Advertisement

Interactions of Zinc with Other Micronutrients

  • Ananda S. Prasad
Part of the Biochemistry of the Elements book series (BOTE, volume 11)

Abstract

During the past two decades, it has become clear that the addition of a trace element to the animal diet alters the metabolism of other elements. In some instances the interaction between the added element and the responding element is complementary. For example, the dietary level of iron needed to maintain a given concentration of hemoglobin is dependent on the dietary copper level (Hill and Matrone, 1961). A majority of other interactions, however, are of antagonistic nature. For example, high levels of zinc added to diets are known to precipitate copper deficiency in animals and humans (Hill and Matrone, 1970; Prasad et al., 1978a). Several years ago, Hill and Matrone (1961) proposed that those elements whose electronic structure of the valence shell of the ions was the same, would act antagonistically to each other in biological systems (Hill, 1976).

Keywords

Zinc Absorption Zinc Deficiency Plasma Zinc Level Hepatic Copper Copper Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Hamdan, D. K., Mahajan, S. K., Migdal, S. D., Prasad, A. S., and McDonald, F. D., 1984. Zinc absorption in uremia: Effects of phosphate binders and iron supplements, J. Am. Coll. Nutr. 3: 283.Google Scholar
  2. Aggett, P. J., Crofton, R. W., Khin, C., Gvozdanovic, S., and Gvozdanovic, D., 1983. The mutual inhibitory effects on their bioavailability of inorganic zinc and iron, in Zinc Deficiency in Human Subjects ( A. S. Prasad, A. O. Cavder, G. J. Brewer, and P. J. Aggett, eds.), Liss, New York, p. 117.Google Scholar
  3. Ahokas, R. A., Dilts, P. V., and Lahaye, E. B., 1980. Cadmium-induced fetal growth retardation: Protective effect of excess dietary zinc, Am. J. Obstet. Gynecol. 136: 216.Google Scholar
  4. Ashrafi, M. H., and Fosmire, G. J., 1985. Effects of marginal zinc deficiency and subclinical lead toxicity in the rat neonate, J. Nutr. 115: 334.Google Scholar
  5. Baudier, J., Haglid, K., Haiech, J., and Gerard, D., 1983. Zinc ion binding to human calcium-binding proteins, calmodulin and S100b protein, Biochem. Biophys. Res. Commun. 114: 1138.CrossRefGoogle Scholar
  6. Bremner, I., Young, B. W., and Mills, C. F., 1976. Protective effect of zinc supplementation against copper toxicosis in sheep, Br. J. Nutr. 36: 551.CrossRefGoogle Scholar
  7. Breskin, M. W., Worthington-Roberts, B. S., Knopp, R. H., Brown, Z., Plovie, B., Mottet, N. K., and Mills, J. L., 1983. First trimester serum zinc concentration in human pregnancy, Am. J. Clin. Nutr. 38: 943.Google Scholar
  8. Brewer, G. J., 1980. Calmodulin, zinc and calcium in cellular membrane regulation, Am. J. Hematol. 8: 231.Google Scholar
  9. Brewer, G. J., Aster, J. C., Knutsen, C. A., and Kruckberg, W. C., 1979. Zinc inhibition of calmodulin: A proposed molecular mechanism of zinc action on cellular function, Am. J. Hematol. 7: 53.CrossRefGoogle Scholar
  10. Brewer, G. J., Hill, G. M., Prasad, A. S., Cossack, Z. T., and Rabbani, P., 1983. Oral zinc therapy for Wilson’s disease, Ann. Intern. Med. 99: 314.Google Scholar
  11. Brewer, G. J., Hill, G. M., Dick, R. D., Nostrant, T. T., Sams, J. S., Wells, J. J., and Prasad, A. S., 1987a. Treatment of Wilson’s disease with zinc. III. Prevention of reaccumulation of hepatic copper, J. Lab. Clin. Med. 109: 526.Google Scholar
  12. Brewer, G. J., Hill, G. M., Prasad, A. S., and Dick, R., 1987b. The treatment of Wilson’s disease with zinc. IV. Efficacy monitoring using urine and plasma copper, Proc. Soc. Exp. Biol. Med. 184: 446.Google Scholar
