polyamines in plants. In: Plant Nitrogen Metabolism: Recent Advances in Phytochemistry, Vol. 23, (E.E. Conn, ed.) Plenum Press, New York.Google Scholar
  6. Highley, T.L. (1973). Effect of alkaline treatment on decay resistance of wood. Forest Prod. J., 23, 47–51.Google Scholar
  7. Kallio, A. and McCann, P. (1981). DL-α-(Difluoromethyl)arginine: a potent enzyme-activated irreversible inhibitor of bacterial arginine decarboxylase. Biochemistry, 20, 3163–3166.CrossRefGoogle Scholar
  8. McCann, P.P., Pegg, A.E., and Sjoedsma, A. eds. (1987). Inhibition of Polyamine Metabolism, pp. xiii–xvi, Academic Press, Orlando.Google Scholar
  9. Marton, L.J. and Morris, D.R. (1987). Molecular and Cellular Functions of the Polyamines. In: Inhibition of Polyamine Metabolism, pp. 79–105 (P.P. McCann, E.E. Pegg, and A. Sjoerdsma, eds.), Academic Press, Orlando.Google Scholar
  10. Metcalf, B.W. Bey, P., Danzin, C., Jung, M.J., Casara, P., and Vevert, J.P. (1978). Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C. 4.1.1.17) by substrate and product analogs. J. Am. Chem. Soc., 100, 2551–2553.CrossRefGoogle Scholar
  11. Paulus, T.J. and Davis, R.H. (1981). Regulation of polyamine synthesis in relation to putrescine and spermidine pools in Neurospora crassa. J. Bacteriol., 145:14–20.Google Scholar
  12. Pegg, A.E. (1987). The use of inhibitors to study the biochemistry and molecular biology of polyamine biosynthesis and uptake. In: Inhibition of Polyamine Metabolism, pp. 107–120. (P.P. McCann, E.E. Pegg and A. Sjoerdsma, eds.), Academic Press, Orlando.Google Scholar
  13. Rajam, M.V. and Galston, A.W. (1985). The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi. Plant Cell Physiol., 26, 683–692.Google Scholar
  14. Rajam, M.V., Weinstein, L.H., and Galston, A.W. (1985). Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis. Proc. Natl. Acad. Sci., 82, 6874–6878.CrossRefGoogle Scholar
  15. Rajam, M.V., Weinstein, L.H., and Galston, A.W. (1986). Kinetic studies on the control of the bean rust fungus (Uromyces phaseoli L.) by an inhibitor of polyamine biosynthesis. Plant Physiol., 82, 485–487.CrossRefGoogle Scholar
  16. Slocum, R.D., Kaur-Sawhney, R., and Galston, A.W. (1984). The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys., 235, 283–303.CrossRefGoogle Scholar
  17. Slocum, R.D. and Galston, A.W. (1985). Arginase-mediated hydrolysis of DFMA to DFMO in virto. Plant Physiol., 77 (Suppl.), 45.Google Scholar
  18. Slocum, R.D. and Galston, A.W. (1987). Inhibition of polyamine biosynthesis in plants and pathogenic fungi. In: Inhibition of Polyamine Metabolism, pp. 305–316 (P.P. McCann, E.E. Pegg, and A. Sjoerdsma, eds.), Academic Press, Orlando.Google Scholar
  19. Stevens, L. and Winther, M.D. (1979). Spermine, spermidine and putrescine in fungal development. Adv. Microbiol. Physiol., 19, 63–148.CrossRefGoogle Scholar
  20. Tabor, C.W. (1981). Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: Studies on the regulation of ornithine decarboxylase. Med. Biol., 59, 272–278.Google Scholar
  21. Tabor, C.W. and Tabor, H. (1984). Polyamine. Annu. Rev. Biochem., 53, 749–790.CrossRefGoogle Scholar
  22. Tabor, C.W. and Tabor, H. (1985). Polyamines in microorganisms. Microbiol. Reviews, 49, 81–99.Google Scholar
  23. Trione, E.J. Stockwell, V.O., and Austin, H.A. (1988). The effects of polyamines on the growth and development of the wheat bunt fungi. Bot. Gaz., 149, 173–178.CrossRefGoogle Scholar
  24. Whitney, P.A. and Morris, D.R. (1978). Polyamine auxotrophs of Saccharomyces cerevisiae. J. Bacteriol., 134, 214–220.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Barbara L. Illman
    • 1
  1. 1.Forest Products LaboratoryUSDA, Forest ServiceMadisonUSA

Personalised recommendations