Environmental Processes Influencing the Rate of Abiotic Reduction of Nitroaromatic Compounds in the Subsurface

  • Stefan B. Haderlein
  • René P. Schwarzenbach
Part of the Environmental Science Research book series (ESRH, volume 49)


Numerous synthetic chemicals contain one or several nitro groups that are bound to an aromatic ring. Figure 1 shows the structures of some prominent representatives of such nitroaromatic compounds (NACs). The high toxicity of some NACs, particularly the mutagenic and carcinogenic potential of some nitrated polycyclic aromatic hydrocarbons (PAHs), has led to considerable interest in the fate of such compounds in the environment. Due to their widespread use, NACs are ubiquitous contaminants, especially in aqueous environments. In addition to contamination originating from agricultural use, from production facilities, and waste disposal sites, diffuse input into the pedosphere via the atmosphere has been documented (21, 27, 36, 37, 59, 65, 69, 80, 81). Atmospheric production of significant quantities of NACs by photochemical processes has been reported (19, 29, 42, 80). Table 1 lists some typical concentrations of NACs that have been measured in various compartments of the environment. Very high concentrations of nitroaromatic explosives (2,4,6-trinitrotoluene (TNT) and by-products) have been found especially in soil and subsurface systems. At those sites, significant concentrations of substituted aromatic amines that may have been formed from the reduction of NACs are frequently encountered.


Hydrogen Sulfide Natural Organic Matter Methyl Parathion Nitroaromatic Compound Precursor Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adhya, T. K., B. Sudhakar, and N. Sethunathan. 1981. Fate of fenitrothion, methylparathion, and parathion in anoxic, sulfur-containing soil systems. Pestic. Biochem. Physiol. 16:14–20.CrossRefGoogle Scholar
  2. 2.
    Agrawal, A., and P. G. Tratnyek. 1994. Abiotic remediation of nitro-aromatic groundwater contaminants by zero-valent iron, p. 492–494. In ACS, Extended Abstract Book. American Chemical Society, San Diego, CA.Google Scholar
  3. 3.
    Barker, J. F., J. S. Tessmann, P. E. Plotz, and M. Reinhard. 1986. The organic geochemistry of a landfill leachate plume. J. Contam. Hydrol. 1:171–189.CrossRefGoogle Scholar
  4. 4.
    Bartha, R. 1971. Fate of herbicide-derived chloroanilines in soil. J. Agr. Food Chem. 19:385–387.CrossRefGoogle Scholar
  5. 5.
    Bartha, R., and D. Pramer. 1967. Pesticide transformation to aniline and azo compounds in soil. Science 156:1617–1618.PubMedCrossRefGoogle Scholar
  6. 6.
    Bollag, J. M. 1992. Decontaminating soil with enzymes. Environ. Sci. Technol. 26:1876–81.CrossRefGoogle Scholar
  7. 7.
    Bollag, J. M. 1992. Enzymes catalyzing oxidative coupling reactions of pollutants, p. 205–17. In H. Siegel and A. Siegel (ed.), Metal ions in biological systems. Degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker, New York.Google Scholar
  8. 8.
    Bollag, J. M., and C. Myers. 1992. Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances. Sci. Total Environ. 117:357–66.CrossRefGoogle Scholar
  9. 9.
    Bollag, J. M., C. J. Myers, and R. D. Minard. 1992. Biological and chemical interactions of pesticides with soil organic matter. Sci. Total Environ 123:205–17.PubMedCrossRefGoogle Scholar
  10. 10.
    Delgado, M. C., and N. L. Wolfe. 1992. Structure-activity relationships for the reduction of p-substituted nitrobenzenes in anaerobic sediments. In ACS, Extended Abstract Books. American Chemical Society, San Francisco, CA.Google Scholar
  11. 11.
    Dunnivant, F. M., R. P. Schwarzenbach, and D. L. Macalady. 1992. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ. Sci. Technol. 26:2133–2141.CrossRefGoogle Scholar
  12. 12.
    Eberson, L. 1987. Electron transfer reactions in organic chemistry. Springer Verlag, Berlin.CrossRefGoogle Scholar
  13. 13.
    Ewing, B. B., E. S. K. Chian, J. C. Cook, C. A. Evans, P. K. Hopke, and E. G. Perkins. 1977. Monitoring to detect previously unrecognized pollutants in surface waters. US Environmental Protection Agency, Technical Report, Washington, DC.Google Scholar
  14. 14.
    Fishbein, L. 1984. Aromatic Amines, p. 1–40. In O. Hutzinger (ed.), The handbook of environmental chemistry — anthropogenic compounds. Springer Verlag, Berlin.Google Scholar
  15. 15.
    Gaillard, G., A. Mermoud, and S. B. Haderlein. Fate of DNOC and 1,4-dinitrobenzene in two unsaturated soils — comparison of lysimeter and batch experiments. Submitted for publication.Google Scholar
  16. 16.
    Geer, R. D. 1978. Predicting the anaerobic degradation of organic chemical pollutants in waste water treatment plants from their electrochemical behavior. Montana Univ. Joint Water Resouces Research Center, Bozeman, Montana.Google Scholar
  17. 17.
    Glaus, M. A., C. G. Heijman, R. P. Schwarzenbach, and J. Zeyer. 1992. Reduction of nitroaromatic compounds mediated by Sreptomyces sp. exudates. Appl. Environ. Microbiol. 58:1945–1951.Google Scholar
  18. 18.
    Gorontzy, T., J. Küver, and K.-H. Blotevogel. 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139:1331–1336.PubMedCrossRefGoogle Scholar
  19. 19.
    Grosjean, D. 1985. Reactions of o-cresol and nitrocresol with NOX in sunlight and with ozone-nitrogen dioxide mixtures in the dark. Environ. Sci. Technol. 19:968–974.CrossRefGoogle Scholar
  20. 20.
    Haas, R., and G. Stork. 1989. Konzept zur Untersuchung von Rüstungsaltlasten. Fresenius Z. Anal. Chem. 335:839–846.CrossRefGoogle Scholar
  21. 21.
    Haas, R., and E. von Löw. 1986. Grundwasserbelastung durch eine Altlast. Die Folgen einer ehemaligen Sprengstoffproduktion für die heutige Trinkwassergewinnung. Forum Städte-Hygiene. 37:33–43.Google Scholar
  22. 22.
    Haderlein, S. B., and R. P. Schwarzenbach. 1993. Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environ. Sci. Technol. 27:316–26.CrossRefGoogle Scholar
  23. 23.
    Haderlein, S. B., K. Weissmahr, and R. P. Schwarzenbach. Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Submitted.Google Scholar
  24. 24.
    Hallas, L. E., and M. Alexander. 1983. Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol. 45:1234–1241.PubMedGoogle Scholar
  25. 25.
    Heijman, C. G., E. Grieder, C. Holliger, and R. P. Schwarzenbach. Abiotic reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns. Environ. Sci. Technol. 29:775-783.Google Scholar
  26. 26.
    Heijman, C. G., C. Holliger, M. A. Glaus, R. P. Schwarzenbach, and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59:4350–4353.PubMedGoogle Scholar
  27. 27.
    Helling, C. S. 1976. Dinitroaniline herbicides in soils. J. Environ. Qual. 5:1–15.CrossRefGoogle Scholar
  28. 28.
    Helling, C. S., and A. E. Krivonak. 1978. Physicochemical characteristics of bound dinitroaniline herbicides in soils. J. Agric. Food Chem. 26:1156–1163.CrossRefGoogle Scholar
  29. 29.
    Helmig, D., J. López-Cancio, J. Arey, W. P. Harger, and R. Atkinson. 1992. Quantification of ambient nitrodibenzopyranones: further evidence for atmospheric mutagen formation. Environ. Sci. Technol. 26:2207–2213.CrossRefGoogle Scholar
  30. 30.
    Herterich, R. 1991. Vorkommen und atmosphärischer Eintrag von Herbiziden und phytotoxischen Nitrophenolen an zwei emissionsfernen Waldstandorten in Bayern. Ph.D. thesis, Univ. Bayreuth, FRG.Google Scholar
  31. 31.
    Hsu, T.-S., and R. Bartha. 1974. Interaction of pesticide-derived chloroaniline residues with soil organic matter. Soil Science 116:444–452.CrossRefGoogle Scholar
  32. 32.
    Hsu, T.-S., and R. Bartha. 1976. Hydrolyzable and nonhydrolyzable 3,4-dichloroaniline-humus complexes and their respective rates of biodegradation. J. Agric. Food Chem. 24:118–122.PubMedCrossRefGoogle Scholar
  33. 33.
    Jafvert, C. T. 1990. Sorption of organic acids to sediments: initial model development. Environ. Toxicol. Chem. 9:1259–1268.CrossRefGoogle Scholar
  34. 34.
    Jenkins, T., M. E. Walsh, P. W. Schumacher, and P. H. Miyares. 1989. Liquid Chromatographie method for determination of extractable nitroaromatic and nitramine residues in soil. J. Assoc. Off. Anal. Chem. 72:890–899.Google Scholar
  35. 35.
    Jenkins, T. E, D. C. Leggett, C. L. Grant, and C. F. Bauer. 1986. Reversed-phase high-performance liquid Chromatographie determination of nitroorganics in munitions wastewater. Anal. Chem. 58:170–175.CrossRefGoogle Scholar
  36. 36.
    Kearny, P. C, and D. D. Kaufman. 1975. Herbicides: chemistry, degradation, and mode of action. Dekker, New York.Google Scholar
  37. 37.
    Kjeldsen, P., J. Kjølhold, B. Schultz, T. H. Christensen, and J. C. Tjell. 1990. Sorption and degradation of chlorophenols, nitrophenols, and organophosphorous pesticides in the subsoil under landfills — laboratory studies. J. Contam. Hydrol. 6:165–184.CrossRefGoogle Scholar
  38. 38.
    Klausen, J. W, S. Tröber, S. B. Haderlein, and R. P. Schwarzenbach. Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Submitted.Google Scholar
  39. 39.
    Laha, S., and R. G. Luthy. 1990. Oxidation of aniline and other primary aromatic amines by manganese dioxide. Environ. Sci. Technol. 24:363–373.CrossRefGoogle Scholar
  40. 40.
    Lanz, K., and R. P. Schwarzenbach. 1988. Unpublished data.Google Scholar
  41. 41.
    Larson, R. A., and E. J. Weber. 1994. Reaction mechanisms in environmental organic chemistry. Lewis Publishers, Boca Raton.Google Scholar
  42. 42.
    Leuenberger, C., W. Giger, R. Coney, J. W. Graydon, and E. Molnar-Kubica. 1987. Nitrated phenols in rain: atmospheric occurence of phytotoxic pollutants. Chemosphere 17:511–515.CrossRefGoogle Scholar
  43. 43.
    Lyman, W. J., W. F. Rheel, and D. H. Rosenblatt. 1982. Handbook of chemical property estimation methods. McGraw-Hill Inc., New York.Google Scholar
  44. 44.
    Macalady, D. L., P. G. Tratnyek, and T. J. Grundl. 1986. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: a critical review. J. Contam. Hydrol. 1:1–28.CrossRefGoogle Scholar
  45. 45.
    Macalady, D. L., and L. N. Wolfe. 1992. Hydrophobie effects in the reduction of anthropogenic organic chemicals by natural organic matter. In ACS, Extended Abstract Book. American Chemical Society, San Francisco, CA.Google Scholar
  46. 46.
    March, J. 1992. Advanced organic chemistry. John Wiley & Sons Inc., New York.Google Scholar
  47. 47.
    Meisel, D., and P. Neta. 1975. One-electron redox potentials of nitro compounds and radiosensitizers. J. Am. Chem. Soc. 97:5198–5203.CrossRefGoogle Scholar
  48. 48.
    Mulla, M. S., L. S. Mian, and J. A. Kawecki. 1981. Distribution and transport of the insecticides malathion and parathion in the environment. Residue Reviews 81:1–136.PubMedCrossRefGoogle Scholar
  49. 49.
    Neta, P., and D. Meisl. 1976. Substituent effects of nitroaromatic radical anions in aqueous solution. J. Physical. Chem. 80:519–524.CrossRefGoogle Scholar
  50. 50.
    Neumeier, W., R. Haas, and E. v.Löw. 1989. Mikrobieller Abbau von Nitroaromaten aus einer ehemaligen Sprengstoffproduktion. Forum Städte-Hygiene 40:32–37.Google Scholar
  51. 51.
    O’Connor, G. A., J. R. Lujan, and Y. Jin. 1990. Adsorption, degradation, and plant availability of 2,4-dinitrophenol in sludge amended calcareous soils. J. Environ. Qual. 19:587–593.CrossRefGoogle Scholar
  52. 52.
    Ou, T.-Y, L. H. Carreira, R. W. Schottman, and N. L. Wolfe. 1992. Nitroreduction of 2,4,6-trinitrotoluene (TNT) in contaminated soils. In ACS, Extended Abstract Book. American Chemical Society, San Francisco, CA.Google Scholar
  53. 53.
    Parris, G. E. 1980. Environmental and metabolic transformations of primary aromatic amines and related compounds. Residue Rev. 76:1–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Perlinger, J. A. 1994. Reduction of polyhalogenated alkanes by electron transfer mediators in homogeneous aqueous solution. Ph.D thesis, ETH Zurich, Switzerland.Google Scholar
  55. 55.
    Pillai, P., C. S. Helling, and J. Dragun. 1982. Soil-catalyzed oxidation of aniline. Chemosphere 11:299–317.CrossRefGoogle Scholar
  56. 56.
    Preuss, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.PubMedCrossRefGoogle Scholar
  57. 57.
    Reitermayer, E. 1991. Identifizierung und Bestimmung von aromatischen Aminen in Wasserproben aus dem Bereich einer Rüstungsaltlast mit Hilfe der HPLC. Ph.D. thesis, Philips Univ., Marburg, FRG.Google Scholar
  58. 58.
    Rippen, G., E. Zietz, R. Frank, T. Knacker, and W. Kloepfer. 1987. Do airborne nitrophenols contribute to forest decline? Environ. Technol. Lett. 8:475–482.CrossRefGoogle Scholar
  59. 59.
    Rosenblatt, D. H., E. P. Burrows, W. R. Mitchell, and D. L. Parmer. 1991. Organic explosives and related compounds, p. 195–237. In O. Hutzinger (ed.), The handbook of environmental chemistry — anthropogenic compounds. Springer Verlag, Berlin.Google Scholar
  60. 60.
    Scheffer, F., and P. Schachtschabel. 1984. Lehrbuch der Bodenkunde. Enke Verlag, Stuttgart.Google Scholar
  61. 61.
    Schneider, U. 1990. Sanierung der Rüstungsaltlast Hessisch Lichtenau-Hirschhagen — Dokumentation. Planungsgesellschaft Boden & Umwelt mbH, Kassel, FRG; Technical Report; Hessisches Ministerium für Umwelt und Reaktorsicherheit, Wiesbaden, FRG.Google Scholar
  62. 62.
    Schnell, S., and B. Schink. 1991. Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Arch. Microbiol. 155:183–190.CrossRefGoogle Scholar
  63. 63.
    Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 1993. Environmental organic chemistry. John Wiley & Sons Inc., New York.Google Scholar
  64. 64.
    Schwarzenbach, R. P., R. Stierli, K. Lanz, and J. Zeyer. 1990. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environ. Sci. Technol. 24:1566–1574.CrossRefGoogle Scholar
  65. 65.
    SDC, and AATCC. 1956. Colour index, Society of Dyers and Colourists and American Association of Textile Chemists and Colorists, Badford, Yorkshire, England; Lowell, MA.Google Scholar
  66. 66.
    Smith, J. G., and M. Fieser. 1990. Collective index for volumes 1–12 of Fieser and Fieser’s reagents for organic synthesis. John Wiley & Sons Inc., New York.Google Scholar
  67. 67.
    Somasundram, L., and J. R. Coats (eds.). 1991. Pesticide transformation products — fate and significance in the environment. American Chemical Society, Washington, DC.Google Scholar
  68. 68.
    Spain, J. C. Bacterial degradation of nitroaromatic compounds under aerobic conditions, (this volume).Google Scholar
  69. 69.
    Spalding, R. F., and J. W. Fulton. 1988. Groundwater munition residues and nitrate near Grand Island, Nebraska, USA. J. Contam. Hydrol. 2:139–153.CrossRefGoogle Scholar
  70. 70.
    Spanggord, R. J., W. R. Mabey, T. W. Chou, and J. H. Smith. 1985. Environmental fate of selected nitroaromatic compounds in the aquatic environment, p. 15–33. In D. E. Rickert (ed.), Toxicity of nitroaromatic compounds. Hemisphere Publishing Corp., Washington, DC.Google Scholar
  71. 71.
    Striebel, T., J. Daub, and R. Hermann. 1992. Charakterisierung und Analyse der Verschmutzung des Niederschlages und des Niederschlagsabflusses, p. 113–145. In H. H. Hahn and C. Xanthopoulos (ed.), Niederschlagsbedingte Schmutzbelastung der Gewässer aus städtischen befestigten Flächen (Phase I) — Niederschlag. BMFT, Karlsruhe, FRG.Google Scholar
  72. 72.
    Stumm, W. 1992. Chemistry of the solid-water interface, John Wiley & Sons Inc., New York.Google Scholar
  73. 73.
    Stumm, W, and J. J. Morgan. 1981. Aquatic chemistry. John Wiley & Sons Inc., New York.Google Scholar
  74. 74.
    Sublette, K. L., P. Cho, A. Maule, S. Schwartz, and D. Pak. 1991. Microbial and biomimetic degradation of nitrobodies, p. 756-763. In B. Nath (ed.), Proc. Int. Conf. Environ. Pollut. Interscience Enterprises Ltd.Google Scholar
  75. 75.
    Tatsumi, K., A. Freyer, R. D. Minard, and J. M. Bollag. 1994. Enzyme-mediated coupling of 3,4-dichloroaniline and ferulic acid: a model for pollutant binding to humic materials. Environ. Sci. Technol. 28:210–15.PubMedCrossRefGoogle Scholar
  76. 76.
    Tatsumi, K., S. Y. Liu, and J. M. Bollag. 1992. Enzyme-catalyzed complex formation of chlorinated anilines with humic substances. Water Sci. Technol. 25:57–60.Google Scholar
  77. 77.
    Tatsumi, K., S. Wada, H. Ichikawa, S. Y. Liu, and J.-M. Bollag. 1992. Cross-coupling of a chloroaniline and phenolic acids catalyzed by a fungal enzyme. Wat. Sci. Tech. 26:2157–2160.Google Scholar
  78. 78.
    Tratnyek, P. G., and D. L. Macalady. 1989. Abiotic reduction of nitroaromatic pesticides in anaerobic laboratory systems. J. Agric. Food Chem. 37:248–254.CrossRefGoogle Scholar
  79. 79.
    Tratnyek, P. G., and N. L. Wolfe. 1990. Characterization of the reducing properties of anaerobic sediment slurries using redox indicators. Environ. Toxicol. Chem. 9:289–295.CrossRefGoogle Scholar
  80. 80.
    Tremp, J. 1992. Sources and fate of nitrated phenols in the atmospheric environment. Ph.D thesis, ETH Zurich, Switzerland.Google Scholar
  81. 81.
    Urbansky, T. 1984. Chemistry and technology of explosives. Pergamon Press, Oxford, UK.Google Scholar
  82. 82.
    Voudrias, E. A., and M. Reinhard. 1986. Abiotic organic reactions at mineral surfaces, p. 463-486. In J. A. Davis and K. F. Hayes (ed.), Geochemical processes at mineral surfaces. ACS Symposium Series, 323. American Chemical Society.Google Scholar
  83. 83.
    Wade, R. S., R. Havlin, and C. E. Castro. 1969. The oxidation of iron(II) porphyrins by organic molecules. J. Am. Chem. Soc. 91:7530–7534.PubMedCrossRefGoogle Scholar
  84. 84.
    Wahid, P. A., C. Ramakrishna, and N. Sethunathan. 1980. Instantaneous degradation of parathion in anaerobic soils. J. Environ. Qual. 9:127–130.CrossRefGoogle Scholar
  85. 85.
    WHO. 1993. Methyl Parathion. World Health Organization, Geneva.Google Scholar
  86. 86.
    Wolfe, N. L. 1992. Abiotic transformations of pesticides in natural waters and sediments, p. 93–104. In J. L. Schnoor (ed.), Fate of pesticides and chemicals in the environment. John Wiley & Sons, Inc., New York.Google Scholar
  87. 87.
    Wolfe, N. L., and D. R. Burris. 1992. Abiotic redox transformations of organic contaminants in aquifer materials, p. 2–16. In AWMA, 85th Annual meeting. Air & Waste Management Association, Kansas City.Google Scholar
  88. 88.
    Wolfe, N. L., B. E. Kitchens, D. L. Macalady, and T. J. Grundl. 1986. Physical and chemical factors that influence the anaerobic degradation of methyl parathion in sediment systems. Environ. Toxicol. Chem. 5:1019–1026.CrossRefGoogle Scholar
  89. 89.
    Wolfe, N. L., and D. L. Macalady. 1992. New perspectives in aquatic redox chemistry: abiotic transformations of pollutants in groundwater and sediments. J. Contam. Hydrol. 9:17–34.CrossRefGoogle Scholar
  90. 90.
    Wujcik, W. J., W. L. Lowe, P. J. Marks, and W. E. Sisk. 1992. Granular activated carbon pilot treatment studies for explosives removal from contaminated groundwater. Environ. Prog. 11:178–89.CrossRefGoogle Scholar
  91. 91.
    Yu, S. Y, and G. W. Bailey. 1992. Reduction of nitrobenzene by four sulfide minerals: kinetics, products, and solubility. J. Environ. Qual. 21:86–94.CrossRefGoogle Scholar
  92. 92.
    Zepp, R. G., and L. N. Wolfe. 1987. Abiotic transformation of organic chemicals at the particle-water interface, p. 423–455. In W. Stumm (ed.), Aquatic surface chemistry. John Wiley & Sons Inc., New York.Google Scholar
  93. 93.
    Zeyer, J. 1988. Abbau aromatischer Nitroverbindungen. GWF Wasser Abwasser 129:25–27.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Stefan B. Haderlein
    • 1
    • 2
  • René P. Schwarzenbach
    • 1
    • 2
  1. 1.Swiss Federal Institute for Environmental Science and Technology (EAWAG)DübendorfSwitzerland
  2. 2.Swiss Federal Institute of Technology (ETH)DübendorfSwitzerland

Personalised recommendations