Zinc and Cells

  • Ananda S. Prasad
Part of the Biochemistry of the Elements book series (BOTE, volume 11)


Many studies have shown that zinc ions as an integral part of tissues and biologic fluids play an important role in homeostatic mechanisms regulating the reactivity of tissues and cells. In lymphocytes, zinc acts as a nonspecific mitogen (Chvapil, 1976). Within a range of 1.5 to 4.5 × 10−4 M Zn concentration in the culture medium, the blastogenic transformation of lymphocytes as well as their mitosis was significantly increased after 6 days in comparison with the effect of phytohemagglutinin (PHA). Zinc acted as a weak mitogen (Kirchner and Ruhl, 1970; Ruhl et al., 1974). Surprisingly, only zinc and mercury were stimulatory. Calcium and magnesium did not affect DNA synthesis in the culture system. Mn2+, Co2+, Cd2+, Cu2+, and Ni2+ at concentrations from 10−3 to 10−7 M were inhibitory. Inasmuch as DNA-synthesizing enzymes are zinc dependent, one may assume that enhanced mitosis of lymphocytes by zinc may be the result of increased activity of enzymes involved in cell mitosis.


Mast Cell Sickle Cell Erythrocyte Membrane Human Erythrocyte Zinc Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, K. F., Johnson, G., Jr., Hornowski, K., and Lineberger, T., 1979. The effect of copper on erythrocyte deformability: A possible mechanism of hemolysis in acute copper intoxication, Biochim. Biophys. Acta 550: 279.CrossRefGoogle Scholar
  2. Anderson, D. R., Davis, J. L., and Carraway, K. L., 1977. Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase and a membrane-bound protease, J. Biol. Chem. 252: 6617.Google Scholar
  3. Arnone, A., and Williams, D., 1977. The binding of zinc to human deoxyhemoglobin and its possible relevance to the anti-sickling effect of zinc, in Zinc Metabolism: Current Aspects in Health and Disease ( G. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 217.Google Scholar
  4. Avigad, L. S., and Bernheimer, A. W., 1976. Inhibition by zinc of hemolysis induced by bacterial and other cytolytic agents, Infect. Immun. 13: 1378.Google Scholar
  5. Avigad, L. S., and Bernheimer, A. W., 1978. Inhibition of hemolysis by zinc and its reversal by L-histidine, Infect. Immun. 19: 1101.Google Scholar
  6. Bannister, J., Bannister, W., and Wood, E., 1971. Bovine erythrocyte cupro-zinc protein. 1. Isolation and several characterizations, Eur. J. Biochem. 18: 178.CrossRefGoogle Scholar
  7. Bertles, J. F., Rabinowitz, R., and Dobler, J., 1970. Hemoglobin interaction modification of solid phase composition in the sickling phenomenon, Science 169: 375.CrossRefGoogle Scholar
  8. Bettger, W. J., Fish, T. J., and O’Dell, B. L., 1978. Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity, Proc. Soc. Exp. Biol. Med. 158: 279.Google Scholar
  9. Boyle, M. D. P., Langone, J. J., and Borsos, T., 1979. Studies on the terminal stages of immune hemolysis, J. Immunol. 122:1209.Google Scholar
  10. Bray, T., and Bettger, W. J., 1990. The physiological role of zinc as an antioxidant, Free Radical Biol. Med. 8: 281.CrossRefGoogle Scholar
  11. Brewer, G. J., 1980a. Calmodulin, zinc, and calcium in cellular and membrane regulation, Am. J. Hematol. 8: 231.CrossRefGoogle Scholar
  12. Brewer, G. J., 1980b. Zinc and copper in hematology, in Zinc and Copper in Medicine ( Z. A. Karcioglu and R. M. Sarper, eds.), Thomas, Springfield, Ill., p. 347.Google Scholar
  13. Brewer, G. J., and Bereza, U. L., 1982. Therapy of sickle cell anemia with membrane expander/ calmodulin inhibitor classes of drugs, in Clinical, Biochemical, and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed.), Liss, New York, p. 211.Google Scholar
  14. Brewer, G. J., and Oelshlegel, F. J., Jr., 1974. Anti-sickling effect of zinc, Biochem. Biophvs. Res. Commun. 58: 854.CrossRefGoogle Scholar
  15. Brewer, G. J., Aster, J. C., Knutsen, C. A., and Kruckberg, W. C., I979a. Zinc inhibition of calmodulin: A proposed molecular mechanism of zinc action on cellular functions, Am. J. Hematol. 7: 53.Google Scholar
  16. Brewer, G. J., Brewer, L. F., and Prasad, A. S., 1979b. Suppression of irreversibly sickled erythrocytes by zinc therapy in sickle cell anemia, J. Lab. Clin. Med. 90: 549.Google Scholar
  17. Burke, J. P., and Fenton, M. R., 1985. Effect of zinc deficient diet on lipid peroxidation in liver and tumor subcellular membranes, Proc. Soc. Exp. Biol. Med. 179: 187.Google Scholar
  18. Castranova, Y., and Miles, P. R., 1977. The effect of zinc and other metals on the stability of lysosomes, J. Membr. Biol. 33: 263.CrossRefGoogle Scholar
  19. Chvapil, M., 1973. New aspects in the biological role of zinc: A stabilizer of macromolecules and biological membranes, Life Sci. 13: 1041.CrossRefGoogle Scholar
  20. Chvapil, M., 1976. Effect of zinc on cells and biomembranes, Med. Clin. North Am. 60 (4): 799Google Scholar
  21. Chvapil, M., Ryan, J. N., and Zukoski, C. F., 1972. The effect of zinc and other metals on the stability of lysosomes, Proc. Soc. Exp. Biol. Med. 140: 642.Google Scholar
  22. Chvapil, M., Zukoski, C. F., Hattler, B. G., Stankova, L., Montgomery, D., Carlson, E. C., and Ludwig, J. C., 1974. Zinc and cells, in Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Academic Press, New York, p. 269.Google Scholar
  23. Chvapil, M., Weldy, P. L., Stankova, L., Clark, D. S., and Zukoski, C. F., 1975a. Inhibitory effect of zinc ions on platelet aggregation and serotonin release reaction, Life Sci. 16: 561.CrossRefGoogle Scholar
  24. Chvapil, M., Ludwig, J. C., Sipes, G., and Halladay, S. C., 1975b. Inhibition of NADPH oxidation and oxidative metabolism of drugs in liver microsomes by zinc, Biochem. Pharmacol. 24: 1.CrossRefGoogle Scholar
  25. Chvapil, M., Ludwig, J. C., Sipes, G., and Misiorowski, R., 1975e. Inhibition of NADPH oxidation and related drug oxidation in liver microsomes by zinc, Biochem. Pharmacol. 25: 1787.CrossRefGoogle Scholar
  26. Chvapil, M., Montgomery, D., Ludwig, J. C., and Zukoski, C., 1979. Zinc in erythrocyte ghosts, Proc. Soc. Exp. Biol. Med. 162:480.Google Scholar
  27. Coppen, D. E., Richardson, D. E., and Cousins, R. J., 1988. Zinc suppression of free radicals induced in cultures of rat hepatocytes by iron, t-butyl hydroperoxide, and 3 methylindole, Proc. Soc. Exp. Biol. Med. 189: 100.Google Scholar
  28. Dash, S., Brewer, G. J., and Oelshlegel, F. J., Jr., 1974. Effect of zinc on haemoglobin binding by red cell membranes, Nature 250: 251.CrossRefGoogle Scholar
  29. Dobler, J., and Bertles, J. F., 1968. The physical state of hemoglobin in sickle cell anemia erythrocytes in vivo, J. Exp. Med. 127: 711.CrossRefGoogle Scholar
  30. Dunn, M. F., 1974. Red blood cell calcium and magnesium: Effects upon sodium and potassium transport and cellular morphology, Biochim. Biophys. Acta 352: 97.CrossRefGoogle Scholar
  31. Eaton, J. W., Berger, E., White, J. G., and Jacob, H. S., 1977. Metabolic and morphologic effect of intraerythrocyte calcium: Implications for the pathogenesis of sickle cell disease, in Metabolism: Current Aspects in Health and Disease ( G. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 275.Google Scholar
  32. Fernandez, M. A., and O’Dell, B. L., 1983. Effect of zinc deficiency on plasma glutathione in the rat, Proc. Soc. Exp. Biol. Med. 173: 564.Google Scholar
  33. Finch, J. T., Perutz, M. J., Bertles, J. F., and Dobler, J., 1973. Structure of sickle erythrocyte and of sickle-cell hemoglobin fibers, Proc. Natl. Acad. Sci. USA 70: 718.CrossRefGoogle Scholar
  34. Gilman, J. G., and Brewer, G. J., 1978. The oxygen-linked binding site of human haemoglobin, Biochem. J. 169: 625.Google Scholar
  35. Girotti, A. W., Thomas, J. P., and Jordon, J. E., 1985. Inhibitory effect of zinc on free radical lipid peroxidation in erythrocyte membranes, J. Free Radicals Biol. Med. 1: 395.CrossRefGoogle Scholar
  36. Harris, G. L. A., Cove, D. H., and Crawford, N., 1974. Effect of divalent cations and chelating agents on the ATPase activity of platelet contractile protein, “thrombosthenin,” Biochem. Med. 11: 10.CrossRefGoogle Scholar
  37. Hidalgo, J., Campmany, L., Borras, M., Garvey, J. S., and Armario, A., 1988. Metallothionein response to stress in rats, Am. J. Physiol. 255: E518.Google Scholar
  38. Hogberg, B., and Uvnas, B., 1960. Further observations on the disruption of rat mesentery mast cells caused by compound 48/80, antigen-antibody reaction, lethciinase A and decylamine, Acta Physiol. Scand. 48: 133.CrossRefGoogle Scholar
  39. Jeffrey, E. H., 1983. The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsome, Cell Pharmacol. 23: 467.Google Scholar
  40. Kabat, I. A., Niewworok, J., and Blaszcyk, J., 1978. Der einfluss von zinkionen auf ausgewahlte osmo tische parameter zentralbl bakteriol, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig. B 166: 375.Google Scholar
  41. Karl, L., Chvapil, M., and Zukoski, C. F., 1973. Effect of zinc on the viability and phagocytic capacity of peritoneal macrophages, Proc. Soc. Exp. Biol. Med. 142: 1123.Google Scholar
  42. Kazimierczak, W., and Maslinski, C., 1974. The mechanism of the inhibitory action of zinc on histamine release from mast cells by compound 48/80, Agents Actions 4: 203.CrossRefGoogle Scholar
  43. Kirchner, H., and Ruhl, H., 1970. Stimulation of human peripheral lymphocytes by Zn’ in vitro, Exp. Cell Res. 61.229.Google Scholar
  44. Kruckberg, W. C., and Brewer, G. J., 1978. The mechanism and control of human erythrocyte zinc uptake, Med. Biol. 56: 5.Google Scholar
  45. Kruckberg, W., Knutsen, C. A., and Brewer, G. J., 1977. Mechanisms of red cell zinc uptake with a note on zinc and red cell metabolism, in Zinc Metabolism: Current Aspects in Health and Disease ( C. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 259.Google Scholar
  46. Kubow, S., Janzen, E. G., and Bray, T. M., 1984. Spin-trapping of free radicals formed during in vitro and in vivo metabolism of 3-methylindole, J. Biol. Chem. 259: 4447.Google Scholar
  47. McCord, J. M., and Fridovich, I., 1969. Superoxide dismutase. An enzyme function for erythrocuprein (hemocuprein), J. Biol. Chem. 244: 6049.Google Scholar
  48. McCord, J. M., Keele, B. B., Jr., and Fridovich, I., 1971. An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase, Proc. Natl. Acad. Sci. USA 68: 1024.CrossRefGoogle Scholar
  49. McLaughlin, A., Greatwohl, C., and McLaughlin, S., 1978. The absorption of divalent cations to phosphatidylcholine bilayer membranes, Biochim. Biophys. Acta 513: 2778.Google Scholar
  50. Montgomery, D. W., Don, L. K., Zukoski, C. F., and Chvapil, M., 1974. The effect of zinc and other metals on complement hemolysis of sheep red blood cell in vitro, Proc. Soc. Exp. Biol. Med. 145: 263.Google Scholar
  51. Oelshlegel, F. J., Jr., Brewer, G. J., Prasad, A. S., Knutsen, C., and Schoomaker, E. B., 1973. Effect of zinc on increasing oxygen affinity of sickle and normal red blood cells, Biochem. Biophys. Res. Commun. 53: 560.CrossRefGoogle Scholar
  52. Oelshlegel, F. J., Jr., Brewer, G. J., Knutsen, C., Prasad, A. S., and Schoomaker, E. B., 1974. Studies on the interaction of zinc with human hemoglobin, Arch. Biochem. Biophys. 163: 742.CrossRefGoogle Scholar
  53. Palek, J., Curby, W. A., and Lionetti, F. J., 1971. Effect of calcium and adenosine triphosphate on volume of human red cell ghosts, Am. J. Physiol. 220: 19.Google Scholar
  54. Passow, H., 1970. The use of pharmacological doses of zinc in the treatment of sickle cell anemia, in Effect of Metals on Cells, Subcellular Elements and Macromolecules ( G. J. Brewer and A. S. Prasad, eds.), Thomas, Springfield, Ill., p. 291.Google Scholar
  55. Peterson, D. A., Gerrand, G. M., Peller, J., Rao, G. H. R., and White, J. C., 1981. Interactions of zinc and arachidonic acid, Prostaglandins Med. 6: 91.CrossRefGoogle Scholar
  56. Phillips, J. L., and Azari, P., 1974. Enhancement of nucleic acid synthesis in phytohemagglutininstimulated human lymphocytes, Cell. Immunol. 10: 31.CrossRefGoogle Scholar
  57. Pilz, R. B., Willis, R. C., and Seegmiller, J. E., 1982. Regulation of human lymphoblast plasma membrane 5’-nucleotidase by zinc, J. Biol. Chem. 257: 13544.Google Scholar
  58. Prasad, A S, Abbasi, A., and Ortega, J., 1977. Zinc deficiency in man: Studies in sickle cell disease, in Current Aspects in Health and Disease ( G. J. Brewer and A. S. Prasad, eds.), Liss, New York, p. 211.Google Scholar
  59. Prasad, A. S., Brewer, G. J., Schoomaker, E. B., and Rabbani, P., 1978. Hypocupremia induced by zinc therapy in adults, J. Am. Med. Assoc. 240: 2166.CrossRefGoogle Scholar
  60. Rabenstein, D. L., and Isab, A. A., 1980. The complexation of zinc in intact human erythrocytes studied by Ih spin-echo NMR, FEBS Lett. 221: 6.Google Scholar
  61. Rifkind, J. M., 1983. Interaction of zinc with erythrocytes, in Metal Ions in Biological Systems, Vol. 15 ( H. Sigel, ed.), Dekker, New York, p. 275.Google Scholar
  62. Rifkind, J. R., and Heim, J. M., 1977. Interaction of zinc and hemoglobin: Binding of zinc and the oxygen affinity, Biochemistry 16: 4438.CrossRefGoogle Scholar
  63. Ruhl, H., Kirchner, H., and Bochert, G., 1974. Kinetics of the Zn’ stimulation of human peripheral lymphocytes in vitro, Proc. Soc. Exp. Biol. Med. 137: 1089.Google Scholar
  64. Schmetterer, G., 1978. ATP dependent uptake of zinc by human erythrocyte ghosts, Z. Naturfrbrsch. 33: 210.Google Scholar
  65. Settlemire, C. T., and Matrone, G., 1967. In vivo interference of zinc with ferritin iron in the rat, J. Nutr. 92: 1959.Google Scholar
  66. Szeberi, S., Eskelson, C. D., and Chvapil, M., 1988. The effect of zinc on iron-induced lipid peroxidation in different lipid systems including liposome and micelles, Physiol. Chem. Phys. Med. NMR 20: 205.Google Scholar
  67. Takeda, Y., Ogiso, Y., and Miwatani, T., 1977. Effect of zinc ion on the hemolytic activity of thermostable direct hemolysin from Vibrio parahaemolyticus streptolysin O, and Triton X100, Infect. Immun. 17: 239.Google Scholar
  68. Torrubia, J. O. A., and Garay, R., 1989. Evidence for a major route for zinc uptake in human red blood cells: (Zn(HCO3)2C1)- influx through the (Cl-/HCO3) anion exchanger, J. Cell. Physiol. 138: 316.CrossRefGoogle Scholar
  69. Tsukamoto, T., Yoshinaga, T., and Sano, S., 1979. The role of zinc with special reference to the essential thiol groups in 8-aminolevulinic acid dehydratase of bovine liver, Biochim. Biophys. Acta 570: 167.CrossRefGoogle Scholar
  70. Warren, L., Glick, M. C., and Nass, M. K., 1966. Membranes of animal cells I. Method of isolation of the surface membrane, J. Cell. Physiol. 68: 269.CrossRefGoogle Scholar
  71. Weed, R. I., LaCelle, P. L., and Merrill, E. W., 1969. Metabolic dependence of red cell deformability, J. Clin. Invest. 48: 795.CrossRefGoogle Scholar
  72. Weismann, K., and Mikkelsen, H. I., 1980. Osmotic lysis of erythrocytes in relation to the zinc concentration of the medium, Arch. Dermatol. Res. 269: 105.CrossRefGoogle Scholar
  73. White, J. G., 1974. Effects of ionophore, A23187, on the surface morphology of normal erythrocytes, Am. J. Pathol. 77: 507.Google Scholar
  74. White, J. G., 1976. Scanning electron microscopy of erythrocyte deformation: The influence of a calcium ionophore, A23187, Semin. Hematol. 13: 121.Google Scholar
  75. Williams, R. O., and Loeb, L. A., 1973. Zinc requirement for DNA replication in stimulated human lymphocytes, J. Cell Biol. 58: 594.CrossRefGoogle Scholar
  76. Wills, E. D., 1965. Mechanism of lipid peroxide formation in tissues. Role of metals and haematin proteins in the catalysis of the oxidation of unsaturated fatty acids, Biochim. Biophys. Acta 98: 238.CrossRefGoogle Scholar
  77. Wright, C. E., Gaull, G. E., and Pasentes-Morales, H., 1984. Protective effects of taurine, zinc and vitamin E on human cell membranes: Possible relevance to retina, J. Am. Coll. Nutr. 3: 248.Google Scholar
  78. Yamamoto, K., and Takahashi, M., 1975. Inhibition of the terminal stage of complement-mediated lysis (reactive lysis) by zinc and copper ions, Int. Arch. Allergy Appl. Immunol. 48: 653.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ananda S. Prasad
    • 1
    • 2
    • 3
  1. 1.Department of Medicine, Division of Hematology and OncologyWayne State University School of MedicineUSA
  2. 2.Harper HospitalDetroitUSA
  3. 3.Veterans Administration Medical CenterAllen ParkUSA

Personalised recommendations