Biodegradation of 2,4,6-Trinitrotoluene by the White Rot Fungus Phanerochaete Chrysosporium

  • James D. Stahl
  • Steven D. Aust
Part of the Environmental Science Research book series (ESRH, volume 49)


Trinitrotoluene (TNT) has become the predominant explosive worldwide. TNT wastes generated during TNT production and munitions manufacturing, as well as improper storage, use, and disposal have led to contamination of the environment (67, 94). Due to the solubility of TNT in water (~ 125 ppm at 20°C) large volumes of contaminated waste water can be generated during TNT production and munitions loading operations. As much as 500,000 gallons of TNT-contaminated water have been generated per day by a single munitions plant (91). In the past, the contaminated water was typically collected in large lagoons. Repetitive use of the lagoons has left high residual concentrations of TNT in the sediment (42, 67). Other contamination sites include missile production facilities, mining sites, military firing ranges and sites where outdated explosives were burned. Continual leaching of TNT from these soils over the years has resulted in the contamination of groundwater (42, 67). Typical contaminated sites may contain average concentrations of 10,000 mg/kg TNT in soil and 100 ppm TNT in water (30).


Lignin Peroxidase Phanerochaete Chrysosporium Veratryl Alcohol Nitroaromatic Compound Rotate Biological Contactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, F. P. 1969. The use of eight different tetrazolium salts for a quantitative study of pentose shunt dehydrogenation. Histochemie 19:363–374.Google Scholar
  2. 2.
    Amerkhanova, N. N. and R. P. Naumova. 1979. Comparative study of the acute toxicity of alpha-trinitrotoluol and products of its biodegradation for hydrobiots. Biol. Navkl. 2:26–28.Google Scholar
  3. 3.
    Ander, P., C. Mishra, R. L. Farrell, and K.-E. Eriksson. 1990. Redox reactions in lignin degradation: interactions between laccase, different peroxidases and cellobiose:quinone oxidoreductase. J. Biotechnol. 13:189–198.CrossRefGoogle Scholar
  4. 4.
    Bakker, E. P., J. C. Arents, J. P. M. Hoebe, and H. Terada. 1975. Surface potential and the interaction of weak acidic uncouplers of oxidative phosphorylation with liposomes and mitochondria. Biochim. Biophys. Acta. 387:491–506.PubMedCrossRefGoogle Scholar
  5. 5.
    Barr, D. P. and S. D. Aust. 1994. Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol. 28:78A–87A.PubMedGoogle Scholar
  6. 6.
    Barr, D. P., M. M. Shah, T. A. Grover, and S. D. Aust. 1992. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 298:480–485.PubMedCrossRefGoogle Scholar
  7. 7.
    Bell, B. A. and W. D. Burrows. 1989. Removal and degradation of TNT in a semicontinuous activated sludge system, p. 344–356. In C.A. Cole and D. A. Long (eds.) Hazardous and industrial wastes: proceedings of the 21st Mid-Atlantic industrial waste conference. Technomic Publishing Co., Inc., Lancaster.Google Scholar
  8. 8.
    Boopathy, R. and C. F. Kulpa. 1993. Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain). Can. J. Microbiol. 34:430–433.CrossRefGoogle Scholar
  9. 9.
    Boopathy, R., C. F. Kulpa and M. Wilson. 1993. Metabolism of 2,4,6-trinitrotoluene by Desulfovibrio sp. (B strain). Appl. Microbiol. Biotechnol. 39:270–275.CrossRefGoogle Scholar
  10. 10.
    Boopathy, R., J. Manning, C. Montemagno and C. Kulpa. 1994. Metabolism of 2,4,6-trinitrotoluene by a Pseudomonas consortium under aerobic conditions. Curr. Microbiol. 28:131–137.CrossRefGoogle Scholar
  11. 11.
    Boopathy, R., M. Wilson and C. F. Kulpa. 1993. Anaerobic removal of 2,4,6-trinitrotoluene (TNT) under different electron accepting conditions: laboratory study. Water Environ. Res. 65:271–275.CrossRefGoogle Scholar
  12. 12.
    Boopathy, R., M. Wilson, C. D. Montemagno, J. F. Manning, Jr., and C. F. Kulpa. 1994. Biological transformation of 2,4,6-trinitrotoluene (TNT) by soil bacteria isolated from TNT-contaminated soil. Bioresource Technol. 47:19–24.CrossRefGoogle Scholar
  13. 13.
    Bueding, E. and N. Jolliffe. 1946. Metabolism of trinitrotoluene (TNT) in vitro. J. Pharmacol. Exp. Ther. 88:300–312.PubMedGoogle Scholar
  14. 14.
    Bumpus, J. A. and S. D. Aust. 1986. Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. BioEssays 6:166–170.CrossRefGoogle Scholar
  15. 15.
    Bumpus, J. A. and S. D. Aust. 1987. Biodegradation of DDT [1,1,1-trichoro-2,2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 53:2001–2008.PubMedGoogle Scholar
  16. 16.
    Bumpus, J. A. and M. Tatarko. 1994. Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: Identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr. Microbiol. 28:185–190.CrossRefGoogle Scholar
  17. 17.
    Bumpus, J. A., M. Tien, D. Wright, and S. D. Aust. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436.PubMedCrossRefGoogle Scholar
  18. 18.
    Carpenter, D. F., N. G. McCormick, J. H. Cornell, and A. M. Kaplan. 1978. Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl. Environ. Microbiol. 35:949–954.PubMedGoogle Scholar
  19. 19.
    Channon, H. J., G. T. Mills, and R. T. Williams. 1944. The metabolism of 2,4,6-trinitrotoluene (alpha-TNT). Biochem. J. 38:70–85.PubMedGoogle Scholar
  20. 20.
    Chung, N., M. M. Shah, T. A. Grover, and S. D. Aust. 1993. Reductive activity of a manganese-dependent peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 306:70–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Clark, M. G., E. J. Partick, G. S. Patten, F. L. Crane, H. Low, and C. Grebing. 1981. Evidence for the extracellular reduction of ferricyanide by rat liver. Biochem. J. 200:565–572.PubMedGoogle Scholar
  22. 22.
    Crane, F. L., H. Roberts, A. W. Linnane, and H. Low. 1982. Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisae. J. Bioeng. Biomembranes 14:191–205.CrossRefGoogle Scholar
  23. 23.
    Crawford, R. L. 1981. The chemical structure of lignin and the use of various lignin preparations for microbial studies, p. 7–19. In R. L. Crawford (ed.) Lignin biodegradation and transformation. John Wiley and Sons. New York.Google Scholar
  24. 24.
    Cripps, C., J. A. Bumpus, and S. D. Aust. 1990. Biodegradation of azo-and heterocyclic dyes by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56:1114–1118.PubMedGoogle Scholar
  25. 25.
    Dagley, S. 1975. Microbial degradation of organic compounds in the biosphere. Am. Sci. 63:681–689.PubMedGoogle Scholar
  26. 26.
    Davenport, R., L. R. Johnson, D. J. Shaeffer, and H. Balbach. 1994. Phototoxicology. 1. Light-enhanced toxicity of TNT and some related compounds to Daphnia magna and Lytechinus variagatus. Ecotoxicity Environ. Safety 27:14–22.CrossRefGoogle Scholar
  27. 27.
    Duque, E., A. Haidour, F. Godoy and J. L. Ramos. 1993. Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J. Bacteriol. 175:2278–2283.PubMedGoogle Scholar
  28. 28.
    Eaton, D. C. 1984. Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb. Technol. 7:194–196.Google Scholar
  29. 29.
    Fernando, T. and S. D. Aust. 1991. Biodegradation of munition waste, TNT (2,4,6-trinitrotoluene), and RDX (hexahydro-l,3,5-trinitro-l,3,5-triazine) by Phanerochaete chrysosporium, p. 214–232. In D.W. Tedder and F.G. Pohland (eds.), Emerging technologies in hazardous waste management II. American Chemistry Society, Washington, D.C.CrossRefGoogle Scholar
  30. 30.
