Sulfur and the Metabolism of Xenobiotics

  • W. Mark Lafranconi
Part of the Biochemistry of the Elements book series (BOTE, volume 6)


All living organisms are challenged with the task of obtaining materials from the environment, utilizing those that are nutritious or useful, and excreting those that are not. In some cases the non-nutritious materials, called xenobiotics, that enter the cell have biological effects. Often the effects of xenobiotics are minimal and well tolerated by the cell. In other cases effects can be severe, resulting in impaired cell function, genetic damage or cell death. Therefore, it is essential that cells possess the biochemical means to prevent xenobiotics from reaching toxic concentrations. These mechanisms and the importance of sulfur in them are the subject of this chapter.


Glutathione Transferase Sulfate Ester Sulfate Conjugation Mercapturic Acid Organic Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bass, N. M., Kirsch, R. E., Tuff, S. A., Marks, I., and Saunders, S. J., 1977. Ligandin heterogeneity: Evidence that the two non-identical subunits are the monomers of two distinct proteins, Biochim. Biophys. Acta 492:163–175.PubMedCrossRefGoogle Scholar
  2. Beale, D., Meyer, D. J., Taylor, J. B., and Ketterer, B., 1983. Evidence that the Ya and Yc subunits of glutathione transferase B (ligandin) are the products of separate genes, Eur. J. Biochem. 126:459–463.CrossRefGoogle Scholar
  3. Benesch, R. E., and Benesch, R., 1955. The acid strength of the SH group in cysteine and related compounds, J. Am. Chem. Soc. 77:5877–5881.CrossRefGoogle Scholar
  4. Bergman, A., Brandt, I. and Jansson, B., 1979. Accumulation of methylsulfonyl derivatives of some bronchial-seeking polychlorinated biphenyls in the respiratory tract of mice, Toxicol. Appl. Pharmacol. 48:213–220.PubMedCrossRefGoogle Scholar
  5. Brooks, P., and Lawley, P. D., 1964. Reactions of some mutagenic and carcinogenic compounds with nucleic acids, J. Cell. Comp. Physiol. 64:111–120.CrossRefGoogle Scholar
  6. Cassidy, M. K., and Houston, J. B., 1980. Phenol conjugation by lung in vivo, Biochem. Pharmacol. 29:471–474.PubMedCrossRefGoogle Scholar
  7. Christ, D. D., and Walle, T., 1985. Stereoselective sulfate conjugation of 4-hydroxypropranolol in vitro by different species, Drug Metab. Dispos. 13:380–381.PubMedGoogle Scholar
  8. Colburn, N. H., and Boutwell, R. K., 1968. The binding of ß-propiolactone and some related alkylating agents to DNA, RNA and protein of mouse skin; relation between tumor initiating power of alkylating agents and their binding to DNA, Cancer Res. 28:653–660.PubMedGoogle Scholar
  9. DeBaun, J. R., Miller, E. C., and Miller, J. A., 1970. N-Hydroxy-2-acetylaminofluorene sulfotransferase: Its probable role in the carcinogenesis and in protein-(methion-S-yl) binding in rat liver, Cancer Res. 30:577–595.PubMedGoogle Scholar
  10. Flohe, L., Loschen, G., Gunzler, W. A., and Eichele, E., 1972. Glutathione peroxidase V: The kinetic mechanism, Hoppe-Seyler’s Z. Physiol. Chem. 353:987–999.PubMedCrossRefGoogle Scholar
  11. Forstrom, J. W., Zakowski, J. J., and Tappel, A., 1978. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine, Biochemistry 17:2639–2644.PubMedCrossRefGoogle Scholar
  12. Guengerich, F. P., Crawford, W. M., Domoradzki, J. Y., MacDonald, T. L., and Watabe, P. G., 1980. In vitro activation of 1,2-dichloroethane by microsomal and cytosolic enzymes, Toxicol. Appl. Pharmacol. 55:303–317.PubMedCrossRefGoogle Scholar
  13. Hart, R. F., Renskers, K. J., Nelson, E. B., and Roth, J. A., 1979. Localization and characterization of phenol sulfotransferase in human platelets, Life Sci. 24:125–130.PubMedCrossRefGoogle Scholar
  14. Heidelberger, C., 1964. Studies on the molecular mechanism of hydrocarbon carcinogenesis, J. Cell. Comp. Physiol. 64:129–148.CrossRefGoogle Scholar
  15. Hesse, S., Jernstrom, B., Martinez, M., Moldeus, P., Christodoulides, L., and Ketterer, B., 1982. Inactivation of DNA binding metabolites of benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by glutathione and glutathione S transferases. Carcinogenesis 3:757–760.PubMedCrossRefGoogle Scholar
  16. Jakoby, W. B., Ketterer, B., and Mannervik, B., 1984. Glutathione transferases: Nomenclature, Biochem. Pharmacol. 33:2539–2540.PubMedCrossRefGoogle Scholar
  17. