Skip to main content

Basic Knowledge and Perspectives on Biodegradation of 2,4,6-Trinitrotoluene and Related Nitroaromatic Compounds in Contaminated Soil

  • Chapter

Part of the book series: Environmental Science Research ((ESRH,volume 49))

Abstract

Although a few aromatic compounds bearing one nitro group as a substituent are produced as secondary metabolites by microorganisms (31, 44, 45, 49) the majority of nitroaromatic compounds in the environment are due to anthropogenic activities. Nitrations are important reactions for the large-scale production of aminoaromatic structures that are synthons for pesticides, dyes, polymers, and pharmaceuticals. Nitroaromatic compounds such as nitrobenzene are used as solvents, whereas polynitroaromatic compounds serve as explosives. According to Hartter (16) 2,4,6-trinitrotoluene (TNT) is produced in amounts of 2 million pounds per year. Nitroaromatic compounds are therefore abundantly present in industrial waste streams and surface waters. 2,4,6-Trinitrotoluene is commonly found as the main contaminant of soil and ground water originating from facilities for manufacturing, processing, and disposing of explosives. Often these contaminants have leached from disposal lagoons into the surrounding soil, and in the case of military burdens of World War I and II, have contaminated the groundwater (13). Consequently, in Germany large areas of highly contaminated soils at former production plants must be remediated. TNT, its metabolites, and related compounds represent an environmental hazard because they exhibit considerable toxicity to humans, fish, algae, and microorganisms (39, 43, 50). Since incineration, the only proven technology for the destruction of explosives, is prohibitively costly, bioremediation represents an important alternative approach, which deserves to be considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer, H., and W. Walter. 1991. Lehrbuch der Organischen Chemie, 22th ed. S. Hirzel, Stuttgart.

    Google Scholar 

  2. Boopathy, R., C. F. Kulpa, and M. Wilson. 1993. Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl. Microbiol. Biotechnol. 39:270–275.

    Article  CAS  Google Scholar 

  3. Bruhn, C., H. Lenke, and H.-J. Knackmuss. 1987. Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl. Environ. Microbiol. 53:208–210.

    PubMed  CAS  Google Scholar 

  4. Corbett M. D., and B. R. Corbett. 1981. Metabolism of 4-chloronitrobenzene by the yeast Rhodosporidium sp. Appl. Environ. Microbiol. 41:942–949.

    PubMed  CAS  Google Scholar 

  5. Dickel, O., and H.-J. Knackmuss. 1991. Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Arch. Microbiol. 157:76–79.

    Article  PubMed  CAS  Google Scholar 

  6. Dickel, O., W. Haug, and H.-J. Knackmuss. 1993. Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation 4:187–194.

    Article  CAS  Google Scholar 

  7. Duque, E., A. Haïdour, F. Godoy, and J. L. Ramos. 1993. Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J. Bacteriol. 175:2278–2283.

    PubMed  CAS  Google Scholar 

  8. Ecker, S., T. Widmann, H. Lenke, O. Dickel, P. Fischer, C. Brunn, and H.-J. Knackmuss. 1992. Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP134 and JMP222. Arch. Microbiol. 158:149–154.

    Article  CAS  Google Scholar 

  9. Finley, K. T. 1974. The addition and substitution chemistry of quinones. In S. Patai (ed.) The chemistry of the quinonoid compounds. Pt. 2. J. Wiley & Sons, New York.

    Google Scholar 

  10. Funk, S. B., D. J. Roberts, D. L. Crawford, and R. L. Crawford. 1993. Initial phase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol. 59:2171–2177.

    PubMed  CAS  Google Scholar 

  11. Groenewegen, P. E. J., P. Breeuwen, J. M. L. M. v. Helvoort, A. A. M. Langenhoff, F. P. de Vries, and J. A. M. de Bont. 1992. Novel degradative pathway of 4-nitrobenzoate Comamonas acidovorans NBA-10. J. Gen. Microbiol. 13:1599–1605.

    Google Scholar 

  12. Groenewegen, P. E. J., and J. A. M. de Bont. 1992. Degradation of 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate in Comamonas acidovorans NBA-10. Arch. Microbiol. 158:381–386.

    Article  CAS  Google Scholar 

  13. Haas, R., and E. v. Löw. 1986. Grundwasserbelastung durch eine Altlast. Die Folgen einer ehemaligen Sprengstoffproduktion für die heutige Trinkwassergewinnung. Forum Städte-Hygiene 37:33–43.

    CAS  Google Scholar 

  14. Haigier, B. E., and J. C. Spain. 1991. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. Appl. Environ. Microbiol. 57:3156–3162.

    Google Scholar 

  15. Haigler, B. E., and J. C. Spain. 1993. Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol. 59:2239–2243.

    PubMed  CAS  Google Scholar 

  16. Hartter, D. R. 1985. The use and importance of nitroaromatic chemicals in the chemical industry, p. 1–14. In D. E. Rickert (ed.) Toxicity of nitroaromatic compounds. Chemical Industry Institute of Toxicology Series. Hemisphere Publishing Corp., New York.

    Google Scholar 

  17. Heijman, C. G., C. Holliger, M. A. Glaus, R. P. Schwarzenbach, and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59:4350–4353.

    PubMed  CAS  Google Scholar 

  18. Hofmann, U. 1968. Aus der Chemie des Tons. Angew. Chem. I. E. 7:681.

    Article  CAS  Google Scholar 

  19. Keys, L. D., and G. A. Hamilton. 1987. The mechanism for the conversion of a-amino-ß-carboxymuconate-8-semialdehyde to quinolinate, an apparent nonenzymic step in the biosynthesis of the nicotinamide coenzymes from tryptophan. J. Am. Chem. Soc. 109:2156–2163.

    Article  CAS  Google Scholar 

  20. Lantz, R., and J. Gascon. 1965. Condensation oxydante de “l’éméraldine de Willstätter” avec l’aniline. Remarques concernant les réactions analogues génératrices de noirs d’aniline et la constitution de ces colorants. Bull. Soc. Chim. Fr. 816-821.

    Google Scholar 

  21. Lenke, H., and H.-J. Knackmuss. 1992. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL24-2. Appl. Environ. Microbiol. 58:2933–2937.

    PubMed  CAS  Google Scholar 

  22. Lenke, H., D. H. Pieper, C. Bruhn, and H.-J. Knackmuss. 1992. Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strain HL24-1 and HL24-2. Appl. Environ. Microbiol. 58:2928–2932.

    PubMed  CAS  Google Scholar 

  23. Lenke, H., B. Wagener, G. Daun, and H.-J. Knackmuss. 1994. TNT-contaminated soil: a sequential anaerobic/aerobic process for bioremediation, abstr. Q-383, p. 456. Abstr. 94th Annu. Meet. Am. Soc. Microbiol. 1994.

    Google Scholar 

  24. Lewis, W. G., and E. Jamamoto. 1990. Lignin: occurrence, biogenesis and biodegradation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41:455–496.

    Article  CAS  Google Scholar 

  25. March, J. 1985. Advanced Organic Chemistry, 3rd ed. J. Wiley & Sons, New York.

    Google Scholar 

  26. McCormick, N. G., F. E. Feeherry, and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31:949–958.

    PubMed  CAS  Google Scholar 

  27. Michels, J., and G. Gottschalk. 1994. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 60:187–194.

    PubMed  CAS  Google Scholar 

  28. Mohilner, D. M., R. N. Adams, and W. J. Argasinger. 1962. Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode. J. Am. Chem. Soc. 84:3618–3622.

    Article  CAS  Google Scholar 

  29. Nishino, S. F., and J. C. Spain. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59:2520–2525.

    PubMed  CAS  Google Scholar 

  30. Preuß, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.

    Article  PubMed  Google Scholar 

  31. Raistrick, H. 1949. Chloromycetin: its structure and synthesis. Nature 163:5553–554.

    Google Scholar 

  32. Reineke, W., and H.-J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim. Biophys. Acta 542:412–423.

    Article  CAS  Google Scholar 

  33. Rhys-Williams, W., S. C. Taylor, and P. A. Williams. 1993. A novel pathway for the catabolism of 4-nitrotoluene by Pseudomonas. J. Gen. Microbiol. 139:1967–1972.

    Article  PubMed  CAS  Google Scholar 

  34. Rieger, P.-G., A. Preuss, V. Sinnwell, W. Francke, H. Lenke, and H.-J. Knackmuss. 1994. H-additions as initial steps of aerobic bacterial degradation of 2,4,6-trinitrophenol (picric acid), abstr. Q-120, p. 409. Abstr. 94th Annu. Meet. Am. Soc. Microbiol. 1994.

    Google Scholar 

  35. Scheffer, F., and P. Schachtschabel. 1989. Lehrbuch der Bodenkunde, p. 57, 12th ed. F. Enke, Stuttgart.

    Google Scholar 

  36. Sollenberger, P. Y., and R. B. Martin. 1968. Carbon-nitrogen and nitrogen-nitrogen double bond condensation reactions. In S. Patai (ed.) The chemistry of the amino group. J. Wiley & Sons, New York.

    Google Scholar 

  37. Spain, J. C., O. Wyss, and D. T. Gibson. 1979. Enzymatic oxidation of p-nitrophenol. Biochem. Biophys. Res. Commun. 88:634–641.

    Article  PubMed  CAS  Google Scholar 

  38. Spain, J. C., and D. T. Gibson. 1991. Pathway for biodégradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol. 57:812–819.

    PubMed  CAS  Google Scholar 

  39. Spanggord, R. J., K. E. Mortelmans, A. F. Griffing, and V. F. Simmon. 1982. Mutagenicity in Salmonella typhimurium and structure activity relationships of waste water components emanating from the manufacture of trinitrotoluene. Environ. Mutagen 4:163–179.

    Article  PubMed  CAS  Google Scholar 

  40. Spanggord, R. J., J. C. Spain, S. F. Nishino, and K. E. Mortelmans. 1991. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol. 57:3200–3205.

    PubMed  CAS  Google Scholar 

  41. Spiker, J. K., D. L. Crawford, and R. L. Crawford. 1992. Influence of 2,4,6-trinitrotoluene (TNT) concentrations on the degradation of TNT in explosive-contaminted soils by the white rot fungus Phanaerochaete chrysosporium. Appl. Environ. Microbiol. 58:3199–3202.

    PubMed  CAS  Google Scholar 

  42. Stolz, A., B. Nörtemann, and H.-J. Knackmuss. 1992. Bacterial metabolism of 5-aminosalicylic acid. Initial ring cleavage. Biochem. J. 282:675–680.

    CAS  Google Scholar 

  43. Tan, E. L., C. H. Ho, W. H. Griest, and R. L. Tyndall. 1992. Mutagenicity of trinitrotoluene and its metabolites formed during composting. J. Toxicol. Environ. Health 36:165–175.

    Article  PubMed  CAS  Google Scholar 

  44. Van Pee, K. H., O. Salcher, and F. Lingens. 1981. Synthese von 7-Chlor-L-und 7-Chlor-D-tryptophan; Biosynthese von Pyrrolnitrin. Liebigs Ann. Chem. 2:233–239.

    Google Scholar 

  45. Vanulet J., and R. L. Van Etten. 1981. Biochemistry and pharmacology of the nitro and nitroso groups, p. 201–289. In H. Feuer (ed.) The chemistry of the nitro and nitroso groups. Krieger Publishing Company, New York.

    Google Scholar 

  46. Vorbeck, C., H. Lenke, P. Fischer, and H.-J. Knackmuss. 1994. Identification of ahydride Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium sp. J. Bacteriol. 176:932–934.

    PubMed  CAS  Google Scholar 

  47. Wagniere, G. H. 1981. Theoretical aspects of C-NO and C-NO2 bonds. In H. Feuer (ed.) The chemistry of the nitro and nitroso groups. Krieger Publishing Company, New York.

    Google Scholar 

  48. Weiss, A. 1963. Organische Derivate der glimmerartigen Schichtsilikate. Angew. Chem. 75:113–148.

    Article  CAS  Google Scholar 

  49. Williams, M. C, and R. C. Barneby. 1977. The occurence of nitro-toxins in North American A stragalus (Fabaceae). Brittonia 29:310–326.

    Article  CAS  Google Scholar 

  50. Won, W. D., L. H. Di Salvo, and J. Ng. 1976. Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl. Environ. Microbiol. 31:576–580.

    PubMed  CAS  Google Scholar 

  51. Zeyer, J., and P. C. Kearney. 1984. Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J. Agric. Food Chem. 32:238–242.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rieger, PG., Knackmuss, HJ. (1995). Basic Knowledge and Perspectives on Biodegradation of 2,4,6-Trinitrotoluene and Related Nitroaromatic Compounds in Contaminated Soil. In: Spain, J.C. (eds) Biodegradation of Nitroaromatic Compounds. Environmental Science Research, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9447-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9447-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9449-6

  • Online ISBN: 978-1-4757-9447-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics