Microbial Production of Catechols From Nitroaromatic Compounds

  • Rogier Meulenberg
  • Jan A. M. de Bont
Part of the Environmental Science Research book series (ESRH, volume 49)

Abstract

Nitroaromatic compounds are partly or fully degraded by a wide range of microorganisms. For this reason, a growing interest in the degradative characteristics of bacteria and fungi towards nitroaromatic compounds has emerged. This interest is aimed at exploiting these capacities to remove nitroaromatic compounds from the environment, or better, to prevent their release. Another potentially beneficial aspect of the great diversity in metabolic pathways involved in the degradation of nitroaromatic compounds is found in possible biotechnological applications. Nitroaromatic compounds may be used as cheap feedstocks in the biocatalytic production of valuable products by enzymes or intact cells involved in their conversion. This paper concentrates on these biocatalytic aspects and deals with research aimed at the production of catechols from nitroaromatic compounds.

Keywords

Nitro Group Pseudomonas Putida Microbial Production Picric Acid Oxygen Uptake Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, K., Y. Takeda, S. Senoh, and H. Kita. 1964. Metabolism of p-hydroxyphenylacetic acid in Pseudomonas ovalis. Biochim. Biophys. Acta 93:483–493.PubMedCrossRefGoogle Scholar
  2. 2.
    Angermeier, L., and H. Simon. 1983. On the reduction of aliphatic and aromatic nitro compounds by clostridia, the role of ferredoxin and its stabilization. Hoppe-Seyler’s Z. Physiol. Chem. 364:961–975.CrossRefGoogle Scholar
  3. 3.
    Angermeier, L., and H. Simon. 1983. On nitroaryl reducíase activities in several clostridia. Hoppe-Seyler’s Z. Physiol. Chem. 364:1653–1664.CrossRefGoogle Scholar
  4. 4.
    Bont, J. A. M. de, M. J. A. W. Vorage, S. Hartmans, and W. J. J. van den Tweel. 1986. Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52:677–680.PubMedGoogle Scholar
  5. 5.
    Boopathy, R., and C. F. Kulpa. 1993. Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain). Can. J. Microbiol. 39:430–433.PubMedCrossRefGoogle Scholar
  6. 6.
    Boopathy, R., C. F. Kulpa, and M. Wilson. 1993. Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl. Microbiol. Biotechnol. 39:270–275.CrossRefGoogle Scholar
  7. 7.
    Booth, J., and E. Boyland. 1964. The biochemistry of aromatic amines. 10. Enzymic N-hydroxylation of arylamines and conversion of arylhydroxylamines into o-aminophenols. Biochem. J. 91:362–369.PubMedGoogle Scholar
  8. 8.
    Cain, R. B. 1966. Induction of an anthranilate oxidation system during the metabolism of ortho-nitrobenzoate by certain bacteria. J. Gen. Microbiol. 42:197–217.PubMedCrossRefGoogle Scholar
  9. 9.
    Cain, R. B. 1966. Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca and a Flavobacterium. J. Gen. Microbiol. 42:219–235.PubMedCrossRefGoogle Scholar
  10. 10.
    Cain, R. B., and N. J. Cartwright. 1960. Intermediary metabolism of nitrobenzoic acids by bacteria. Nature 185:868–869.CrossRefGoogle Scholar
  11. 11.
    Cartwright, N. J., and R. B. Cain. 1959. Bacterial degradation of the nitrobenzoic acids. Biochem. J. 71:248–260.PubMedGoogle Scholar
  12. 12.
    Cartwright, N. J., and R. B. Cain. 1959. Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro group. Biochem. J. 73:305–314.PubMedGoogle Scholar
  13. 13.
    Corbett, M. D., and B. R. Corbett. 1981. Metabolism of 4-chloronitrobenzene by the yeast Rhodosporidium sp. Appl. Environ. Microbiol. 41:942–949.PubMedGoogle Scholar
  14. 14.
    Dickel, O., and H.-J. Knackmuss. 1991. Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Arch. Microbiol. 157:76–79.PubMedCrossRefGoogle Scholar
  15. 15.
    Ecker, S., T. Widmann, H. Lenke, O. Dickel, P. Fischer, C. Bruhn, and H.-J. Knackmuss. 1992. Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222. Arch. Microbiol. 158:149–154.CrossRefGoogle Scholar
  16. 16.
    Germanier, R., and K. Wuhrmann. 1963. Über den aeroben mikrobiellen Abbau aromatischer Nitroverbindungen. Path. Microbiol. 26:569–578.Google Scholar
  17. 17.
    Gibson, D. T., G. E. Cardini, F. C. Maseles, and R. E. Kallio. 1970. Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry 9:1631–1635.PubMedCrossRefGoogle Scholar
  18. 18.
    Gibson, D. T., M. Hensley, H. Yoshioka, and T. J. Mabry. 1970. Formation of (+)-cis-2,3-dihydroxy-l-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry 9:1626–1630.PubMedCrossRefGoogle Scholar
  19. 19.
    Gibson, D. T., J. R. Koch, C. L. Schuld, and R. E. Kallio. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry 7:3795–3802.PubMedCrossRefGoogle Scholar
  20. 20.
    Groenewegen, P. E. J., and J. A. M. de Bont. 1992. Degradation of 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate in Comamonas acidovorans NBA-10. Arch. Microbiol. 158:381–386.CrossRefGoogle Scholar
  21. 21.
    Groenewegen, P. E. J., P. J. Breeuwer, J. M. L. M. van Helvoort, A. M. M. Langenhoff, F. P. de Vries, and J. A. M. de Bont. 1992. Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J. Gen. Microbiol. 138:1599–1605.PubMedCrossRefGoogle Scholar
  22. 22.
    Groot, A. E. de (Wageningen Agricultural University, The Netherlands). 1994. Personal communication.Google Scholar
  23. 23.
    Gunsalus, I. C., T. C. Pederson, and S. G. Sligar. 1975. Oxygenase-catalyzed biological hydroxylations. Ann. Rev. Biochem. 44:377–407.PubMedCrossRefGoogle Scholar
  24. 24.
    Gunstone, F. D. 1960. Hydroxylation methods. Adv. Org. Chem. 1:103–147.Google Scholar
  25. 25.
    Haigler, B. E., and J. C. Spain. 1991. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. Appl. Environ. Microbiol. 57:3156–3162.PubMedGoogle Scholar
  26. 26.
    Haigler, B. E., and J. C. Spain. 1993. Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol. 59:2239–2243.PubMedGoogle Scholar
  27. 27.
    Hanne, L. F., L. L. Kirk, S. M. Appel, A. D. Narayan, and K. K. Bains. 1993. Degradation and induction specificity in Actinomycetes that degrade p-nitrophenol. Appl. Environ. Microbiol. 59:3505–3508.PubMedGoogle Scholar
  28. 28.
    Higson, F. K. 1992. Microbial degradation of nitroaromatic compounds. Adv. Appl. Microbiol. 37:1–19.PubMedCrossRefGoogle Scholar
  29. 29.
    Högn, T., and L. Jaenicke. 1972. Benzene metabolism of Moraxella sp. Eur. J. Biochem. 30:369–375.PubMedCrossRefGoogle Scholar
  30. 30.
    Hosokawa, K., and R. Y. Stanier. 1966. Crystallization and properties of p-hydroxybenzoate hydroxylase from Pseudomonas putida. J. Biol. Chem. 241:2453–2460.PubMedGoogle Scholar
  31. 31.
    Jain, R. K., J. H. Dreisbach, and J. C. Spain. 1994. Biodegradation of p-nitrophenol through 1,2,4-benzenetriol by an Arthrobacter sp. Appl. Environ. Microbiol. 60:3030–3032.PubMedGoogle Scholar
  32. 32.
    Johnston, J. B., and V. Renganathan. 1987. Production of substituted catechols from substituted benzenes by a Pseudomonas sp. Enz. Microb. Technol. 9:706–708.CrossRefGoogle Scholar
  33. 33.
    Ke, Y.-H., L. L. Gee, and N. N. Durham. 1959. Mechanism involved in the metabolism of nitrophenylcarboxylic acids by microorganisms. J. Bacteriol. 77:593–598.PubMedGoogle Scholar
  34. 34.
    Kinouchi, T., Y. Manabe, K. Wakisaki, and Y. Ohnishi. 1982. Biotransformation of l-nitropyrene in intestinal anaerobic bacteria. Microbiol. Immunol. 26:993–1005.PubMedGoogle Scholar
  35. 35.
    Lenke, H., and H.-J. Knackmuss. 1992. Initial hydrogénation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. J. Bacteriol. 58:2933–2937.Google Scholar
  36. 36.
    March, J. 1985. Advanced organic chemistry. Reactions, mechanisms, and structure, p. 498. Wiley & Sons, New York.Google Scholar
  37. 37.
    Marvin-Sikkema, F. D., and J. A. M. de Bont. 1994. Degradation of nitroaromatic compounds by microorganisms. Appl. Microbiol. Biotechnol. 42:499–507.PubMedCrossRefGoogle Scholar
  38. 38.
    McCormick, N. G., F. E. Feeherry, and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol. 31:949–958.PubMedGoogle Scholar
  39. 39.
    Michalover, J. L., and D. W. Ribbons. 1973. 3-Hydroxybenzoate 4-hydroxylase from Pseudomonas testosteroni. Biochim. Biophys. Res. Comm. 55:888–896.CrossRefGoogle Scholar
  40. 40.
    Milne, G. W. A., P. Goldman, and J. L. Holzman. 1968. The metabolism of 2-fluorobenzoic acid. II. Studies with 18O2. J. Biol. Chem. 243:5347–5376.Google Scholar
  41. 41.
    Nishino, S. F., and J. C. Spain. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59:2520–2525.PubMedGoogle Scholar
  42. 42.
    Nörtemann, B., C. Bruhn, and H.-J. Knackmuss. 1986. Recruitment of complementary catabolic activities for mineralization of aminonaphthalene sulfonates and chloronitrophenols. EMBO Workshop: Genetic Manipulation of Pseudomonads. Applications in Biotechnology and Medicine.Google Scholar
  43. 43.
    Nozaki, M., and O. Hayaishi. 1984. Dioxygenases and monooxygenases, p. 68–104. In J. V. Bannister and W. H. Bannister (ed.) The biology and chemistry of active oxygen. Elsevier, Oxford.Google Scholar
  44. 44.
    Olah, G. A., A. P. Fung, and T. Keumi. 1981. Oxyfunctionalization of hydrocarbons. Hydroxylation of benzene and alkylbenzenes with hydrogen peroxide in hydrogen fluoride/boron trifluoride. J. Org. Chem. 46:4306–4307.CrossRefGoogle Scholar
  45. 45.
    Preuss, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.PubMedCrossRefGoogle Scholar
  46. 46.
    Pshirkov, S. Y., O. I. Boiko, E. A. Kiprianova, and I. I. Starovoitov. 1982. Transformation of L-tyrosinc into L-dihydroxyphenylalanine by Pseudomonas cultures. Mikrobiologiya 51:272–274.Google Scholar
  47. 47.
    Rafii, F., W. Franklin, R. H. Reflich, and C. E. Cerniglia. 1991. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl. Environ. Microbiol. 57:962–968.Google Scholar
  48. 48.
    Raymond, D. G. M., and M. Alexander. 1971. Microbial metabolism and cometabolism of nitrophenols. Pest. Biochem. Physiol. 1:123–130.CrossRefGoogle Scholar
  49. 49.
    Reiner, A. M., and G. D. Hegeman. 1971. Metabolism of benzoic acid by bacteria. Accumulation of (-)-3,5-cyclohexadiene-l,2-diol-l-carboxylic acid by a mutant strain of Alcaligenes eutrophus. Biochemistry 13:2530–2536.CrossRefGoogle Scholar
  50. 50.
    Renganathan, V., and J. B. Johnston. 1989. Catechols of novel substrates produced using the toluene ring oxidation pathway of Pseudomonas sp. strain T-12. Appl. Microbiol. Biotechnol. 31:419–424.CrossRefGoogle Scholar
  51. 51.
    Rhys-Williams, W., S. C. Taylor, and P. A. Williams. 1993. A novel pathway for the catabolism of 4-nitrotoluene by Pseudomonas. J. Gen. Microbiol. 139:1967–1972.PubMedCrossRefGoogle Scholar
  52. 52.
    Rieger, P.-G, A. Preuss, H. Lenke, H.-J Knackmuss. 1994. H-additions as initial steps of aerobic bacterial degradation of 2,4,6-trinitrophenol (picric acid), abstr. Q-120, p. 409. Abstr. 94th Annu. Meet. Am. Soc. Microbiol. 1994.Google Scholar
  53. 53.
    Schraa, G., M. L. Boone, M. S. M. Jetten, A. R. W. van Neerven, P. J. Colberg, A. J. B. Zehnder. 1986. Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52:1374–1381.PubMedGoogle Scholar
  54. 54.
    Schraa, G., B. M. Bethe, A. R. W. van Neerven, W. J. J. van den Tweel, E. van der Ende, and A. J. B. Zehnder. 1987. Degradation of 1,2-dimethylbenzene by Corynebacterium strain C125. Antonie van Leeuwenhoek 53:159–170.PubMedCrossRefGoogle Scholar
  55. 55.
    Shine, H. J. 1967. Aromatic rearrangements, p. 182–190. In C. Eaborn and N. B. Chapman (ed.) Reaction mechanisms in organic chemistry. Elsevier Publishing Company, Amsterdam.Google Scholar
  56. 56.
    Shirai, K. 1987. Catechol production from benzene through reaction with resting and immobilized cells of a mutant strain of Pseudomonas. Agric. Biol. Chem. 51:121–128.CrossRefGoogle Scholar
  57. 57.
    Singh, D. V., P. P. Mukherjee, S. P. Pal, and P. K. Bhattacharyya. 1973. Microbial synthesis of L-DOPA (L-3,4-dihydroxy L-phenylalanine) by a Pseudomonas mutant D101. J. Ferment. Technol. 51:713–718.Google Scholar
  58. 58.
    Spain, J. C, and D. T. Gibson. 1991. Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol. 57:812–819.PubMedGoogle Scholar
  59. 59.
    Spain, J. C., and S. F. Nishino. 1987. Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53:1010–1019.PubMedGoogle Scholar
  60. 60.
    Spain, J. C., O. Wyss, and D. T. Gibson. 1979. Enzymatic oxidation of p-nitrophenol. Biochem. Biophys. Res. Comm. 88:634–641.PubMedCrossRefGoogle Scholar
  61. 61.
    Spanggord, R. J., J. C. Spain, S. F. Nishino, and K. E. Mortelmans. 1991. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol. 57:3200–3205.PubMedGoogle Scholar
  62. 62.
    Sternson, L. A., and R. E. Gammans. 1975. A mechanistic study of aromatic hydroxylamine rearrangement in the rat. Bioorg. Chem. 4:58–63.CrossRefGoogle Scholar
  63. 63.
    Sudhakar-Barik, R. Siddaramappa, P. A. Wahid, and N. Sethunathan. 1978. Conversion of p-nitrophenol to 4-nitrocatechol by a Pseudomonas sp. Antonie van Leeuwenhoek 44:171–176.PubMedCrossRefGoogle Scholar
  64. 64.
    Tweel, W. J. J. van den. 1988. Thesis. Wageningen Agricultural University, The Netherlands.Google Scholar
  65. 65.
    Vorbeck, C., H. Lenke, P. Fischer, and H.-J Knackmuss. 1994. Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J. Bacteriol. 176:932–934.PubMedGoogle Scholar
  66. 66.
    Whited, G. M., W. R. McCombie, L. D. Kwart, and D. T. Gibson. 1986. Identification of cis-diols as intermediates in the oxidation of aromatic acids by a strain of Pseudomonas putida that contains a TOL plasmid. J. Bacteriol. 166:1028–1039.PubMedGoogle Scholar
  67. 67.
    Yamamoto, S., M. Katagiri, H. Maeno, and O. Hayaishi. 1965. Salicylate hydroxylase, a monooxygenase requiring flavin adenine dinucleotide. Purification and properties. J. Biol. Chem. 240:3408–3413.PubMedGoogle Scholar
  68. 68.
    Yoshida, H., Y Tanaka, and K. Nakayama. 1973. Production of 3,4-dihydroxyphenyl-L-alaninc (L-DOPA) and its derivatives by Vibrio tyrosinaticus. Agric. Biol. Chem. 37:2121–2126.CrossRefGoogle Scholar
  69. 69.
    Yoshida, H., Y Tanaka, and K. Nakayama. 1974. Production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and its derivatives by Pseudomonas melanogenum. Agric. Biol. Chem. 38:455–462.CrossRefGoogle Scholar
  70. 70.
    Zeyer, J., and P. C. Kearney. 1984. Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J. Agric. Food Chem. 32:238–242.CrossRefGoogle Scholar
  71. 71.
    Zeyer, J., and H. P. Kocher. 1988. Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. J. Bacteriol. 170:1789–1794.PubMedGoogle Scholar
  72. 72.
    Zeyer, J., H. P. Kocher, and K. N. Timmis. 1986. Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl. Environ. Microbiol. 52:334–339.PubMedGoogle Scholar
  73. 73.
    Zeyer, J., A. Wasserfallen, and K. N. Timmis. 1985. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl. Environ. Microbiol. 50:447–453.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Rogier Meulenberg
    • 1
  • Jan A. M. de Bont
    • 1
  1. 1.Division of Industrial Microbiology, Department of Food ScienceWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations