Anaerobic Transformation of 2,4,6-Trinitrotoluene and Other Nitroaromatic Compounds

  • Andrea Preuß
  • Paul-Gerhard Rieger
Part of the Environmental Science Research book series (ESRH, volume 49)


Considerations about transformation of nitroaromatic compounds in soil must include anaerobic reactions, because “the soil” is a heterogenous medium that consists of microhabitats of different oxygen partial pressures. Anaerobic conditions are created by bacteria that consume oxygen during degradation of soil organic matter and respiration. As a consequence, aerobic and anaerobic habitats coexist in or around soil particles within a very small space (Fig. 1). Therefore, it is important to pay attention to transformation reactions occurring under anaerobic conditions. There have been many publications on the reductive transformation of nitroaromatic compounds by strictly anaerobic bacteria. Table 1 indicates the variety of strictly anaerobic bacteria that carry out nitro reduction and the nitro compounds that can be transformed by these organisms.


Nitro Group Methyl Viologen Nitro Compound Anaerobic Degradation Nitroaromatic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amerkhanova, N. N., and R. P. Naumova. 1978. 2,4,6-Trinitrotoluene as a source of nutrition for bacteria. Microbiologiya 47:393–395.Google Scholar
  2. 2.
    Angermaier, L., F. Hein, and H. Simon. 1981. Investigations on the reduction of aliphatic and aromatic nitro compounds by Clostridium species and enzyme systems, p. 266–275. In Bothe, H., and A. Trebst, (ed.) Biology of inorganic nitrogen and sulfur. Springer, Berlin.CrossRefGoogle Scholar
  3. 3.
    Angermaier, L., and H. Simon. 1983. On the reduction of aliphatic and aromatic nitro compounds by Clostridia, the role of ferredoxin and its stabilization. Hoppe-Seyler’s Z. Physiol. Chem. 364:961–975.PubMedCrossRefGoogle Scholar
  4. 4.
    Balch, W. E., S. Schoberth, R. S. Tanner and R. S. Wolfe. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon-dioxide-reducing anaerobic bacteria. Int. J. Syst. Bacteriol. 27:355–361.CrossRefGoogle Scholar
  5. 5.
    Boopathy, R., and C. F. Kulpa. 1992. Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate-reducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic digester. Curr. Microbiol. 25:235–241.PubMedCrossRefGoogle Scholar
  6. 6.
    Boopathy R., C. F. Kulpa, and M. Wilson. 1993. Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain) Appl. Microbiol. Biotechnol. 39:270–275.CrossRefGoogle Scholar
  7. 7.
    Boopathy R., and C. F. Kulpa. 1993. Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain) Can. J. Microbiol. 39:430–433.Google Scholar
  8. 8.
    Brock, T. D., and M. T. Madigan. 1991. Biology of microorganisms. 6th ed. Prentice Hall, New Jersey.Google Scholar
  9. 9.
    Bruhn, C., H. Lenke, and H.-J. Knackmuss. 1987. Nitroaromatic compounds as nitrogen source for bacteria. Appl. Environ. Microbiol. 53:208–210.PubMedGoogle Scholar
  10. 10.
    Bryant, C., and M. DeLuca. 1991. Purification and characterization of an oxygen-insensitive NAD(P)H nitro reductase from Enterobacter cloacae. J. Biol. Chem. 266:4119–4125.PubMedGoogle Scholar
  11. 11.
    Bueding, E., and N. Jollife. 1946. Metabolism of trinitrotoluene (TNT) in vitro. J. Pharmacol. Exp. Ther. 88:300–312.PubMedGoogle Scholar
  12. 12.
    Chen, J.-S., and D. K. Blanchard. 1979. A simple hydrogenase-linked assay for ferredoxin and flavodoxin. Anal. Biochem. 93:216–222.PubMedCrossRefGoogle Scholar
  13. 13.
    Clarke, E. D., K. H. Goulding, and P. Wardman. 1982. Nitroimidazoles as anaerobic electron acceptors for xanthine oxidase. Biochem. Pharmacol. 31:3237–3242.PubMedCrossRefGoogle Scholar
  14. 14.
    Dickel, O., W. Haug and H.-J. Knackmuss. 1993. Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation 4:187–194.CrossRefGoogle Scholar
  15. 15.