    Fernando, T., J. A. Bumpus, and S. D. Aust. 1990. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56:1667–1671.Google Scholar
  31. 31.
    Fewson, C.A. 1981. Biodegradation of aromatics with industrial relevance, p. 141–170. In T. Leisinger, A. M. Cook, R. Huttler, and J. Neusch (eds.) Microbial degradation of xenobiotics and recalcitrant compounds. Academic Press, London.Google Scholar
  32. 32.
    Funk, S. B., D. J. Roberts, D. L. Crawford and R. L. Crawford. 1993. Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol. 59:2171–2177.PubMedGoogle Scholar
  33. 33.
    Gold, M. H., M. Kuwahara, A. A. Chiu, and J. K. Glenn. 1984. Purification and characterization of an extracellular H2O2-requiring diaryl propane oxygenase from the white rot basidiomycete Phanerochaete chrysosporium. Arch. Biochem. Biophys. 234:353–362.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoffsommer, J. C., L. A. Kaplan, D. J. Glover, D. A. Kubose, C. Dickinson, H. Goya, E. G. Kayser, C. L. Groves, and M. E. Sitzmann. 1978. Final report. Contract WOL-TR-77-136. Biodegradability of TNT: a three year pilot plant study. Naval Surface Weapons Center.Google Scholar
  35. 35.
    Hudock, G. A. and D. M. Gring. 1970. Biological effects of trinitrotoluene. Contract No. 0164-69-CO822. Naval Environ. Health Center, Norfolk.Google Scholar
  36. 36.
    Isbister, J. D., G. L. Anspach, J. F. Kitchens, and R. C. Doyle. 1984. Composting for decontamination of soils containing explosives. Microbiologica 7:47–73.Google Scholar
  37. 37.
    Johnson, L. R., R. Davenport, H. Balbach, and D. J. Shaeffer. 1994. Phototoxicology. 2. Near-ultraviolet light enhancement of Microtox assays of trinitrotoluene and aminodinitrotoluenes. Ecotoxicity Environ. Safety 27:23–33.CrossRefGoogle Scholar
  38. 38.
    Johnson, L. R., R. Davenport, H. Balbach, and D. J. Shaeffer. 1994. Phototoxicology. 3. Comparative toxicity of trinitrotoluene and aminodinitrotoluenes to Daphnia magna, Dugesia dorotocephala, and sheep erythrocytes. Ecotoxicity Environ. Safety 27:34–44.CrossRefGoogle Scholar
  39. 39.
    Jolliffe, L. K., R. J. Doyle, and U. N. Streips. 1981. The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25:753–763.PubMedCrossRefGoogle Scholar
  40. 40.
    Kaplan, D. L. 1992. Biological degradation of explosives and chemical agents. Curr. Opin. Biotechnol. 3:253–260.CrossRefGoogle Scholar
  41. 41.
    Kaplan, D. L. and A. M. Kaplan. 1982. Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl. Environ. Microbiol. 44:757–760.PubMedGoogle Scholar
  42. 42.
    Kaplan, D. L. and A. M. Kaplan. 1982. 2,4,6-Trinitrotoluene surfactant complexes: decomposition, mutagenicity, and soil leaching studies. Environ. Sci. Technol. 16:566–571.PubMedCrossRefGoogle Scholar
  43. 43.
    Keither, L. H. and W. A. Telliard. 1979. Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13:416–423.CrossRefGoogle Scholar
  44. 44.
    Kelley, R. L. and C. A. Reddy. 1986. Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures of Phanerochaete chrysosporium. Arch. Microbiol. 144:248–253.CrossRefGoogle Scholar
  45. 45.
    Kelley, R. L. and C. A. Reddy. 1986. Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J. Bacteriol. 166:269–274.PubMedGoogle Scholar
  46. 46.
    Kersten, P. J. 1990. Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proc. Natl. Acad. Sci. USA 87:2936–2940.PubMedCrossRefGoogle Scholar
  47. 47.
    Kersten, P. J. and T. K. Kirk. 1987. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J. Bacteriol. 169:2195–2201.PubMedGoogle Scholar
  48. 48.
    Kersten, P. J., M. Tien, B. Kalyanaraman, and T. K. Kirk. 1985. The ligninase of Phanerochaete chrysosporium generates cation radicals for methoxybenzenes. J. Biol. Chem. 260:2609–2612.PubMedGoogle Scholar
  49. 49.
    Kirk, T. K. and R. L. Farrell. 1987. Enzymatic combustion: the microbial degradation of lignin. Ann. Rev. Microbiol. 41:465–505.CrossRefGoogle Scholar
  50. 50.
    Kirk, T. K., E. Schultz, W. J. Connors, C. F. Lorenz, and J. G. Zeikus. 1978. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch. Microbiol. 117:277–285.CrossRefGoogle Scholar
  51. 51.
    Klausmeier, R. E., J. L. Osmon and D. R. Walls. 1973. The effect of trinitrotoluene on microorganisms. Dev. Ind. Microbiol. 15:309–317.Google Scholar
  52. 52.
    Lemberg, R. and J. P. Callaghan. 1944. Metabolism of symmetrical trinitrotoluene. Nature 154:768–769.CrossRefGoogle Scholar
  53. 53.
    Low, H., F. L. Crane, E. J. Partick, G. S. Patten, and M. G. Clark. 1984. Properties and regulation of a trans-plasma membrane redox system of perfused rat heart. Biochim. Biophys. Acta 804:253–260.PubMedCrossRefGoogle Scholar
  54. 54.
    Mason, R. P. and P. D. Josephy. 1985. Free radical mechanism of nitroreductases, p. 121–140. In D. Rickert (ed.) Toxicity of nitroaromatic compounds. Hemisphere Publishing Corporation, New York.Google Scholar
  55. 55.
    McCormick, N. G., F. E. Feeherry and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31:949–958.PubMedGoogle Scholar
  56. 56.
    Michels, J. and G. Gottschalk. 1994. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 60:187–194.PubMedGoogle Scholar
  57. 57.
    Mitchell, P. 1961. Conduction of protons through the membranes of mitochondria and bacteria by uncouplers of oxidative phosphorylation. Biochem. J. 81:24.Google Scholar
  58. 58.
    Montemagno, C. D. 1991. Evaluation of the feasibility of biodegrading explosives-contaminated soils and groundwater at the Newport Army Ammunition Plant (NAAP). USATHAMA Report CETHA-TSCR-9200. Argonne National Laboratory, Chicago.Google Scholar
  59. 59.
    Moore, B. 1918. The causation and prevention of trinitrotoluene (T.N.T.) poisoning. J. Amer. Med. Assoc. 70:412–413.CrossRefGoogle Scholar
  60. 60.
    Moreno, S. N. J. and R. Docampo. 1985. Mechanism of toxicity of nitro compounds used in the chemotherapy of trichomoniasis. Environ. Health Perspectives 64:199–208.CrossRefGoogle Scholar
  61. 61.
    Morton, A. R., D. O. Manmohan, U. Ranadive, and J. A. Hathaway. 1976. Biological effects of trinitrotoluene from exposure below the threshold limit value. Amer. Ind. Hyg. Assoc. J. 37:56–60.CrossRefGoogle Scholar
  62. 62.
    Osmon, J. L., C. C. Andrews, and A. Tatyrek. 1978. The biodégradation of TNT in enhanced soil and compost systems. Report ARLCD-TR-77032. Large Caliber Weapon Systems Laboratory, United States Army Armament Research and Development Command, Dover.Google Scholar
  63. 63.
    Osmon, J. L. and R. E. Klausmeier. 1972. The microbial degradation of explosives. Dev. Ind. Microbiol. 14:247–252.Google Scholar
  64. 64.
    Parrish, F. W. 1977. Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 34:232–233.PubMedGoogle Scholar
  65. 65.
    Pearse, A. G. E. 1972. Principles of oxidoreductase histochemistry, p. 881–920. Histochemistry: theoretical and applied, 3rd ed., vol. 2. The Williams and Wilkins Co., Baltimore.Google Scholar
  66. 66.
    Pederson, G. L. 1970. Evaluation of toxicity of selected TNT wastes on fish. Phase I — acute toxicity of alpha-TNT to bluegills. Sanitary Engineering Sp. Study No. 24-007-70/71, United States Army Environmental Hygiene Agency, Edgewood Arsenal.Google Scholar
  67. 67.
    Pereira, W. E., D. L. Short, D. B. Manigold and P. K. Roscio. 1979. Isolation and characterization of TNT and its metabolites in groundwater by gas chromatograph-mass spectrometer-computer techniques. Bull. Environ. Contam. Toxicol. 21:554–562.PubMedCrossRefGoogle Scholar
  68. 68.
    Priby Council, Medical Research Council. 1921. T.N.T. poisoning and the fate of T.N.T. in the animal body. His Majesty’s Stationary Office, U.K.Google Scholar
  69. 69.
    Rosenblatt, D. H. and R. B. Turkeltaub. 1987. Army installation restoration program: contaminated soil cleanup objectives for an inactive army ammunition plant, p. 523–527. In Proceedings of the NWWA FOCUS Conference on Midwestern Groundwater Issues. National Water Well Association, Dublin.Google Scholar
  70. 70.
    Ross, R. H. and W. R. Hartley. 1990. Comparison of water quality criteria and health advisories for 2,4,6-trinitrotoluene (TNT). Regul. Toxicol. Pharmacol. 11:114–117.PubMedCrossRefGoogle Scholar
  71. 71.
    Ruchoft, C. C., M. LeBosquet, Jr., and W. G. Meckler. 1945. TNT wastes from shell-loading plants. Ind. Eng. Chem. 37:937–943.CrossRefGoogle Scholar
  72. 72.
    Ryon, M. G. 1987. Water quality criteria for 2,4,6-trinitrotoluene (TNT). United States Army Project 84PP4845. Report No. AD-ORNL-6304.Google Scholar
  73. 73.
    Ryon, M. G. and R. H. Ross. 1990. Water quality criteria for 2,4,6-trinitrotoluene. Regul. Toxicol. Pharmacol. 11:104–113.PubMedCrossRefGoogle Scholar
  74. 74.
    Schackmann, A. and R. Muller. 1991. Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol. 34:809–813.CrossRefGoogle Scholar
  75. 75.
    Schott, S., C. C. Ruchoft, and S. Migregian. 1943. TNT wastes. Ind. Eng. Chem. 35:1122–1132.CrossRefGoogle Scholar
  76. 76.
    Servent, D., C. Ducrocq, Y. Henry, A. Guissani and M. Lenfant. 1991. Nitroglyerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Biochim. Biophys. Acta. 1074:320–325.PubMedCrossRefGoogle Scholar
  77. 77.
    Shah, M. M., T. A. Grover, D. P. Barr, and S. D. Aust. 1992. On the mechanism of inhibition of the veratryl alcohol oxidase activity of lignin peroxidase H2 by EDTA. J. Biol. Chem. 267:21564–21569.PubMedGoogle Scholar
  78. 78.
    Smock, L. A., D. L. Stonburner, and J. R. Clark. 1976. The toxic effects of trinitrotoluene (TNT) and its primary degradation products on two species of algae and the fathead minnow. Water Res. 10:537–543.CrossRefGoogle Scholar
  79. 79.
    Spiker, J. K., D. L. Crawford and R. L. Crawford. 1992. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:3199–3202.PubMedGoogle Scholar
  80. 80.
    Stahl, J. D. and S. D. Aust. 1993. Metabolism and detoxification of TNT by Phanerochaete chrysosporium. Biochem. Biophys. Res. Comm. 192:477–482.PubMedCrossRefGoogle Scholar
  81. 81.
    Stahl, J. D. and S. D. Aust. 1993. Plasma membrane dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium. Biochem. Biophys. Res. Comm. 192:471–476.PubMedCrossRefGoogle Scholar
  82. 82.
    Stahl, J. D. and S. D. Aust. Concepts for the bioremediation of trinitrotoluene-contaminated wastes by the white rot fungus Phanerochaete chrysosporium, p. 172-185. In Proceedings of the 9th Annual Conference on Hazardous Waste Remediation. Elseuier Scientific, Netherlands.Google Scholar
  83. 83.
    Sublette, K. L., E. V. Ganapathy, and S. Schwartz. 1992. Degradation of munition wastes by Phanerochaete chrysosporium. Appl. Biochem. Biotechnol. 34/35:709–723.CrossRefGoogle Scholar
  84. 84.
    Tan, E. L., C. H. Ho, W. H. Griest and R. L. Tyndall. 1992. Mutagenicity of trinitrotoluene and its metabolites formed during composting. J. Toxicol. Environ. Health 36:165–175.PubMedCrossRefGoogle Scholar
  85. 85.
    Tien, M. 1987. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. CRC Crit. Rev. Microbiol. 15:141–168.CrossRefGoogle Scholar
  86. 86.
    Tien, M. and T. K. Kirk. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium. Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. USA 81:2280–2284.PubMedCrossRefGoogle Scholar
  87. 87.
    Traxler, R. W., E. Wood and J. M. Delaney. 1974. Bacterial degradation of alpha-TNT. Dev. Ind. Microbiol. 16:71–76.Google Scholar
  88. 88.
    Valli, K., B. J. Brock, D. K. Joshi, and M. H. Gold. 1992. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:221–228.PubMedGoogle Scholar
  89. 89.
    Valli, K., H. Wariishi, and M. H. Gold. 1992. Degradation of 2,7-dichlorobenzo-p-dioxin by the lignindegrading basidiomycete Phanerochaete chrysosporium. J. Bacteriol. 174:2131–2137.PubMedGoogle Scholar
  90. 90.
    Venkatadri, R. and R. L. Irvine. 1993. Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in novel biofilm reactor systems: hollow fiber and silicone membrane reactor. Water Res. 27:591–596.CrossRefGoogle Scholar
  91. 91.
    Walsh, J. T., R. C. Chalk and C. Merritt, Jr. 1973. Application of liquid chromatography to pollution abatement studies on munition wastes. Anal. Chem. 45:1215–1220.CrossRefGoogle Scholar
  92. 92.
    Westermark, V. and K.-E. Eriksson. 1974. Cellobiose:quinone oxidoreductase, a new wood-degrading enzyme from white rot fungi. Acta Chemica Scandinavica B 28:209–214.CrossRefGoogle Scholar
  93. 93.
    Westermark, V. and K.-E. Eriksson. 1975. Purification and properties of cellobiose:quinone oxidoreductase from Sporotrichum pulverulentum. Acta Chemica Scandinavica B 29:419–424.CrossRefGoogle Scholar
  94. 94.
    Williams, R. T., P. S. Ziegenfuss, and P. J. Marks. 1988. Field demonstration composting of explosives-contaminated sediments at the Louisiana Army Ammunition Plant (LAAP). Final report. Report #AMXTH-IR-TE 88242. Contract DAAK-11-85-D-C07.Google Scholar
  95. 95.
    Williams, R. T., P. S. Ziegenfuss, and W. E. Sisk. 1992. Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J. Ind. Microbiol. 9:137–144.CrossRefGoogle Scholar
  96. 96.
    Won, W. D., L. H. DiSalvo and J. Ng. 1976. Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl. Environ. Microbiol. 31:576–580.PubMedGoogle Scholar
  97. 97.
    Won, W. D., R. J. Heckley, D. J. Glover and J. C. Hoffsommer. 1974. Metabolic disposition of 2,4,6-trinitroluene. Appl. Microbiol. 27:513–516.PubMedGoogle Scholar
  98. 98.
    Woodward, R. E. 1990. Evaluation of composting implementation: a literature review. Report TCN 89363. United States Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground.Google Scholar
  99. 99.
    Yamashima, I., S. Shikata and F. Egami. 1954. Enzymatic reduction of aromatic nitro, nitroso, and hydroxyl amino compounds. Chem. Soc. Jap. Bull. 27:42–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • James D. Stahl
    • 1
  • Steven D. Aust
    • 1
  1. 1.Biotechnology CenterUtah State UniversityLoganUSA

Personalised recommendations