Pathway of 2,4,6-Trinitrotoluene (TNT) Degradation by Phanerochaete Chrysosporium

  • Jochen Michels
  • Gerhard Gottschalk
Part of the Environmental Science Research book series (ESRH, volume 49)


2,4,6-Trinitrotoluene (TNT) was the most important military explosive during World War II. It was released into the environment by contaminated wastewaters during production and by destruction of ammunition plants. It has become the predominant contaminant of soil and ground water at many munition production and processing sites in Germany and other countries. TNT is toxic to microorganisms (25), algae (55), and freshwater fish (34). Chronic exposure to TNT causes anemia (33) and toxic hepatitis to rats and humans (26). Its metabolic transformation products are also mutagenic in the Ames-Test (12).


Lignin Peroxidase Phanerochaete Chrysosporium Ligninolytic Enzyme Veratryl Alcohol Nitro Toluene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akamatsu, Y., D. B. Ma, T. Higuchi, and M. Shimada. 1990. A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. FEBS Lett. 269:261–263.PubMedCrossRefGoogle Scholar
  2. 2.
    Arnao, M. B., M. Acosta, J. A. del Río, and F. García-Cánovas. 1990. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim. Biophys. Acta. 1038:85–89.PubMedCrossRefGoogle Scholar
  3. 3.
    Bonnarme, P. and T. W. Jeffries. 1990. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl. Environ. Microbiol. 56:210–217.PubMedGoogle Scholar
  4. 4.
    Boopathy, R., C. F. Kulpa, and M. Wilson. 1993. Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B-strain). Appl. Microbiol. Biotechnol. 39:270–275.Google Scholar
  5. 5.
    Bumpus, J. A., and S. D. Aust. 1986. Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. BioEssays 6:166–170.CrossRefGoogle Scholar
  6. 6.
    Bumpus, J. A., and M. Tatarko. 1994. Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: Identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr. Microbiol. 28:185–190.CrossRefGoogle Scholar
  7. 7.
    Cai, D., and M. Tien. 1989. On the reactions of lignin peroxidase compound III (Isozyme H8). Biochem. Biophys. Res. Commun. 162:464–469.PubMedCrossRefGoogle Scholar
  8. 8.
    Cai, D., and M. Tien. 1990. Characterization of the oxycomplex of lignin peroxidases from Phanerochaete chrysosporium: equilibrium and kinetics studies. Biochemistry 29:2085–2091.PubMedCrossRefGoogle Scholar
  9. 9.
    Cai, D., and M. Tien. 1992. Kinetic studies on the formation and decomposition of compound-II and compound-III — reactions of lignin peroxidase with H2O2. J. Biol. Chem. 267:11149–11155.PubMedGoogle Scholar
  10. 10.
    Chang, C.-W., and J. A. Bumpus. 1993. Oligomers of 4-chloroaniline are intermediates formed during its biodegradation by Phanerochaete chrysosporium. FEMS Microbiol. Lett. 107:337–342.PubMedCrossRefGoogle Scholar
  11. 11.
    Channon, H. J., G. T. Mills, and R. T. Williams. 1944. The metabolism of 2,4,6-trinitrotoluene (a-TNT). Biochem. J. 38:70–85.PubMedGoogle Scholar
  12. 12.
    Einistö, P. 1991. Role of bacterial nitroreductase and O-acetyltransferase in urine mutagenicity assay of rats exposed to 2,4,6-trinitrotoluene (TNT). Mutat. Res. 262:167–169.PubMedCrossRefGoogle Scholar
  13. 13.
    Eriksson, K.-E., B. Pettersson, J. Volc, and V. M. Musilek. 1986. Formation and partial characterisation of glucose 2-oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 23:257–262.CrossRefGoogle Scholar
  14. 14.
    Ever, P., and E. Lierheimer. 1980. Biotransformation of nitrosobenzene in the red cell and the role of glutathione. Xenobiotica 10:517–526.CrossRefGoogle Scholar
  15. 15.
    Fernando, T., J. A. Bumpus, and S. D. Aust. 1990. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56:1666–1671.PubMedGoogle Scholar
  16. 16.
    Glenn, J. K., and M. H. Gold. 1985. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from lignin-degrading basidiomycete Phanerochaete chrysosporium. Arch. Biochem. Biophys. 244:329–341.CrossRefGoogle Scholar
  17. 17.
    Glenn, J., L. Akileswaran, and M. Gold. 1986. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251:688–696.PubMedCrossRefGoogle Scholar
  18. 18.
    Harvey, P. J., H. E. Schoemaker, and J. M. Palmer. 1986. Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett. 195:242–246.CrossRefGoogle Scholar
  19. 19.
    Higson, F. K. 1992. Microbial degradation of nitroaromatic compounds. Adv. Appl. Microbiol. 37:1–19.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaufman, D. D., J. R. Plimmer, J. Iwan, and U. I. Klingebiel. 1972. 3,3’,4,4’,-Tetrachloroazoxybenzene from 3,4-dichloroaniline in microbial culture. J. Agr. Food. Chem. 20:916–919.CrossRefGoogle Scholar
  21. 21.
    Kelley, R. L., and C. A. Reddy. 1986. Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures of Phanerochaete chrysosporium. Arch. Microbiol. 144:248–253.CrossRefGoogle Scholar
  22. 22.
    Kersten, P. J., and T. K. Kirk. 1987. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J. Bacteriol. 135:790–797.Google Scholar
  23. 23.
    Kiese, M., and K. Taeger. 1976. The fate of phenylhydroxylamine in human red cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 292:59–66.CrossRefGoogle Scholar
  24. 24.
    Kirk, T. K., E. Schulz, W. J. Connors, L. F. Lorenz, and J. G. Zeikus. 1978. Influence of culture parameters on lignin metabolism by Phanerchaete chrysosporium. Arch. Microbiol. 117:277–285.CrossRefGoogle Scholar
  25. 25.
    Klausmeier, R. E., J. L. Osmon, and D. R. Walls. 1973. The effect of trinitrotoluene on microorganisms. Dev. Ind. Microbiol. 15:309–317.Google Scholar
  26. 26.
    Koss, G., A. Lommel, I. Ollroge, I. Tesseraux, R. Haas, and A. D. Kappos. 1989. Zur Toxikologie der Nitrotoluole und weiterer Nitroaromaten aus rüstungsbedingten Altlasten. Bundesgesundhbl. 32:527–536.Google Scholar
  27. 27.
    Kuwahara, M., J. K. Glenn, M. A. Morgan, and M. H. Gold. 1984. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169:247–250.CrossRefGoogle Scholar
  28. 28.
    Lenk, W, and M. Riedl. 1989. N-Hydroxy-N-arylacetamides. V. Differences in the mechanism of haemoglobin oxidation in vitro by N-hydroxy-4-chloroacetanilide and N-hydroxy-4-chloroaniline. Xenobiotica 19:453–475.PubMedCrossRefGoogle Scholar
  29. 29.
    Lyons, C. D., S. Katz, and R. Bartha. 1984. Mechanisms and pathways of aniline elimination from aquatic environments. Appl. Environ. Microbiol. 48:491–496.PubMedGoogle Scholar
  30. 30.
    McCormick, N. G., F. E. Feeherry, and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31:949–958.PubMedGoogle Scholar
  31. 31.
    McCormick, N. G., J. H. Cornell, and A. M. Kaplan. 1978. Identification of biotransformation products from 2,4-dinitrotoluene. Appl. Environ. Microbiol. 35:945–948.PubMedGoogle Scholar
  32. 32.
    Michels, J., and G. Gottschalk. 1994. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylaminodinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 60:187–194.PubMedGoogle Scholar
  33. 33.
    Neumann, H. G. 1988. Biomonitoring of aromatic amines and alkylating agents by measuring hemoglobin adducts. Int. Arch. Occup. Environ. Health 60:151–155.PubMedCrossRefGoogle Scholar
  34. 34.
    Osmon, J. L., and R. E. Klausmeier. 1972. The microbial degradation of explosives. Dev. Ind. Microbiol. 14:247–252.Google Scholar
  35. 35.
    Pasti-Grigsby, M. B., A. Paszczynski, S. Goszczynski, D. L. Crawford, and R. L. Crawford. 1992. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:3605–3613.PubMedGoogle Scholar
  36. 36.
    Perez, J., and T. W. Jeffries. 1992. Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:2402–2409.PubMedGoogle Scholar
  37. 37.
    Poulos, T. L., S. L. Edwards, H. Wariishi, and H. Gold. 1993. Crystallographic refinement of lignin peroxidase at 2 A. J. Biol. Chem. 268:4429–4440.PubMedGoogle Scholar
  38. 38.
    Preuss, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.PubMedCrossRefGoogle Scholar
  39. 39.
    Russel, S., and Bollag, J. M. 1977. Formylation and acetylation of 4-chloroaniline by a Streptomyces sp. Acta Microbiol. Pol. 26:59–64.PubMedGoogle Scholar
  40. 40.
    Schackmann, A., and R. Müller. 1991. Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol. 34:809–813.CrossRefGoogle Scholar
  41. 41.
    Scheibner, K., T. Günther, and W. Fritsche. 1993. Comparison of aniline metabolism by white rot fungi and autochthonous soil fungi. VAAM Frühjahrstagung, Leipzig, Germany, Poster No. P244.Google Scholar
  42. 42.
    Shah, M. M., T. A. Grover, and S. D. Aust. 1991. Metabolism of cyanide byPhanerochaete chrysosporium. Arch. Biochem. Biophys. 290:173–178.PubMedCrossRefGoogle Scholar
  43. 43.
    Spadaro, J. T., M. H. Gold, and V. Renganathan. 1992. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:2397–2401.PubMedGoogle Scholar
  44. 44.
    Spiker, J. K., D. L. Crawford, and R. L. Crawford. 1992. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:3199–3202.PubMedGoogle Scholar
  45. 45.
    Stahl, J. D., and S. D. Aust. 1993. Metabolism and detoxification of TNT by Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 192:477–482.PubMedCrossRefGoogle Scholar
  46. 46.
    Stahl, J. D., and S. D. Aust. 1993. Plasma membrane dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 192:471–476.PubMedCrossRefGoogle Scholar
  47. 47.
    Tien, M. 1987. Properties of ligninases from Phanerochaete chrysosporium and their possible applications. Crit. Rev. Microbiol. 15:141–168.PubMedCrossRefGoogle Scholar
  48. 48.
    Tien, M., and T. K. Kirk. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Nati. Acad. Sci. USA 81:2280–2284.CrossRefGoogle Scholar
  49. 49.
    Tien, M., and T. K. Kirk. 1988. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161:238–249.CrossRefGoogle Scholar
  50. 50.
    Tuisel, H., R. Sinclair, J. A. Bumpus, W. Ashbaugh, B. J. Brock, and S. D. Aust. 1990. Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch. Biochem. Biophys. 279:158–166.PubMedCrossRefGoogle Scholar
  51. 51.
    Turney, T. A. 1965. Oxidation mechanisms, p. 46–48. Butterworth & Co., London.Google Scholar
  52. 52.
    Tweedy, B. G., C. Loeppky, and J. A. Ross. 1970. Metobromuron: acetylation of the aniline moiety as a detoxification mechanism. Science 168:482–483.PubMedCrossRefGoogle Scholar
  53. 53.
    Valli, K., B. J. Brock, D. K. Joshi, and M. H. Gold. 1992. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:221–228.PubMedGoogle Scholar
  54. 54.
    Wariishi, H., and M. H. Gold. 1990. Lignin peroxidase compound III. J. Biol. Chem. 265:2070–2077.PubMedGoogle Scholar
  55. 55.
    Won, W. D., L. H. Disalvo, and J. Ng. 1976. Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl. Environ. Microbiol. 31:576–580.PubMedGoogle Scholar
  56. 56.
    Yamashina, L., S. Shikata, and F. Egami. 1954. Enzymatic reduction of aromatic nitro, nitroso and hydroxyl amino compounds. Bull. Chem. Soc. Jpn. 27:42–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jochen Michels
    • 1
  • Gerhard Gottschalk
    • 1
  1. 1.Institut für MikrobiologieGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations