Biodeterioration of Stone in Historic Buildings and Monuments

  • C. Saiz-Jimenez
Part of the Biodeterioration Research book series (BIOR, volume 4)


Microbial geochemical cycles have been going on since life on earth began. This activity results in chemical and mineralogical modification of the different types of rocks and minerals within the biosphere and involves essentially the solubilization processes of major mineral elements from silicates, carbonates, phosphates, oxides, etc. While the weathering of minerals in natural environments results in the destruction of rocks, thus contributing to soil formation processes, it has a deleterious effect when these rocks are part of historic buildings and monuments.


Heterotrophic Bacterium Calcium Oxalate Lichen Species Building Stone Stone Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alessandrini, G. and Realini, M. (1990). Note conclusive sul convegno Le Pellicole ad Ossalati: Origine e Significato nella Conservazione. Arkos, 9 /10, 19–32.Google Scholar
  2. Anagnostidis, K., Economou-Amilli, A. and Roussomoustakaki, M. (1983). Epilithic and chasmolithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia, 38, 227–287.Google Scholar
  3. Ascaso, C., Sancho, L.G. and Rodriguez-Pascual, C. (1990). The weathering action of saxicolous lichens in maritime Antarctica. Polar Biol., 11, 33–39.CrossRefGoogle Scholar
  4. Atlas, R.M., Chowdhury, A.N. and Gauri, K.L. (1988). Microbial calcification of gypsum-rock and sulfated marble. Stud. Conserv., 33, 149–153.CrossRefGoogle Scholar
  5. Bock, E., Koops, H.-P., Moller, U.C. and Rudert, M. (1990). A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov. Arch. Microbiol., 153, 105–110.CrossRefGoogle Scholar
  6. Caiola, M.G., Forni, C. and Albertano, P. (1987). Characterization of the algal flora growing on ancient Roman frescoes. Phvcologia, 26, 387–396.CrossRefGoogle Scholar
  7. Caneva, G. and Altieri, A. (1988). Biochemical mechanisms of stone weathering induced by plant growth. In: VI’ International Congress on Deterioration and Conservation of Stone, pp. 32–44 ( J. Ciabach, ed.), Nicholas Copernicus University, Torun.Google Scholar
  8. Caneva, G., Dinelli, A., De Marco, G. and Vinci, M. (1990). Halophylous vegetation in the deterioration of stone monuments in coastal environments. In: La Conservazione dei Monumenti nel Bacino del Mediterraneo, pp. 231–234 ( F. Zezza, ed.), Grafo, Brescia.Google Scholar
  9. Casas Sicart, C. and Saiz-Jimenez, C. (1982). Los briofitos de la catedral de Sevilla. Collec. Bot., 13, 163–175.Google Scholar
  10. Danin, A. (1983). Weathering of limestone in Jerusalem by cyanobacteria. Z. Geomorohol., 27, 413–421.Google Scholar
  11. De la Torre, M.A., Gomez-Alarcon, G., Melgarejo, P. and Saiz-Jimenez, C. (1991). Fungi in weathered sandstone from Salamanca cathedral, Spain. Sci. Total Environ., 107, 159–168.CrossRefGoogle Scholar
  12. Del Monte, M. (1991). Trajan’s column: lichens don’t live here any more. Endeavour, 15, 86–93.CrossRefGoogle Scholar
  13. Del Monte, M., Sabbioni. C. and Zappia, G. (1987). The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci. Total Environ., pp. 67, 17–39.Google Scholar
  14. Garcia-Rowe, J. and Saiz-Jimenez, C. (1988). Colonization of mosaics by lichens: the case study of Underlinea. Stud. Geobot., 8, 65–71.Google Scholar
  15. Garcia-Rowe, J. and Saiz-Jimenez, C. (19911. Lichens and bryophytes as agents of deterioration of building materials in Spanish cathedrals. Int. Biodeter., 28, 151–163.Google Scholar
  16. Garcia-Rowe, J., Aparicio Martinez, A. and Saiz-Jimenez, C. (1991). Weeds settling in Spanish cathedrals (Salamanca, Seville and Toledo). In: Science, Technology and European Cultural Heritage, pp. 497–500 ( N.S. Baer, C. Sabbioni and A.I. Sors, eds.), Butterworth-Heinemann, Oxford.Google Scholar
  17. Giacobini, C., De Cicco, M.A., Tiglie, I. and Accardo, G. (1988). Actinomycetes and biodeterioration in the field of fine art. In: Biodeterioration 7, pp. 418423 ( D.R. Houghton, R.N. Smith and H.O.W. Eggins, eds.), Elsevier, London.Google Scholar
  18. Grant, C. (1982). Fouling of terrestrial substrates by algae and implications for control–A review. Int. Biodet. Bull., 18, 57–65.Google Scholar
  19. Griffin, P.S., Indictor, N. and Koestler, R.J. (1991). The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories and treatment. Int. Biodeter., 28, 187–207.CrossRefGoogle Scholar
  20. Gugliandolo, C. and Maugeri, T.L. (1988). Biodeterioration of stone by sulphur bacteria. In: La Conservazione dei Monumenti nel Bacino del Mediterraneo, pp. 221–224 ( F. Zezza, ed.), Grafo, Brescia.Google Scholar
  21. Hale, M.E. (1983). The Biology of Lichens, Edward Arnold, London.Google Scholar
  22. Jones, D. and Wilson, M.J. (1985). Chemical activity of lichens on mineral surfaces -A review. Int. Biodeter., 21, 99–104.Google Scholar
  23. Koestler, R.J., Charola, A.E., Wypyski, M. and Lee, J.J. (1985). Microbiologically induced deterioration of dolomitic and calcitic stone as viewed by scanning electron microscopy. In: V° Congres International sur l’Alteration et la Conservation de la Pierre, pp. 617–626 ( G. Felix ed.), Presses Polytechniques Romandes, Lausanne.Google Scholar
  24. Krumbein, W.E., Petersen, K. and Schellnhuber, H.-J. (1989). On the geomicrobiology of yellow, orange, red, brown and black films and crusts developing on several different types of stone and object of art. In: Le Pellicole ad Ossalato: Origine e Significato nella Conservazione delle Opere d’Arte, pp. 337–347, Centro CNR “Gino Bozza”, Milano.Google Scholar
  25. Lazzarini, L. (1990). Tavola Rotonda, Trascrizione. Convegno Internazionale Le Pellicole ad Ossalati: Origine e Significato nella Conservazione. Arkos, 9 /10, 20–36.Google Scholar
  26. Lewis, F.J., May, E. and Bravery, A.F. (1988). Metabolic activities of bacteria isolated from building stone and their relationship to stone decay. In: Biodeterioration 7, pp. 107–112 ( D.R. Houghton, R.N. Smith and H.O.W. Eggins, eds.), Elsevier, London.CrossRefGoogle Scholar
  27. Lewin, S.Z. and Charola, A.E. (1981). Plant life on stone surfaces and its relation to stone conservation. Scanning Electron Microsc., 1, 563–568.Google Scholar
  28. Leyval, C. and Berthelin, J. (1991). Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci. Soc. Am. J., 55, 1009 1016.Google Scholar
  29. Meincke, M., Krieg, E. and Bock, E. (1989). Nitrosovibrio spp., the dominant ammonia-oxidizing bacteria in building sandstone. Appl. Environ. Microbiol., 55, 2108–2110.Google Scholar
  30. Nimis, P.L. and Monte M. (1988). The lichen vegetation of the cathedral of Orvieto (Central Italy). Stud. Geobot., 8, 77–88.Google Scholar
  31. Ortega-Calvo, J.J., Hernandez-Marine, M. and Saiz-Jimenez, C. (1991a). Mechanical deterioration of building stones by cyanobacteria and algae. In: Biodeterioration and Biodegradation 8, pp. 392–394 ( H.W. Rossmoore, ed.), Elsevier, London.Google Scholar
  32. Ortega-Calvo, J.J., Hernandez-Marine, M. and Saiz-Jimenez, C. (1991b). Biodeterioration of buildings materials by cyanobacteria and algae. Int. Biodeter., 28, 165–185.CrossRefGoogle Scholar
  33. Ortega-Calvo, J.J., Sanchez-Castillo, P.M., Hernandez-Marine, M., and SaizJimenez, C. (1992). Isolation and characterization of epilithic chlorophyta and cyanobacteria from two Spanish cathedrals (Salamanca and Toledo). Nova Hedwigia, in press.Google Scholar
  34. Petersen, K., Kuroczkin, J., Strzelczyk, A.B. and Krumbein, W.E. (1988). Distribution and effects of fungi on and in sandstones. In: Biodeterioration 7, pp. 455–460 ( D.R. Houghton, R.N. Smith and H.O.W. Eggins, eds.), Elsevier, London.Google Scholar
  35. Pietrini, A.M., Ricci, S., Bartolini, M. and Giuliani, M.R. (1985). A reddish colour alteration caused by algae on stoneworks. Preliminary studies. In: V° Congrés International sur l’Alteration et la Conservation de la Pierre, pp. 653–662 ( G. Felix, ed.), Presses Polytechniques Romandes, Lausanne.Google Scholar
  36. Saiz-Jimenez, C (1981). Weathering of building materials of the Giralda (Seville, Spain) by lichens. In: Triennial Meeting ICOM, Commitee for Conservation, Ottawa, paper 81/10/4.Google Scholar
  37. Saiz-Jimenez, C. (1984). Weathering and colonization of limestones in an urban environment. In: Soil Biology and Conservation of the Biosphere, Vol. 2, pp. 757–767 ( J. Szegi, ed.), Akademiai Kiado, Budapest.Google Scholar
  38. Saiz-Jimenez, C. (1990a). Analytical approaches for the study of organic compounds in weathered building stones. In: Advanced Workshop on Analytical Methodologies for the Investigation of Damaged Stones, 22 p. (F. Veniale and U. Zezza, eds. ), Pavia.Google Scholar
  39. Saiz-Jimenez, C. (1990b). The mosaics of Underlinea. European Cultural Heritage, Newsletter on Research, 4, 34–38.Google Scholar
  40. Saiz-Jimenez, C. and Samson, R.A. (1981). Microorganisms and environmental pollution as deteriorating agents of the frescoes of Santa Maria de la Rabida, Huelva, Spain. In: 6 Th Triennial Meeting ICOM, Commitee for Conservation, Ottawa, paper 81/15/5.Google Scholar
  41. Saiz-Jimenez, C. and Garcia-Rowe, J. (1992). Biodeterioration of marbles and limestones in Roman paviments. In: 2th International Symposium for the Conservation of Monuments in the Mediterranean Basin, in press.Google Scholar
  42. Saiz-Jimenez, C., Garcia-Rowe, J., Garcia del Cura, M.A., Ortega-Calvo, J.J., Roekens, E. and Van Grieken, R. (1990). Endolithic cyanobacteria in Maastricht limestone. Sci. Total Environ., 94, 209–220.CrossRefGoogle Scholar
  43. Saiz-Jimenez, C., Hermosin, B., Ortega-Calvo, J.J. and Gomez-Alarcon (1991a). Applications of analytical pyrolysis to the study of cultural properties. J. Anal. Anol. Pyrol., 20, 239–251.CrossRefGoogle Scholar
  44. Saiz-Jimenez, C., Garcia-Rowe, J. and Rodriguez-Hidalgo, J.M. (1991b). Biodeterioration of polychrome Roman mosaics. Int. Biodeter., 28, 65–79.Google Scholar
  45. Seaward, M.R.D. (1988). Lichen damage to ancient monuments: a case study. Lichenologist, 20, 291–295.CrossRefGoogle Scholar
  46. Seaward, M.R.D. and Giacobini, C. (1988). Lichen-induced biodeterioration of Italian monuments, frescoes and other archaeological materials. Stud. Geobot., 8, 3–11.Google Scholar
  47. Seaward, M.R.D., Capponi, G. and Giacobini, C. (1990). Biodeterioramento da licheni in Puglia. In: La Conservazione dei Monumenti nel Bacino ciel Mediterraneo, pp. 243–245 ( F. Zezza, ed.), Grafo, Brescia.Google Scholar
  48. Syers, J.K. and Iskandar, I.K. (1973). Pedogenetic significance of lichens. In: The Lichens, pp. 225–248 ( V. Ahmadjian and M.E. Hale, eds.), Academic Press, New York.Google Scholar
  49. Tayler, S. and May, E. (1991). The seasonality of heterotrophic bacteria on sandstones of ancient monuments. Int. Biodeter., 28, 49–64.CrossRefGoogle Scholar
  50. Warscheid, T. Oelting, M. and Krumbein, W.E. (19911. Physico-chemical aspects of biodeterioration processes on rocks with special regard to organic pollutants. Int. Biodeter., 28, 37–48.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. Saiz-Jimenez
    • 1
  1. 1.Instituto de Recursos Naturales y AgrobiologiaSevillaSpain

Personalised recommendations