  13. Burch, R. E., Williams, R. V., Hahn, H. K. J., Jetton, M. M., and Sullivan, J. F., 1975. Serum and tissue enzyme activity and trace element content in response to zinc deficiency in the pig, Clin. Chem. 21: Washington, D.C., 568.Google Scholar
  14. Campbell-Brown, M., Ward, R. J., Haines, A. P., North, W. R. S., Abraham, R., and McFayden, I. R., 1985. Zinc and copper in Asian pregnancies: Is there evidence for a nutritional deficiency? Br. J. Obstet. Gynecol. 92: 975.Google Scholar
  15. Cox, D. H., and Harris, D. L., 1960. Effect of excess dietary zinc on iron and copper in the rat, J. Nutr. 70: 514.Google Scholar
  16. Cunnane, S. C., 1988. Zinc: Clinical and Biochemical Significance, CRC Press, Boca Raton, Fla., p. 113.Google Scholar
  17. Duncan, G. D., Gray, L. F., and Daniel, L. J., 1953. Effect of zinc on cytochrome oxidase activity, Proc. Soc. Exp. Biol. Med. 83: 625.Google Scholar
  18. Evans, G. W., Grace, C. I., and Hahn, C., 1974. The effect of copper and cadmium on 65Zn absorption in zinc-deficient and zinc-supplemented rats, Bioinorg. Chem. 3: 115.CrossRefGoogle Scholar
  19. Flanagan, P. R., and Valberg, L. S., 1988. The intestinal interaction of zinc and iron in humans: Does it occur with food? in Essential and Toxic Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Liss, New York, p. 501.Google Scholar
  20. Flanagan, P. R., Haist, J., and Valberg, L. S., 1983. Zinc absorption, intraluminal zinc and intestinal metallothionein levels in zinc deficient and zinc repleted rodents, J. Nutr. 113: 962.Google Scholar
  21. Flanagan, P. R., Haist, J., MacKenzie, I., and Valberg, L. S., 1984. Intestinal absorption of zinc: Competitive interactions with iron, cobalt, and copper in mice with sex-linked anemia (sla), Can. J. Physiol. Pharmacol. 62: 1124.CrossRefGoogle Scholar
  22. Forth, W., and Rummel, W., 1973. Iron absorption, Physiol. Rev. 63: 724.Google Scholar
  23. Grace, N. D., 1973. Effect of high dietary Mn levels on the growth rate and the level of mineral elements in the plasma and soft tissues of sheep, N.Z. J. Agric. Res. 16: 177.CrossRefGoogle Scholar
  24. Hall, A. C., Young, B. W., and Bremner, I., 1979. Intestinal metallothionein and the mutual antagonism between copper and zinc in the rat, J. Inorg. Biochem. 11: 57.CrossRefGoogle Scholar
  25. Hambidge, K. M., Krebs, N. F., Jacobs, M. A., Favier, A., Guyette, L., and Ickle, D. N., 1983. Zinc nutritional status during pregnancy: A longitudinal study, Am. J. Clin. Nutr. 37: 429.Google Scholar
  26. Hamilton, R. P., Fox, M. R. S., Fry, B. E., Jr., Jones, A. O. L., and Jacobs, R. M., 1979. Zinc interference with copper, iron and manganese in young Japanese quail, J. Food Sci. 44: 738.CrossRefGoogle Scholar
  27. Hanson, L. J., Sorenson, D. K., and Kernkamp, H. C. H., 1958. Essential fatty acid deficiencyIts role in parakeratosis, Am. J. Vet. Res. 18: 1921.Google Scholar
  28. Heiseke, D., and Kirchgessner, M., 1978. Eisen-und Zinkgehalte in verschiedenen Organen der Ratte bei Mangan-Mangel, Zentralbl. Veterinaermed. Reihe A 25: 307.CrossRefGoogle Scholar
  29. Hill, C. H., 1976. Mineral interrelationships, in Trace Elements in Human Health and Disease, Vol. II ( A. S. Prasad, ed.), Academic Press, New York, p. 281.Google Scholar
  30. Hill, C. H., 1988. Interactions among trace elements, in Essential and Toxic Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Liss, New York, p. 491.Google Scholar
  31. Hill, C. H., and Matrone, G., 1961. Studies on copper and iron deficiencies in growing chickens, J. Nutr. 73: 425.Google Scholar
  32. Hill, C. H., and Matrone, G., 1970. Chemical parameters in the study of in vivo and in vitro interactions of transition elements, Fed. Proc. 29: 1474.Google Scholar
  33. Hill, G. M., Brewer, G. J., Juni, J. E., Prasad, A S., and Dick, R. D., 1986. Treatment of Wilson’s disease with zinc. II. Validation of oral 64copper with copper balance, Am. J. Med. Sci. 292: 344.CrossRefGoogle Scholar
  34. Hirschberg, R., Von Herrath, D., Vob, K., Bosaller, W., Mauelshagen, U., Pauls, A., and Schaefer, K., 1985. Parathyroid hormone and 1,25-dihydroxyvitamin D3 affect the tissue concentrations of zinc in uremic rats, Nephron 39: 277.CrossRefGoogle Scholar
  35. Hirschman, S. Z., and Isselbacher, K. J., 1965. The nephrotic syndrome as a complication of penicillamine therapy of hepatolenticular degeneration (Wilson’s disease), Ann. Intern. Med. 62: 1297.Google Scholar
  36. Hsu, J. M., 1965. Zinc content in pyridoxine deficient rats, Proc. Soc. Exp. Biol. Med. 119: 177.Google Scholar
  37. Hurley, L. S., and Tao, S. H., 1972. Alleviation of teratogenic effects of zinc deficiency by simultaneous lack of calcium, Am. J. Physiol. 222: 322.Google Scholar
  38. Ikeda, M., Hosotani, T., Ueda, T., Kotake, Y., and Sakeibara, B., 1979. Observations of the concentration of zinc and iron in tissues of vitamin B6 deficient germ-free rats, J. Nutr. Sci. VitaminoL 25: 151.CrossRefGoogle Scholar
  39. Ivan, M., and Grieve, C. M., 1975. Effects of zinc, copper, and manganese supplementation of high concentrate ration on digestibility, growth, and tissue content of Holstein calves, J. Dairy Sci. 58: 410.CrossRefGoogle Scholar
  40. Jarvinen, R., and Ahlstrom, A., 1975. Effect of the dietary manganese level on tissue manganese, iron, copper, and zinc concentrations in female rats and their fetuses, Med. Biol. 53: 93.Google Scholar
  41. Kang, H. K., Harvey, P. W., Valentine, J. L., and Swendseid, M. E., 1977. Zinc, iron, copper and magnesium concentrations in tissues of rats fed various amounts of zinc, Clin. Chem. 23: Washington, D.C., 1834.Google Scholar
  42. Kirchgessner, M., Schwarz, F. J., and Schnegg, A., 1982. Interactions of essential metals in human physiology, in Clinical, Biochemical, and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed.), Liss, New York, p. 477.Google Scholar
  43. Kubena, K. S., Landmann, W. A., Young, C. R., and Carpenter, Z. L., 1985. Influence of magnesium deficiency and soy protein on magnesium and zinc status in rats, Nutr. Res. 5: 317.CrossRefGoogle Scholar
  44. Lucis, O. J., Lucis, R., and Shaikh, Z. A., 1972. Cadmium and zinc in pregnancy and lactation, Arch. Environ. Health 25: 14.Google Scholar
  45. McCormick, D. B., Gregory, M. E., and Snell, E. E., 1961. Pyridoxal phosphokinase I: Assay, distribution, purification and properties, J. Biol. Chem. 236: 2076.Google Scholar
  46. Magee, A. C., and Matrone, G., 1960. Studies on growth, copper metabolism and iron metabolism on rats fed high levels of zinc, J. Nutr. 72: 233.Google Scholar
  47. Mahloudji, M., Reinhold, J. G., Haghasenass, M., Ronaghy, H. A., Spivey-Fox, M. R. S., and Halsted, J. A., 1975. Combined zinc and iron supplementation of diets of 6- and 12-yearold school children in southern Iran, Am. J. Clin. Nutr. 28: 721.Google Scholar
  48. Matseshe, J. W., Phillips, S. F., Malagelada, J. R., and McCall, J. T., 1980. Recovery of dietary iron and zinc from the proximal intestine of healthy man: Studies of different meals and supplements, Am. J. Clin. Nutr. 33: 1946.Google Scholar
  49. Matustik, M. C., Chausner, A. B., and Meyer, W. J., 1982. The effect of sodium intake on zinc excretion in patients with sickle cell anemia, J. Am. Coll. Nutr. 1: 331.Google Scholar
  50. Moses, H. A., and Parker, H. E., 1964. Influence of dietary zinc and age on the mineral content of rat tissues, Fed. Proc. 23: 132.Google Scholar
  51. Neary, J. T., and Divan, W. F., 1970. Purification, properties and a possible mechanism for pyridoxal kinase for bovine brain, J. Biol. Chem. 245: 5585.Google Scholar
  52. Payton, K. B., Flanagan, P. R., Stinson, E. A., Chrodiker, D. R., Chamberlain, M. J., and Valberg, L. S., 1982. Technique for determination of human zinc absorption from measurement of radioactivity in a fecal sample of the body, Gastroenterology 83: 1264.Google Scholar
  53. Petering, H. G., Johnson, M. A., and Horwitz, J. P., 1971. Studies of zinc metabolism in the rat, Arch. Environ. Health 23: 93.Google Scholar
  54. Pollack, S., George, J. N., Reba, R. C., Kaufman, R. M., and Crosby, W. J., 1965. The absorption of nonferrous metals in iron deficiency, J. Clin. Invest. 44: 1470.CrossRefGoogle Scholar
  55. Prasad, A. S., Oberleas, D., Wolf, P., and Horwitz, J. P., 1967. Studies on zinc deficiency: Changes in trace elements and enzyme activities in tissues of zinc deficient rats, J. Clin. Invest. 46: 549.CrossRefGoogle Scholar
  56. Prasad, A. S., Oberleas, D., Wolf, P., Horwitz, J. P., Miller, E. R., and Luecke, R. W., 1969a. Changes in trace elements and enzyme activities in tissues of zinc deficient pigs, Am. J. Clin. Nutr. 22: 628.Google Scholar
  57. Prasad, A. S., Oberleas, D., Wolf, P., and Horwitz, J. P., 1969b. Effect of growth hormone on nonhypophysectomized zinc deficient rats and zinc on hypophysectomized rats, J. Lab. Clin. Med. 73: 486.Google Scholar
  58. Prasad, A. S., Brewer, G. J., Schoomaker, E. B., and Rabbani, P., 1978a. Hypocupremia induced by zinc therapy in adults, J. Am. Med. Assoc. 240: 2166.CrossRefGoogle Scholar
  59. Prasad, A. S., Rabbani, P., Abassi, A., Bowersox, E., and Spivey-Fox, M. R. S., 1978b. Experimental zinc deficiency in humans, Ann. Intern. Med. 89: 483.Google Scholar
  60. Richards, M. P., and Cousins, R. J., 1975. Mammalian zinc homeostasis: Requirement for RNA and metallothionein synthesis, Biochem. Biophys. Res. Commun. 64: 1215.CrossRefGoogle Scholar
  61. Richards, M. P., and Cousins, R. J., 1976. Metallothionein and its relationship to the metabolism of dietary zinc in rats, J. Nutr. 106: 1591.Google Scholar
  62. Roth, H. P., and Kirchgessner, M., 1977. Zum Gehalt von Zink, Kupfer, Eisen, Mangan and Calcium in Knochen and Lebern von an Zink depletierter and repleiterter Ratten, Zentralbi. Veterinaermed. Reihe A 24: 177.Google Scholar
  63. Roth, H. P., and Kirchgessner, M., 1979. Zinc und Chromgehalte in Serum, Pankreas und Leber von Zn-Mangelratten nach Glucosetimulierung, Z. Tierphysiol. Tierernaehr. Futtermittelkd. 42: 277.CrossRefGoogle Scholar
  64. Sandstrom, B., Davidson, L., Cederblad, A., and Lonnerdal, B., 1985. Oral iron, dietary ligands and zinc absorption, J. Nutr. 115: 411.Google Scholar
  65. Schroeder, H. A., Baker, J. T., Hansen, N. M., Size, J. G., and Wise, R. A., 1970. Vascular reactivity of rats altered by cadmium and a zinc chelate, Arch. Environ. Health 21: 609.Google Scholar
  66. Schwarz, F. J., and Kirchgessner, M., 1973. Intestinale Cu-Absorption in vitro nach. Fe-oder Zn-Depletion, Z. Tierphysiol. Tierernaehr. Futtermittelkd. 31: 91.CrossRefGoogle Scholar
  67. Schwarz, F. J., and Kirchgessner, M., 1974a. Absorption von Zink-65 und Kupfer-64 im Zinkmangel, Int. J. Vitam. Nutr. Res. 44: 258.Google Scholar
  68. Schwarz, F. J., and Kirchgessner, M., 1974b. Wechselwirkungen bei der intestinalen Absorption von “Cu, 65Zn and 59Fe nach Cu-, Zn-oder Fe-Depletion, Int. J. Vitam. Nutr. Res. 44: 116.Google Scholar
  69. Schwarz, F. J., and Kirchgessner, M., 1979. Kupfer-, Zink-, Eisen-und Mangankonzentrationen im Serum in Knochen und der Leber nach Kupferdepletion, Zentralbl. Veterinaermed. Reihe A 26: 493.Google Scholar
  70. Schwarz, F. J., and Kirchgessner, M., 1980. Experimentelle Untersuchungen zur Interaktion Zwischen den Spurenelementen Zink und Mangan, Z. Tierphysiol. Tierernaehr. Futtermittelkd. 43: 272.CrossRefGoogle Scholar
  71. Settlemire, C. T., and Matrone, G., 1967a. In vivo effect of zinc on iron turnover in rats and life span of the erythrocyte, J. Nutr. 92: 159.Google Scholar
  72. Settlemire, C. T., and Matrone, G., 1967b. In vivo interference of zinc with ferritin iron in the rat, J. Nutr. 92: 153.Google Scholar
  73. Smith, J. C., Jr., 1982. Interrelationship of zinc and vitamin A metabolism in animal and human nutrition: A review, in Clinical, Biochemical, and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed.), Liss, New York, p. 239.Google Scholar
  74. Smith, J. C., Jr., Brown, E. D., McDaniel, E. G., and Chan, W., 1976. Alterations in vitamin A metabolism during zinc deficiency and food and growth restriction, J. Nutr. 106: 569.Google Scholar
  75. Solomons, N. W., 1983. Competitive mineral:mineral interactions in the intestine: Implications for zinc absorption in humans, in Nutritional Bioavailability of Zinc, ACS Symposium Series. American Chemical Society, Washington, D.C., p. 247.Google Scholar
  76. Solomons, N. W., 1988. The iron:zinc interaction in the human intestine. Does it exist? An affirmative view, in Essential and Toxic Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Liss, New York, p. 509.Google Scholar
  77. Solomons, N. W., and Jacob, R. A., 1981. Studies on the bioavailability of zinc in humans: Effect of heme and nonheme iron on the absorption of zinc, Am. J. Clin. Nutr. 34: 475.Google Scholar
  78. Solomons, N. W., Pineda, O., Viteri, F., and Sandstead, H. H., 1983a. Studies on the bioavailability of zinc in humans: Mechanism of the intestinal interaction of nonheme iron and zinc, J. Nutr. 113: 337.Google Scholar
  79. Solomons, N. W., Marchini, J. S., Duarte-Favaro, R. M., Vannuchi, H., and Dutra de Oliveira, J. E., 1983b. Studies on the bioavailability of zinc in humans. VI. Intestinal interaction of tin and zinc, Am. J. Clin. Nutr. 37: 566.Google Scholar
  80. Steinhardt, H. J., and Adibi, S. A., 1984. Interaction between transport of zinc and other solute in human intestine, Am. J. Physiol. 247:G 176.Google Scholar
  81. Stowe, H. D., 1976. Biliary excretion of cadmium by rats: Effects of zinc, cadmium and selenium pre-treatments, J. Toxicol. Environ. Health 2: 45.CrossRefGoogle Scholar
  82. Suttle, N. F., and Mills, C. F., 1966a. Studies on the toxicity of copper to pigs. 1: Effects of oral supplements of zinc and iron salts at the development of copper toxicosis, Br. J. Nutr. 20: 135.CrossRefGoogle Scholar
  83. Suttle, N. F., and Mills, C. F., 1966b. Studies on the toxicity of copper to pigs. 2: Effect of protein source and other dietary components on the response to high and moderate intakes of copper, Br. J. Nutr. 20: 149.CrossRefGoogle Scholar
  84. Swenerton, H., and Hurley, L. S., 1968. Severe zinc deficiency in male and female rats, J. Nutr. 95: 8.Google Scholar
  85. Valberg, L. S., Flanagan, P. R., and Chamberlain, M. J., 1984. Effects of iron, tin, and copper on zinc absorption in humans, Am. J. Clin. Nutr. 40: 536.Google Scholar
  86. Reen, R., 1953. Effects of excessive dietary zinc in the rat and the interrelationship with copper, Arch. Biochem. Biophys. 46: 337.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ananda S. Prasad
    • 1
    • 2
    • 3
  1. 1.Department of Medicine, Division of Hematology and OncologyWayne State University School of MedicineUSA
  2. 2.Harper HospitalDetroitUSA
  3. 3.Veterans Administration Medical CenterAllen ParkUSA

Personalised recommendations