Skip to main content

Reductive Metabolism of Nitroaromatic and Nitropolycyclic Aromatic Hydrocarbons

  • Chapter
Biodegradation of Nitroaromatic Compounds

Part of the book series: Environmental Science Research ((ESRH,volume 49))

Abstract

Nitro-PAHs are polycyclic aromatic hydrocarbon derivatives that contain one or more nitro groups covalently bound at chemically reactive positions on the aromatic ring. Mixtures of nitrated PAHs are generated either by reactions of PAHs with nitrogen oxides or as byproducts of the incomplete combustion of fossil fuels (65). A wide variety of nitro-PAHs have been isolated from environmental sources, such as coal fly ash, diesel emission particulates, cigarette smoke and carbon black photocopier toners (29, 52, 63, 74, 75, 86, 87, 88). Structures of representative nitro-PAHs isolated from the environment are shown in Figure 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anlezark, G. M., R. G. Melton, R. F. Sherwood, B. Coles, F. Friedlos, and R. Knox. 1992. The bioactivation of 5-(aziridin-l-yl)-2,4-dinitrobenzamide (CB1954)-1. Purification and properties of a nitroreductase enzyme from Escherichia coli — a potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem. Pharmacol. 44:2289–2295.

    Article  PubMed  CAS  Google Scholar 

  2. Asnis, R. E. 1957. The reduction of furacin by cell-free extracts of furacin-resistant and parent-susceptible strains of Escherichia coli. Arch. Biochem. Biophys. 66:208–216.

    Article  PubMed  CAS  Google Scholar 

  3. Beland, F. A., R. H. Heflich, P. C. Howard, and P. P. Fu. 1985. The in vitro metabolic activation of nitropolycyclic aromatic hydrocarbons, p. 371–396. In R. G. Harvey (ed.), Polycyclic hydrocarbons and carcinogenesis. ACS Symposium Series 283. American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  4. Blasco, R., and F. Castillo. 1993. Characterization of a nitrophenol reductase from the phototrophic bacterium Rhodobacter capsulatus EIFI. Appl. Environ. Microbiol. 59:1774–1778.

    PubMed  CAS  Google Scholar 

  5. Bryant, C., and M. DeLuca. 1991. Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J. Biol. Chem. 266:4119–4125.

    PubMed  CAS  Google Scholar 

  6. Bryant, C., and W. D. McElroy. 1991. Nitroreductases. In F. Muller (ed.), Chemistry and biochemistry of flavoenzymes — Vol. II. CRC Press, Boca Raton.

    Google Scholar 

  7. Bryant, C., L. Hubbard, and W. D. McElroy. 1991. Cloning, nucleotide sequence and expression of the nitroreductase gene from Enterobacter cloacae. J. Biol. Chem. 266:4126–4130.

    PubMed  CAS  Google Scholar 

  8. Bryant, D. W., D. R. McCalla, M. Leeksma, and P. Laneuville. 1981. Type I nitroreductases of Escherichia coli. Can. J. Microbiol. 27:81–86.

    Article  PubMed  CAS  Google Scholar 

  9. Bryant, D. W., D. R. McCalla, P. Lultschik, M. A. Quilliam, and B. E. McCarry. 1984. Metabolism of 1,8-dinitropyrene by Salmonella typhimurium. Chem.-Biol. Interact. 49:351–368.

    Article  PubMed  CAS  Google Scholar 

  10. Campbell, W. L., W. Franklin, and C. E. Cerniglia. 1992. Validation studies on an in vitro semicontinuous culture system designed to simulate a bacterial ecosystem of the human intestine. J. Microbiol. Methods 16:239–252.

    Article  CAS  Google Scholar 

  11. Cartwright, N. J., and R. B. Cain. 1959. Bacterial degradation of nitrobenzoic acids, 2. Reduction of the nitro group. Biochem. J. 73:305–314.

    PubMed  CAS  Google Scholar 

  12. Cerniglia, C. E. 1985. Metabolism of 1-nitropyrene and 6-nitrobenzo[a]pyrene by intestinal microflora, p.133–137. In B. Wostmann, J. R. Pleasants, M. Pollard, B. A. Teah and M. Wagner (ed.), Progress in clinical and biological research, Vol. 181. Germfree research; microflora control and its application to the biomedical sciences. Alan R. Liss, Inc., New York.

    Google Scholar 

  13. Cerniglia, C. E., P. C. Howard, P. P. Fu, and W. Franklin. 1984. Metabolism of nitropolycyclic aromatic hydrocarbons by human intestinal microflora. Biochem. Biophys. Res. Commun. 123:262–269.

    Article  PubMed  CAS  Google Scholar 

  14. Cerniglia, C. E., J. P. Freeman, G. L. White, R. H. Heflich, and D. W. Miller. 1985. Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon, 1-nitropyrene. Appl. Environ. Microbiol. 50:649–655.

    PubMed  CAS  Google Scholar 

  15. Cerniglia, C. E., K. J. Lambert, G. L. White, R. H. Heflich, W. Franklin, E. K. Fifer, and F. A. Beland. 1987. Metabolism of 1,8-dinitropyrene by human, rhesus monkey and rat intestinal microflora. Toxic. Assess. Int. Q. 3:147–159.

    Article  Google Scholar 

  16. Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368.

    Article  CAS  Google Scholar 

  17. Cerniglia, C. E. 1993. Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4:331–338.

    Article  CAS  Google Scholar 

  18. Cerniglia, C. E., J. B. Sutherland, and S. A. Crow. 1992. Fungal metabolism of aromatic hydrocarbons, p. 193–217. In G. Winkelmann (ed.) Microbial degradation of natural products. VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  19. Chadwick, R. W., S. E. George, and L. R. Claxton. 1992. Role of gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens. Drug Metab. Rev. 24:425–492.

    Article  PubMed  CAS  Google Scholar 

  20. Delclos, K. B., C. E. Cerniglia, K. L. Dooley, W. L. Campbell, W. Franklin, and R. P. Walker. 1989. The role of intestinal microflora in the metabolic activation of 6-nitrochrysene to DNA-binding derivatives in mice. Toxicology 60:137–150.

    Article  Google Scholar 

  21. Doi, T., H. Yoshimura, and K. Tatsumi. 1983. Properties of nitrofuran reductases from Escherichia coli B/r. Chem. Pharm. Bull. 31:1105–1107.

    Article  PubMed  CAS  Google Scholar 

  22. Doolittle, D. J., J. M. Sherrill, and B. E. Butterworth. 1983. Influence of intestinal bacteria, sex of the animal, and position of the nitro group on the hepatic genotoxicity of nitrotoluene isomers in vivo. Cancer Res. 43:2836–2842.

    PubMed  CAS  Google Scholar 

  23. Drasar, B. S., and B. I. Duerden. 1991. Anaerobes in the normal flora of man, p. 162–179. In B. I. Duerden and B. S. Drasar (ed.), Anaerobes in human disease. Wiley-Liss, New York.

    Google Scholar 

  24. Egami, F., H. Ebata, and R. Sato. 1951. Reduction of chloromycetin by a cell-free bacterial extract and its relation to nitrite reduction. Nature 167:118–119.

    Article  PubMed  CAS  Google Scholar 

  25. El-Bayoumy, K., C. Sharma, Y. M. Louis, B. Reddy, and S. S. Hecht. 1983. The role of intestinal microflora in the metabolic reduction of 1-nitropyrene to 1-aminopyrene in conventional and germ free rats and in humans. Cancer Lett. 19:311–316.

    Article  PubMed  CAS  Google Scholar 

  26. Fu, P. P., M. W. Chou, D. W. Miller, G. L. White, R. H. Heflich, and F. A. Beland. 1985. The orientation of the nitro substituent predicts the direct-acting bacterial mutagenicity of nitrated polycyclic aromatic hydrocarbons. Mutat. Res. 143:173–181.

    Article  PubMed  CAS  Google Scholar 

  27. Fu, P. P., C. E. Cerniglia, K. E. Richardson, and R. H. Heflich. 1988. Nitroreduction of 6-nitrobenzo[a]pyrene in humans. Mutat. Res. 209:123–129.

    Article  PubMed  CAS  Google Scholar 

  28. Fu, P. P. 1990. Metabolic activation of nitro-polycyclic aromatic hydrocarbons. Drug Metab. Rev. 22:209–268.

    Article  PubMed  CAS  Google Scholar 

  29. Gibson, T. L. 1983. Sources of direct-acting nitroarene mutagens in airborne particulate matter. Mutat. Res. 122:115–121.

    Article  PubMed  CAS  Google Scholar 

  30. Groenewegen, P. E. J., P. Breeuwer, J. M. L. M. van Helvoort, A. A. M. Langenhoff, F. P. de Vries, and J. A. M. de Bont. 1992. Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J. Gen. Microbiol. 138:1599–1605.

    Article  PubMed  CAS  Google Scholar 

  31. Heflich, R. H., E. K. Fifer, Z. Djuri, and F. A. Beland. 1985. DNA adduct formation and mutation induction by nitropyrenes in Salmonella and Chinese hamster ovary cells: relationships with nitroreduction and acetylation. Environ. Health Perspect. 62:135–143.

    Article  PubMed  CAS  Google Scholar 

  32. Heflich, R. H., Z. Djuri, E. K. Fifer, C. E. Cerniglia, and F. A. Beland. 1986a. Metabolism of dinitropyrenes to DNA-binding derivatives in vitro and in vivo, p. 185–197. In N. Ishinishi, A. Koizumi, R. O. McClellan, and W. Stîber (ed.), Carcinogenic and mutagenic effects of diesel engine exhaust. Elsevier, Amsterdam.

    Google Scholar 

  33. Heflich, R.H., E.K. Fifer, Z. Djuri, and F.A. Beland. 1986b. Mutation induction and DNA adduct formation by 1,8-dinitropyrene in Chinese hamster ovary cells, p. 265–273. In C. Ramel, R. Lambert, and J. Monson (ed.), Genetic toxicology of environmental chemicals, Part A: Basic principles and mechanisms of action. Alan R. Liss, New York.

    Google Scholar 

  34. Heflich, R. H., P. C. Howard, and F. A. Beland. 1985. 1-Nitrosopyrene: an intermediate in the metabolic activation of 1-nitropyrene to a mutagen in Salmonella typhimurium TA1538. Mutat. Res. 149:25–32.

    Article  PubMed  CAS  Google Scholar 

  35. Heitkamp, M. A., and C. E. Cerniglia. 1988. Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediments below an oil field. Appl. Environ. Microbiol. 54:1612–1614.

    PubMed  CAS  Google Scholar 

  36. Heitkamp, M. A., J. P. Freeman, D. W. Miller, and C. E. Cerniglia. 1991. Biodegradation of 1-nitropyrene. Arch. Microbiol. 156:223–230.

    Article  PubMed  CAS  Google Scholar 

  37. Howard, P. C., F. A. Beland, and C. E. Cerniglia. 1983. Reduction of 1-nitropyrene to 1-aminopyrene by rat intestinal bacteria. Carcinogenesis 4:985–990.

    Article  PubMed  CAS  Google Scholar 

  38. Howard, P. C., R. H. Heflich, F. E. Evans, and F. A. Beland. 1983. Formation of DNA adducts in vitro and in Salmonella typhimurium upon metabolic reduction of the environmental mutagen 1-nitropyrene. Cancer Res. 43:2052–2058.

    PubMed  CAS  Google Scholar 

  39. IARC. 1984. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, p. 171–178. Vol. 33. Polynuclear aromatic compounds, Part 2. Carbon blacks, mineral oils and some nitroarenes. IARC, Lyon.

    Google Scholar 

  40. IARC. 1989. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans, p. 31–458. Vol. 46. Diesel and gasoline engine exhausts and some nitroarenes. IARC, Lyon.

    Google Scholar 

  41. Jung, H., A. U. Shaikh, R. H. Heflich, and P. P. Fu. 1991. Nitro group orientation, reduction potential, and direct-acting mutagenicity of nitro-polycyclic aromatic hydrocarbons. Environ. Mol. Mutagen. 17:169–180.

    Article  PubMed  CAS  Google Scholar 

  42. Kinouchi, T., Y. Manabe, K. Wakisaki, and Y. Ohnishi. 1982. Biotransformation of 1-nitropyrene in intestinal anaerobic bacteria. Microbiol. Immunol. 26:992–1005.

    Google Scholar 

  43. Kinouchi, T., and Y. Ohnishi. 1983. Purification and characterization of 1-nitropyrene reductases from Bacteroides fragilis. Appl. Environ. Microbiol. 46:596–604.

    PubMed  CAS  Google Scholar 

  44. Kinouchi, T., and Y. Ohnishi. 1986. Metabolic activation of 1-nitropyrene and 1,6-dinitropyrene by nitroreductases from Bacteroides fragilis and distribution of nitroreductase activity in rats. Microbiol. Immunol. 30:979–992.

    PubMed  CAS  Google Scholar 

  45. Kinouchi, T., K. Nishifuji, and Y. Ohnishi. 1987. In vitro intestinal microflora-mediated metabolism of biliary metabolites from 1-nitropyrene-treated rats. Microbiol. Immunol. 31:1145–1159.

    PubMed  CAS  Google Scholar 

  46. Manning, B. W., C. E. Cerniglia, and T. W. Federle. 1986. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-l-aminopyrene by the human intestinal microbiota. Toxicol. Environ. Health 18:339–346.

    Article  CAS  Google Scholar 

  47. Manning, B. W., W. C. Campbell, W. Franklin, K. B. Delclos, and C. E. Cerniglia. 1988. Metabolism of 6-nitrochrysene by intestinal microflora. Appl. Environ. Microbiol. 34:197–203.

    Google Scholar 

  48. Manning, B. W., T. W. Federle, and C. E. Cerniglia. 1987. Use of a semi-continuous culture system as a model for determining the role of human intestinal microflora in the metabolism of xenobiotics. J. Microbiol. Methods 6:81–94.

    Article  CAS  Google Scholar 

  49. Mason, R. P., and J. L. Holtzman. 1975. The role of catalytic Superoxide formation in the O2 inhibition of nitroreductase. Biochem. Biophys. Res. Commun. 67:1267–1274.

    Article  PubMed  CAS  Google Scholar 

  50. Mattammal, M. B., T. V. Zenser, M. O. Palmier, and B. B. Davis. 1985. Renal reduced nicotinamide adenine dinucleotide phosphate: cytochrome c reductase-mediated metabolism of the carcinogen 7V-[4-(5-nitro-2-furyl)-2-thiazolyl]acetamide. Cancer Res. 45:149–156.

    PubMed  CAS  Google Scholar 

  51. McCann, J., E. Choi, E. Yamasaki, and B. N. Ames. 1975. Detection of carcinogens as mutagens in the Salmonella microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72:5135–5139.

    Article  PubMed  CAS  Google Scholar 

  52. McCartney, M. A., B. F. Chatterjee, E. C. McCoy, E. A. Mortimer, Jr., and H. S. Rosenkranz. 1986. Airplane emissions: a source of mutagenic nitrated polycyclic aromatic hydrocarbons. Mutat. Res. 171:99–104.

    Article  PubMed  CAS  Google Scholar 

  53. McCoy, E. C., H. S. Rosenkranz, and P. C. Howard. 1990. Salmonella typhimurium TA100Tn5-1012, a strain deficient in arylhydroxylamine O-esterificase, exhibits a reduced nitroreductase activity. Mutat. Res. 243:141–144.

    Article  PubMed  CAS  Google Scholar 

  54. McCoy, E. C., H. S. Rosenkranz, and R. Mermelstein. 1981. Evidence for the existence of a family of bacterial nitroreductases capable of activating nitrated polycyclics to mutagens. Environ. Mutagen. 3:421–437.

    Article  PubMed  CAS  Google Scholar 

  55. Mermelstein, R., D. K. Kiriazides, M. Butler, E. C. McCoy, and H. S. Rosenkranz. 1981. The extraordinary mutagenicity of nitropyrenes in bacteria. Mutat. Res. 89:187–196.

    Article  PubMed  CAS  Google Scholar 

  56. Messier, F., C. Lu, P. Andrews, B. E. McCarry, M. A. Quilliam, and D. R. McCalla. 1981. Metabolism of 1-nitropyrene and formation of DNA adducts in Salmonella typhimurium. Carcinogenesis 2:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  57. Millner, G. C., and C. E. Cerniglia. 1986. Microbial transformation and detoxification of 6-ni-trobenzo[a]pyrene. Toxicol. Environ. Health 19:519–530.

    Article  CAS  Google Scholar 

  58. Mirsalis, J. C., T. E. Hamm, J. M. Sherrill, and B. E. Butterworth. 1982. Role of gut flora in genotoxicity of dinitrotoluene. Nature 295:322–323.

    Article  PubMed  CAS  Google Scholar 

  59. Mîller, L., M. Corrie, T. Midtvedt, J. Rafter, and J.-A. Gustafsson. 1988. The role of the intestinal microflora in the formation of mutagenic metabolites from the carcinogenic air pollutant 2-nitrofluorene. Carcinogenesis 9:823–830.

    Article  Google Scholar 

  60. Morehead, M. C., W. Franklin, P. P. Fu, F. E. Evans, T. M. Heinze, and C. E. Cerniglia. 1994. Metabolism of 7-nitrobenz[a]anthracene by intestinal microflora. J. Toxicol. Environ. Health (In press).

    Google Scholar 

  61. Narai, N., S. Kitamura, and K. Tatsumi. 1984. A comparative study on 1-nitropyrene and nitrofurazone reductases in Escherichia coli. J. Pharm. Dyn. 7:407–413.

    Article  CAS  Google Scholar 

  62. Nishino, S. F., and J. C. Spain. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59:2520–2525.

    PubMed  CAS  Google Scholar 

  63. Ohnishi, Y, T. Kinouchi, Y. Manabe, H. Tsutsui, H. Otsuka, H. Tokiwa, and T. Otofuji. 1985. Nitro compounds in environmental mixtures and foods, p. 195–204. In M. D. Waters, S. S. Sandhu, J. Lewtas, L. Claxton, G. Strauss, and S. Nesnow (ed.), Short-term bioassays in the analysis of complex environmental mixtures. Vol. IV. Plenum Publishing Corporation, New York.

    Chapter  Google Scholar 

  64. Peterson, F. J., R. P. Mason, J. Hovespian, and J. L. Holtzman. 1979. Oxygen-sensitive and-insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J. Biol. Chem. 254:4009–4014.

    PubMed  CAS  Google Scholar 

  65. Pitts, J. N., Jr., K. A. Van Cauwenberghe, D. Grosjean, J. P. Schmid, D. R. Fitz, W. L. Belser, Jr., G. B. Knudson, and P. M. Hynds. 1978. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science 202:515–518.

    Article  PubMed  Google Scholar 

  66. Pothuluri, J. V., F. E. Evans, T. M. Heinze, and C. E. Cerniglia. 1994. Metabolism of 3-nitrofluoranthene, a nitropolycyclic aromatic hydrocarbon, by the fungus Cunninghamella elegans. J. Toxicol. Environ. Health 42:209–218.

    Article  PubMed  CAS  Google Scholar 

  67. Preuss, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.

    Article  PubMed  CAS  Google Scholar 

  68. Rafii, F., W. Franklin, R. H. Heflich, and C. E. Cerniglia. 1991. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl. Environ. Microbiol. 57:962–968.

    CAS  Google Scholar 

  69. Rafii, F., and C. E. Cerniglia. 1993. Comparison of the azoreductase and nitroreductase from Clostridium perfringens. Appl. Environ. Microbiol. 59:1731–1734.

    PubMed  CAS  Google Scholar 

  70. Rafii, F., A. L. Selby, R. K. Newton, and C. E. Cerniglia. Reduction and mutagenic activation of nitroaromatic compounds by a Mycobacterium sp. Appl. Environ. Microbiol. 60:4263-4267.

    Google Scholar 

  71. Reddy, B. G., L. R. Pohl, and G. Krishna. 1976. The requirement of the gut flora in nitrobenzene-induced methemoglobinemia in rats. Biochem. Pharmacol. 25:1119.

    Article  PubMed  CAS  Google Scholar 

  72. Richardson, K. E., P. P. Fu, and C. E. Cerniglia. 1988. Metabolism of 1-, 3-, and 6-nitrobenzo[a]pyrene by intestinal microflora. J. Toxicol. Environ. Health 23:527–537.

    Article  PubMed  CAS  Google Scholar 

  73. Rickert, D. E., Butterworth, B. E., and J. A. Popp. 1984. Dinitrotoluene: Acute toxicity, oncogenicity, genotoxicity, and metabolism. CRC Crit. Rev. Toxicol. 13:217–234.

    Article  CAS  Google Scholar 

  74. Rosenkranz, H. S., and D. R. Sanders. 1980. Nitropyrenes: isolation, identification, and reduction of mutagenic impurities in carbon black toners. Science 209:1039–1043.

    Article  PubMed  CAS  Google Scholar 

  75. Rosenkranz, H. S. 1982. Direct-acting mutagens in diesel exhausts: magnitude of the problem. Mutat. Res. 101:1–10.

    Article  PubMed  CAS  Google Scholar 

  76. Rosenkranz, H. S., and R. Mermelstein. 1983. Mutagenicity and genotoxicity of nitroarenes. All nitrocontaining chemicals were not created equal. Mutat. Res. 114:217–267.

    Article  PubMed  CAS  Google Scholar 

  77. Rowland, I. R. 1988. Factors affecting metabolic activity of the intestinal flora. Drug Metab. Rev. 19:243–262.

    Article  PubMed  CAS  Google Scholar 

  78. Saz, A. K., and J. Marmur. 1953. The inhibition of organic nitro-reductase by aureomycin in cell-free extracts. Proc. Soc. Exp. Biol. Med. 82:783–784.

    PubMed  CAS  Google Scholar 

  79. Saz, A. K., and M. L. Martinez. 1956. Enzymatic basis of resistance to aureomycin I. Differences between flavoprotein reductases of sensitive and resistant Escherichia coli. J. Biol. Chem. 223:285–292.

    PubMed  CAS  Google Scholar 

  80. Saz, A. K. and R. B. Slie. 1954. Reversal of aureomycin inhibition of bacterial cell-free nitro reductase by manganese. J. Biol. Chem. 210:407–412.

    PubMed  CAS  Google Scholar 

  81. Saz, A. K., and R. B. Slie. 1954. The inhibition of organic nitro reductase by aureomycin in cell-free extracts II. Cofactor requirements for the nitro reducíase enzyme complex. Arch. Biochem. Biophys. 51:5–16.

    Article  PubMed  CAS  Google Scholar 

  82. Smith, G. N., and C. S. Worrel. 1949. Enzymatic reduction of chloramphenicol (chloromycetin). Arch. Biochem. 24:216–223.

    PubMed  CAS  Google Scholar 

  83. Somerville, C. C., S. F. Nishino, and J. C. Spain. Isolation and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. (In press).

    Google Scholar 

  84. Tatsumi, K., T. Doi, H. Yoshimura, H. Koga, and T. Horiuchi. 1982. Oxygen-insensitive nitrofuran reductases in Salmonella typhimurium TA 100. J. Pharm. Dyn. 5:423–429.

    Article  CAS  Google Scholar 

  85. Thornton-Manning, J. R., W. L. Campbell, B. S. Hass, J. J. Chen, P. P. Fu, C. E. Cerniglia, and R. H. Heflich. 1989. The role of nitro-reduction in the synergistic mutational response induced by mixtures of 1-and 3-nitrobenzo[a]pyrene in Salmonella typhimurium. Environ. Mol. Mutagen. 13:203–210.

    Article  PubMed  CAS  Google Scholar 

  86. Tokiwa, H., and Y. Ohnishi. 1986. Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. CRC Crit. Rev. Toxicol. 17:23–60.

    Article  CAS  Google Scholar 

  87. Tokiwa, H., T. Otofugi, R. Nakagawa, K. Horikawa, T. Maeda, N. Sano, K. Izumi, and H. Otsuka. 1986. Dinitro derivatives of pyrene and fluoranthene in diesel emission particulates and their tumorigenicity in mice and rats. Dev. Toxicol. Environ. Sci. 13:253–270.

    PubMed  CAS  Google Scholar 

  88. Tokiwa, H., R. Nakagawa, K. Horikawa, and A. Ohkubo. 1987. The nature of the mutagenicity and carcinogenicity of nitrated aromatic compounds in the environment. Environ. Health Perspect. 73:191–199.

    Article  PubMed  CAS  Google Scholar 

  89. Villanueva, J. R. 1964. The purification of a nitro-reductase from Nocardia V. J. Biol. Chem. 239:773–776.

    PubMed  CAS  Google Scholar 

  90. Watanabe, M., M. Ishidate, Jr., and T. Nohmi. 1989. A sensitive method for the detection of mutagenic nitroarenes: construction of nitroreductase-overproducing derivatives of Salmonella typhimurium strains TA98 and TA 100. Mutat. Res. 216:211–220.

    Article  PubMed  CAS  Google Scholar 

  91. Watanabe, M., M. Ishidate, Jr., and T. Nohmi. 1990. Nucleotide sequence of Salmonella typhimurium nitroreductase gene. Nucleic Acids Res. 18:1059.

    Article  PubMed  CAS  Google Scholar 

  92. Watanabe, M., T. Nohmi, and M. Ishidate, Jr. 1987. New tester strains of Salmonella typhimurium highly sensitive to mutagenic nitroarenes. Biochem. Biophys. Res. Commun. 147:974–979.

    Article  PubMed  CAS  Google Scholar 

  93. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271.

    PubMed  CAS  Google Scholar 

  94. Yamashina, I. 1954. Enzymatic reduction of aromatic nitro compounds. Bull. Chem. Soc. Japan 27:85–89.

    Article  CAS  Google Scholar 

  95. Yamashina, I., S. Shikata, and F. Egami. 1954. Enzymatic reduction of aromatic nitro, nitroso and hydroxyl amino compounds. Bull. Chem. Soc. Japan 27:42–45.

    Article  CAS  Google Scholar 

  96. Zenno, S., S. Inouye, and H. Kanoh. 1993. Gene encoding enzyme having flavin reducing activity and nitroreductase activity. European Patent Application no. 0 547 876 Al.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cerniglia, C.E., Somerville, C.C. (1995). Reductive Metabolism of Nitroaromatic and Nitropolycyclic Aromatic Hydrocarbons. In: Spain, J.C. (eds) Biodegradation of Nitroaromatic Compounds. Environmental Science Research, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9447-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9447-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9449-6

  • Online ISBN: 978-1-4757-9447-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics