Chemical Composition and Fungitoxic Activities of Pine Cone Extractives

  • J. A. Micales
  • J. S. Han
  • J. L. Davis
  • R. A. Young
Part of the Biodeterioration Research book series (BIOR, volume 4)


Pine cones, a renewable resource, are not used to their potential. Large quantities of cones are produced annually throughout the world, especially in pine plantations grown for the pulp and paper industry. They are collected, dried to facilitate seed release, and generally discarded. Some nurseries grind the cones into mulch or they may be sold for crafts, but consumer demand for cones is small compared to by-products from other industries. New uses for pine cones could provide additional income for forest landowners.


Resin Acid Neutral Fraction Abietic Acid Dehydroabietic Acid Diethyl Ether Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fukuchi, K., Sakagami, H., Ikeda, M., Kawazoe, Y., Oh-Nara, T., Konno, K., Ichikawa, S., Hata, N., Kondo, H. and Nonoymama, M. (1989a). Inhibition of Herpes simplex virus infection by pine cone antitumor substances. Anticancer Res. 9, 313–318.Google Scholar
  2. Fukuchi, K., Sakagami, H., Okuda, T., Hatano, T., Tanuma, S.I., Kitajima, K., Inoue, Y., Inoue, S., Ichikawa, S (1989b). Inhibition of Herpes simplex virus infection by tannins and related compounds. Antiviral Res. 11, 285–298.CrossRefGoogle Scholar
  3. Han, J.S. and Zinkel, D.F. (1990). Gas chromatography of resin acids with a methyl silicon fused-silica capillary column. Naval Stores Rev. 100, 11–15.Google Scholar
  4. Han, J.S. and Zinket, D.F. (1991). Gas chromatography of resin acids with a BDS fused-silica capillary column. Naval Stores Rev. 101, 13–16.Google Scholar
  5. Harada, H., Sakagami, H., Nagata, K., Oh-Hara, T., Ishihama, A., Hata, N.and Misawa, Y. (1991). Possible involvement of lignin structure in anti-influenza virus activity. Antiviral Res. 15, 41–50.Google Scholar
  6. Hart, J.A. and Hillis, W.E. (1974). Inhibition of wood-rotting fungi by stilbenes and other polyphenols in Eucalyptus sideroxylon. Phytopathology, 64, 939–948.CrossRefGoogle Scholar
  7. Kossuth, S.V. and Biggs, R.H. (1981). Role of apophysis and outer scale tissue in pine cone opening. Forest Sci. 27, 828–836.Google Scholar
  8. Kurakata, Y., Sakagami, H., Takeda, M., Konno, K., Kitajima, K., Ichikawa, S.,Hata, N., and Sato, T. (1989). Mitogenic activity of pine cone extracts against cultures splenocytes from normal and tumor-bearing animals. Anticancer Res. 9, 961–966.Google Scholar
  9. Mattson, W.J. and Strauss, S.H. (1986). Are cone volatiles involved in cone finding by the red pine cone beetle, Conophthorus resinosae (Coleoptera: Scolytidae)? In: Proceedings of the 2nd Conference of the Cone and Seed Insects Working Party S2.07–01. pp. 185–204, September 3–5, 1986., Braincon, France.Google Scholar
  10. Nagata, K., Sakagami, H., Harada, H., Nonoyama, M., Ishihama, A., Konno, K. (1990). Inhibition of influenza virus infection by pine cone antitumor substances. Antiviral Res. 13, 11–21.CrossRefGoogle Scholar
  11. Hara, T., Sakagami, H., Kawazoe, Y., Kaiya, T., Komatsu, N., Ohsawa, N., Fujimaki, M., Tanuma, S.I., and Konno, K. (1990) Antimicrobial spectrum of lignin-related pine cone extracts of Pinus parviflora Sieb. et Zucc. In Vivo 4, 7–12.Google Scholar
  12. Petterson, R.C. (1984). The chemical composition of wood, In: The Chemistry of Solid Wood, R. Rowell (Ed.), pp. 57–126. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  13. Petterson, R. C., and Schwandt, V. H. (1991). Wood sugar analysis by anion chromatography. J. Wood Chem. Technol. 11, 495–502.CrossRefGoogle Scholar
  14. Pullianen, E. (1972). Summer nutrition of crossbills (Loxia pvtvopsittacus, L. curvirostra, and L. leucoptera) in northeastern Lapland in 197. Annales Zoologici Fennici 9, 28–31.Google Scholar
  15. Sakagami, H., Kawazoe, Y., Komatsu, N., Simpson, A., Nonoyama, M., Konno, K.,Yoshida, T., Kuroiwa, Y., and Tanuma, S.I. (1991). Antitumor, anitviral and immunopotentiating activities of pine cone extracts: potential medicinal efficacy of natural and synthetic lignin-related materials. Anticancer Res. 11, 881–888.Google Scholar
  16. Sakagami., H., Oh-Hara, T., Kaiya, T., Kawazoe, Y., Nonoyama, M., Konno, K. (1989). Molecular species of the antitumor and antiviral fraction from pine cone extract. Anitcancer Res. 9, 1593–1598.Google Scholar
  17. Schaffer, T.C. and Cowling, E.B. (1966). Natural resistance of wood to microbial deterioration. Ann. Rev. Phvtopathol. 4, 147–170.CrossRefGoogle Scholar
  18. TAPPI (1989). Official Test Method T-222 OM-88. Acid-insoluble lignin wood and pulp. Technical Association of Pulp and Paper Industry, Atlanta, GA. TAPPI Test Methods, Vol. 1.Google Scholar
  19. Walter, J., Han, J.S., and Zinkel, D.F. (1989). Fate of resin acids in Kraft pulping. Naval Stores Rev. 99, 17–19.Google Scholar
  20. Young, R.D. and Davis, J.L. (1990). Utilization of pine cones. Report submitted to the Grainger Foundation. 23 p.Google Scholar
  21. Zinkel, D.F. 1983. Quantitative separation of ether-soluble acidic and neutral materials. J. Wood Chem. Technol. 3, 131–143.CrossRefGoogle Scholar
  22. Zinkel, D.F. and Rowe, J.W. (1964). A rapid method for the quantitative separation without alteration of ether-soluble acidic and neutral materials. Analytical Chem. 36, 1160–1161.CrossRefGoogle Scholar
  23. Zinkel, D.F. and Russell, J. (eds.) (1989). Naval Stores Production, Chemistry, and Utilization. New York, Pulp Chemicals Association. 1, 060 p.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. A. Micales
    • 1
  • J. S. Han
    • 1
  • J. L. Davis
    • 2
  • R. A. Young
    • 2
  1. 1.Forest Products LaboratoryUSDA Forest ServiceMadisonUSA
  2. 2.Department of ForestryUniversity of WisconsinMadisonUSA

Personalised recommendations