Skip to main content

Review Article on the Influence of Dissolved Oxygen on Sulfate-Reducing Bacteria Related Corrosion

  • Chapter
Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration

Part of the book series: Biodeterioration Research ((BIOR,volume 4))

Abstract

Corrosion by sulfate-reducing bacteria (SRB) has been intensively studied during the last 40 years, but until now the importance of oxygen in SRB-related corrosion has rarely been emphasized (Hardy and Bown, 1984; Starkey, 1985; Hamilton, 1990; Hamilton, 1991). The impact of oxygen on SRB-related corrosion is attributed to a direct effect on the sulfur-related corrosion products rather than to any stimulation of SRB activity (Hamilton, 1990; Hamilton, 1991). Pitting corrosion is the characteristic mode of attack and deep pit is usually found underneath a porous corrosion products. However, the role that oxygen plays in the aerobic/anaerobic environments in relation to corrosion has not been clearly defined. The system is complex and dynamic. The role of SRB must be viewed in the context of biological consortia (biofilms) and/or mixed ecosystems. In addition to the biological factors, the chemical environments which influence corrosion are also complicated by the introduction of oxygen. The following statement is quoted from Starkey. “ Factors that have been suggested or may be concerned with anaerobic corrosion relate particularly to the effect of ferrous sulfide, sulfur, ferrous hydrate and all other products of the corrosion process, differential aeration cells, and various combinations of all of those factors”. In this review, we intended to focus on aspects of experimental systems that more accurately reflect those environmental conditions generally associated with corrosion in the field. Describing the role of dissolved oxygen on SRB-related corrosion, we will summarize the current published papers which describe the corrosion of mild steel underneath aerobic biofilms containing SRB (Lee and Characklis, 1990; Lee et al. 1992). Finally, we will discuss various experimental approaches in an attemp to elucidate the true mechanism of SRB-related corrosion in aerobic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Characklis, W.G., Turakhia, M.H., Zelver, N., and Marshall, K.C. (1990). Process rates, In: Biofilms. pp. 193–341 ( W.G. Characklis and K.C. Marshall, ed.) New York, John Wiley and Sons.

    Google Scholar 

  • Hamilton, W.A. and Maxwell, S. (1986) Biological and corrosion activities of sulfate-reducing bacteria within natural biofilms. In: International Conference on Biologically Induced Corrosion, pp. 131–136, ( S.C. Dexter, ed.) Houston, NACE.

    Google Scholar 

  • Hamilton, W.A. (1991). Sulfate-reducing bacteria and their role in microbially influenced corrosion. In: Microbially Influenced Corrosion and Biodeterioration, pp. i-iv, ( N.J. Dowling, M.W. Mittleman, and J.C. Danko, ed.), Knoxille, Tennessee.

    Google Scholar 

  • Hamilton, W.A. (1991). Sulfate-reducing bacteria and their role in biocorrosion, In: Biofoulinq and Biocorrosion in Industrial Water Systems, pp. 187–195 ( H.C. Fleming and G.G. Geesey, ed.), Berlin, Springer-Verlag.

    Google Scholar 

  • Hardy, J.A. and Bown, J.L. (1984). The corrosion of mild steel by biogenic sulfide films exposed to air. Corrosion, 40, 650–654.

    Article  CAS  Google Scholar 

  • King, R.A. and Wakerley, D.S. (1973). Corrosion of mild steel by ferrous sulfide. Br. Corros. J., 8, 41–45.

    Google Scholar 

  • King, R.A., Miller, J.D.A., and Smith, J.S. (1973). Corrosion of mild steel by iron sulfides. Br. Corros. J., 8, 137–141.

    Google Scholar 

  • Kuster, K., Schlerkmann, H., Schmitt, G., and Steinmetz, D. (1984). Werkstoffe and Korrosion, 35, p. 556.

    Article  Google Scholar 

  • Lee, W. and Characklis, W.G. (1990). Corrosion of mild steel under an anaerobic biofilm. Corrosion’90, Paper No. 126, Houston, NACE.

    Google Scholar 

  • Lee, W., Lewandowski, Z., Okabe, S., and Characklis, W.G. (1992). Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Corrosion’92, Papaer No. 190, Houton, NACE.

    Google Scholar 

  • Lee, W. (1992). Unpublished data. Center for Interfacial Microbial Process Engineering, Montana State University, Bozeman, MT.

    Google Scholar 

  • MacDonald, D.D., Roberts, B., and Hyne, J.B. (1978). Corrosion Science, 18, p. 411.

    Article  CAS  Google Scholar 

  • Mara, D.D. and Williams, D.J.A. (1972). The mechanism of sulfide corrosion by sulfate-reducing bacteria. Biodeterioration of Materials, 2, 103–113. Martin, R.L. and Annand, R.R. (1981). Accelerated corrosion of steel by suspended iron sulfides in brine. Corrosion, 36, 297–301.

    Google Scholar 

  • Moosavi, A.N., Pirrie, R.S., Hamilton, W.A. (1990). Effect of sulfate-reducing bacteria activity on performance of sacrificial anodes. In: Microbially Influenced Corrosion and Biodeterioration, pp. 3–13, ( N.j. Dowling, M.W. Mittleman, and J.C. Danko, ed. ), Knoxville, TN.

    Google Scholar 

  • Schmitt, G. (1991). Effect of elemental sulfur on corrosion in sour gas systems. Corrosion, 47, 285–308.

    Article  CAS  Google Scholar 

  • Starkey, R.L. (1986). Anaerobic corrosion - perspectives about causes. In: International Conference on Biologically Induced Corrosion, pp. 3–7, ( S.C. Dexter, ed.) Houston, NACE.

    Google Scholar 

  • Vaughan, D.J. and Craig, J.R. (1978). Electrical and magnetic properties of sulfides, In: Mineral Chemistry of Metal Sulfides, pp. 93–95 ( D.J. Vaughan and J.R. Craig, ed.), Cambridge, Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, W., Characklis, W.G. (1994). Review Article on the Influence of Dissolved Oxygen on Sulfate-Reducing Bacteria Related Corrosion. In: Llewellyn, G.C., Dashek, W.V., O’Rear, C.E. (eds) Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration. Biodeterioration Research, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9450-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9450-2_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9452-6

  • Online ISBN: 978-1-4757-9450-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics