Citrinin: Analysis and Occurrence
Abstract
Citrinin was first isolated and identified from cultures of the fungus Penicillium citrinum. Citrinin [(3R-trans)-4,6-dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylic acid] has a molecular weight of 250.24 and an empirical formula of C13H14O5. The chemistry and occurrence of citrinin and the fungi and plants reported to produce citrinin have been reviewed by Betina (1984) and Wilson and Abramson (1992). As a mycotoxin, citrinin is of interest because it acts as a nephrotoxin and often occurs together with ochratoxin A. Citrinin is not extremely stable, is an acid, and can bind metal ions. Therefore, it is not easy to develop analytical methods for its determination in foods and feeds.
Keywords
Glycolic Acid Penicillic Acid Penicillium Verrucosum Thin Layer Method Office AnalPreview
Unable to display preview. Download preview PDF.
References
- Abramson, D., Mills, J. T., and Sinha, R. N. (1990). Mycotoxin production in amber durum wheat stored at 15 and 19% moisture content. Food Add. Contamin. 7, 617–627.CrossRefGoogle Scholar
- Abramson, D., Thorsteinson, and Forest, D. (1989). Chromatography of mycotoxins on pre-coated reverse-phase thin-layer plates. Arch. Environ. Contam. Toxicol. 18, 327–330.CrossRefGoogle Scholar
- Abdelhamid, A. M. (1990). Occurrence of some mycotoxins (aflatoxin, ochratoxin A, citrinin, zearalenone and vomitoxin) in various Egyptian feeds. Arch. Tierernahr. 40, 647–664.CrossRefGoogle Scholar
- Betina, V. (1984). Citrinin and related substances. In: “Mycotoxins–Production, Isolation, Separation and Purification” ( V. Betina, ed.), pp. 217–236. Elsevier Science Publishers, Amsterdam.Google Scholar
- Chalam, R. V., and Stahr, H. M. (1979). Thin layer chromatographic determination of citrinin. J. Assoc. Office Anal. Chem. 62, 570–572.Google Scholar
- Dunn, B. D., Stack, M. E., Park, D. L., Joshi, A., Friedman, L., and King, R. L. (1983). Isolation and identification of dihydrocitrinone, a urinary metabolite of citrinin in rats. J. Toxicol. Environ. Health 12, 283–289.CrossRefGoogle Scholar
- El-Banna, A. A. (1987). Stability of citrinin and deoxynivalenol during germination process of barley. Mycotoxin Res. 3, 37–41.CrossRefGoogle Scholar
- El-Maghraby, O. M. O., and El-Maraghy, S. S. M. (1987). Mycoflora and mycotoxins of peanut (Arachis hvpogaea L.) seeds in Egypt. 1. Sugar fungi and natural occurrence of mycotoxins. Mycopathologia 98, 165–170.Google Scholar
- Frisvad, J. C., and Thrane, U. (1987). Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-vis spectra (Diode array detection). J. Chromatography 404, 195–214.CrossRefGoogle Scholar
- Gimeno, A. (1979). Thin layer chromatographic determination of aflatoxins, ochratoxins, sterigmatocystin, zearalenone, citrinin, T-2 toxin, diacetoxyscirpenol, penicillic acid, patulin and penitrem A. J. Assoc. Office Anal. Chem. 62, 579–585.Google Scholar
- Gimeno, A. (1984). Determination of citrinin in corn and barley on thin layer chromatographic plates impregnated with glycolic acid. J. Assoc. Office Anal. Chem. 67, 194–196.Google Scholar
- Gimeno, A., and Martins, M. L. (1983). Rapid thin layer chromatographic determination of patulin, citrinin and aflatoxin in apples and pears, and their juices and jams. J. Assoc. Office Anal. Chem. 66, 85–91.Google Scholar
- Golinski, P., and Grabarkiewicz-Szczesna, J. (1984). Chemical confirmatory tests for ochratoxin A, citrinin, penicillic acid, sterigmatocystin and zearalenone performed directly on thin layer chromatographic plates. J. Assoc. Office Anal. Chem. 67, 1108–1110.Google Scholar
- Hald, B., and Krogh, P. (1973). Analysis and chemical confirmation of citrinin in barley. J. Assoc. Office Anal. Chem. 56, 1440–1443.Google Scholar
- Jelinek, C. F., Pohland, A. E., and Wood, G. E. (1989). Worldwide occurrence of mycotoxins in foods and feeds - an update. J. Assoc. Office Anal. Chem. 72, 223–228.Google Scholar
- Jonsyn, F. E. (1988). Seedborne fungi of sesame ( Sesamum indicum L.) in Sierra Leone and their potential aflatoxin/mycotoxin production. Mvcopathologia 104, 123–127.Google Scholar
- Krogh, P., Hald, B., and Pederson, E. J. (1973). Occurrence of ochratoxin A and citrinin in cereals associated with porcine nephropathy. Acta. Path. Microbiol. Scand. Sec. B. 81, 689–695.Google Scholar
- Kumari, C. K., and Nusrath, M. (1987). Natural occurrence of citrinin and ochratoxin A in coconut products. Nat. Acad. Sci. Letters 10, 303–305.Google Scholar
- Kuronen, P. (1989). High-performance liquid chromatographic screening method for mycotoxins using new retention indexes and diode array detection. Arch. Environ. Contam. Toxicol. 18, 336–348.Google Scholar
- Lepom, P. (1986). Simultaneous determination of the mycotoxins citrinin and ochratoxin A in wheat and barley by high-performance liquid chromatography. J. Chromatogr. 355, 335–339.CrossRefGoogle Scholar
- Madhyastha, S. M., Marquardt, R. R., Frohlich, A. A., Platford, G., and Abramson, D. (1990). Effects of different cereal and oilseed substrates on the growth and production of toxins by Aspergillus alutaceus and Penicillium verrucosum. J. Agric. Food Chem. 38, 1506–1510.CrossRefGoogle Scholar
- Marti, L. R., Wilson, D. M., and Evans, B. D. (1978). Determination of citrinin in corn and barley. J. Assoc. Office Anal. Chem. 61, 1353–1358.Google Scholar
- Nelson, T. S., Beasley, J. N., Kirby, L. K., and Johnson, Z. B. (1985). Effect of heat drying of corn on the extraction of citrinin. Poultry Sci. 64, 866–870.CrossRefGoogle Scholar
- Nelson, T. S., Beasley, J. N., Kirby, L. K., Johnson, Z. B., and Ballam, G. C. (1980). Isolation and identification of citrinin produced by Penicillium lanosum. Poultry Sci. 59, 2055–2059.CrossRefGoogle Scholar
- Pande, N., Saxena, J., and Pandey, H. (1990). Natural occurrence of mycotoxins in some cereals. Mycoses 33, 126–128.Google Scholar
- Patterson, M. F., and Damoglou, A. P. (1987). Conversion of the mycotoxin citrinin into dihydrocitrinone and ochratoxin A by Penicillium viridicatum. Appl. Microbiol. Biotechnol. 27, 574–578.Google Scholar
- Phillips, R. D., Hayes, A. W., and Berndt, W. O. (1980). High-performance liquid chromatographic analysis of the mycotoxin citrinin. J. Chromatogr. 190, 419–427.CrossRefGoogle Scholar
- Scott, P. M., Van Walbeek, W., Kennedy, B., and Anyeti, D. (1972). Mycotoxins (ochratoxin A, citrinin, and sterigmatocystin) and toxigenic fungi in grains and other agricultural products. J. Agr. Food Chem. 20, 1103–1109.CrossRefGoogle Scholar
- Stubblefield, R. D. (1979). Thin layer chromatographic determination of citrinin. J. Assoc. Office Anal. Chem. 62, 201–202.Google Scholar
- Szebiotko, K., Chelkowski, J., Dopierala, G., Godlewska, B., and Radomyska, W. (1981). Mycotoxins in cereal grain. Part I. Ochratoxin, citrinin, sterigmatocystin, penicillic acid and toxigenic fungi in cereal grain. Nahrung 25, 415–421.Google Scholar
- Takahashi, H., Yazaki, H., Manabe, M., Matsuura, S., and Kimura, S. (1989). Distribution of aflatoxin, citrinin, and invading fungal mycelium in rice kernels inoculated with Aspergillus flavus and Penicillium citrinum. Cereal Chem. 66, 337–341.Google Scholar
- Trantham, A. L., and Wilson, D. M. (1984). Fluorometric screening method for citrinin in corn, barley and peanuts. J. Assoc. Office Anal. Chem. 67, 3738.Google Scholar
- Wilson, D. M., and Abramson, D. (1992). Mycotoxins. In: “Storage of Cereal Grains and Their Products, Fourth Edition” ( D. B. Sauer, ed.), pp. 341–391. American Association of Cereal Chemists, St. Paul, MN.Google Scholar
- Wilson, D. M., Tabor, W. H., and Trucksess, M. W. (1976). Screening method for the detection of aflatoxin, ochratoxin, zearalenone, penicillic acid and citrinin. J. Assoc. Office Anal. Chem. 59, 125–127.Google Scholar
- Zimmerli, B., Dick, R., and Baumann, U. (1989). High-performance liquid chromatographic determination of citrinin in cereals using an acid-buffered silica gel column. J. Chromatog. 462, 406–410.CrossRefGoogle Scholar