    Funk, S. B., D. J. Roberts, D. L. Crawford, and R. L. Crawford. 1993. Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol. 59:2171–2177.PubMedGoogle Scholar
  16. 16.
    Glaus, M. A., C. G. Heijman, R. P. Schwarzenbach, and J. Zeyer. 1992. Reduction of nitroaromatic compounds mediated by Streptomyces sp. exudates. Appl. Environ. Microbiol. 58:1945–1951.PubMedGoogle Scholar
  17. 17.
    Glöckler, R., A. Tschech, and G. Fuchs. 1989. Reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA in a denitrifying, phenol-degrading Pseudomonas species. FEBS Letters 251:237–240.PubMedCrossRefGoogle Scholar
  18. 18.
    Gorontzy, T., J. Küver, and K.-H. Blotevogel. 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139:1331–1336.PubMedCrossRefGoogle Scholar
  19. 19.
    Harada, N., and T. Omura. 1980. Participation of cytochrome P-450 in the reduction of nitro compounds by rat liver microsomes. J. Biochem. 87:1539–1554.PubMedGoogle Scholar
  20. 20.
    Heijman, C. G., C. Holliger, M. A. Glaus, R. P. Schwarzenbach, and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59:4350–4353.PubMedGoogle Scholar
  21. 21.
    Jensen, H. L., and G. Lautrup-Larsen. 1967. Microorganisms that decompose nitroaromatic compounds, with special reference to dinitro-ortho-cresol. Acta Agrie. Scand. 17:115–126.CrossRefGoogle Scholar
  22. 22.
    Kamm, J. J., and J. R. Gillette. 1963. Mechanism of stimulation of mammalian nitroreductase by flavins. Life Sci. 4:254–260.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaplan, D. L., and A. M. Kaplan. 1982. Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl. Environ. Microbiol. 44:757–760.PubMedGoogle Scholar
  24. 24.
    Kato, R., T. Oshima, and A. Takanaka. 1969. Studies on the mechanism of nitro reduction by rat liver. Mol. Pharmacol. 5:487–498.PubMedGoogle Scholar
  25. 25.
    Kinouchi, T., and Y. Ohnishi. 1983. Purification and characterization of 1-nitropyrene nitroreductases from Bacteroides fragilis. Appl. Environ. Microbiol. 46:596–604.PubMedGoogle Scholar
  26. 26.
    Kobayashi, K., Y. Seki, and M. Ishimoto. 1974. Biochemical studies on sulfate-reducing bacteria. J. Biochem. 75:519–529.PubMedGoogle Scholar
  27. 27.
    Krumholz, L. R., R. L. Crawford, M. E. Hemling, and M. P. Bryant. 1987. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J. Bacteriol. 169:1886–1890.PubMedGoogle Scholar
  28. 28.
    Lenke, H., and H.-J. Knackmuss. 1992. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl. Environ. Microbiol. 58:2933–2937.PubMedGoogle Scholar
  29. 29.
    Lindmark, D. G., and M. Müller. 1976. Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicr. Agents Chemother. 10:476–482.CrossRefGoogle Scholar
  30. 30.
    Lochmeyer, C., J. Koch, and G. Fuchs. 1992. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-l-enecarboxyl-CoA in a denitrifying bacterium. J. Bacteriol. 174:3621–3628.PubMedGoogle Scholar
  31. 31.
    Mason, R. P., and J. L. Holtzman. 1975. The role of catalytic Superoxide formation in the O2 inhibition of nitroreductase. Biochem. Biophys. Res. Comm. 67:1267–1274.PubMedCrossRefGoogle Scholar
  32. 32.
    McCormick, N. G., F. E. Feeherry, and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31:949–958.PubMedGoogle Scholar
  33. 33.
    Naumova, R. P., N. N. Amerkhanova, and V. A. Shaikhutdinov. 1979. Study of the first stage of the conversion of trinitrotoluene. Priklad. Biokhim. Mikrobiol. 15:45–50.Google Scholar
  34. 34.
    Naumova, R. P., S. Y. Selivanovskaya, and I. E. Cherepneva. 1988. Conversion of 2,4,6-trinitrotoluene under conditions of oxygen and nitrate respiration of Pseudomonas fluorescens. Appl. Biochem. Microbiol. 24:409–413.Google Scholar
  35. 35.
    O’Brien, R. W., and J. G. Morris. 1971. The ferredoxin-dependent reduction of chloramphenicol by Clostridium acetobutylicum. J. Gen. Microbiol. 67:265–271.PubMedCrossRefGoogle Scholar
  36. 36.
    Oren, A., P. Gurevich, and Y. Henis. 1991. Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobicum praevalens and Sporohalobacter marismortui. Appl. Environ. Microbiol. 57:3367–3370.PubMedGoogle Scholar
  37. 37.
    Parrish, F. W. 1977. Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Environ Microbiol. 34:232–233.PubMedGoogle Scholar
  38. 38.
    Peterson, F. J., R. P. Mason, J. Hovsepian, and J. L. Holtzman. 1979. Oxygen-sensitive and-insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J. Biol. Chem. 254:4009–4014.PubMedGoogle Scholar
  39. 39.
    Preuss, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.PubMedCrossRefGoogle Scholar
  40. 40.
    Rafii, F., W. Franklin, R. H. Heflich, and C. E. Cerniglia. 1991. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl. Environ. Microbiol. 57:962–968.Google Scholar
  41. 41.
    Rieger, P.-G., A. Preuss, V. Sinnwell, W. Francke, H. Lenke, and H.-J. Knackmuss. 1994. H-additions as initial steps of aerobic bacterial degradation of 2,4,6-trinitrophenol (picric acid), abstr. Q-120, p. 409. Abstr. 94th Annu. Meet. Am. Soc. Microbiol. 1994.Google Scholar
  42. 42.
    Schackmann, A., and R. Mller. 1991. Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol. 34:809–813.CrossRefGoogle Scholar
  43. 43.
    Schink, B., and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidi-gallici gen. nov. sp. nov., a strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133:195–201.CrossRefGoogle Scholar
  44. 44.
    Schnell, S., and B. Schink. 1991. Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Arch. Microbiol. 155:183–190.CrossRefGoogle Scholar
  45. 45.
    Schnell, S., and B. Schink. 1992. Anaerobic degradation of 3-aminobenzoate by a newly isolated sulfate reducer and a methanogenic enrichment culture. Arch. Microbiol. 158:328–334.CrossRefGoogle Scholar
  46. 46.
    Schwarzenbach, R.P., R. Stierli, K. Lanz, and J. Zeyer. 1990. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solutions. Environ. Sci. Technol. 24:1566–1574.CrossRefGoogle Scholar
  47. 47.
    Tatsumi, K., N. Koga, S. Kitamura, H. Yoshimura, P. Wardman, and Y. Kato. 1979. Enzymic cis-trans isomerization of nitrofuran derivatives — isomerizing activity of xanthine oxidase, lipoyl dehydrogenase, DT-diaphorase and liver microsomes. Biochim. Biophys. Acta 567:75–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Tschech, A., and G. Fuchs. 1989. Anaerobic degradation of phenol via carboxylation to 4-hydroxybenzoate: in vitro study of isotope exchange between 14CO2 and 4-hydroxybenzoate. Arch. Microbiol. 152:594–599.CrossRefGoogle Scholar
  49. 49.
    Vorbeck, C., H. Lenke, P. Fischer, and H.-J. Knackmuss. 1994. Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J. Bacteriol. 176:932–934.PubMedGoogle Scholar
  50. 50.
    Widdel, F., and T. A. Hansen. 1992. The dissimilatory sulfate-and sulfur-reducing bacteria, p. 583–624. In Balows, A., H. G. Trüper, M. Dworkin, W. Harder, K.H. Schleifer (ed.), The Prokaryotes. Vol. I. Springer, Berlin.Google Scholar
  51. 51.
    Wolpert, M. K., J. R. Althaus, and D. G. Johns. 1973. Nitroreductase activity of mammalian liver aldehyde oxidase. J. Pharmacol. Exp. Ther. 185:202–213.PubMedGoogle Scholar
  52. 52.
    Zucker, M., and A. Nason. 1955. Nitroaryl reductase from Neurospora crassa. Methods Enzymol. 2:406–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Andrea Preuß
    • 1
  • Paul-Gerhard Rieger
    • 2
  1. 1.Degussa AG/VT-PBHanauGermany
  2. 2.Institut für MikrobiologieUniversität StuttgartStuttgartGermany

Personalised recommendations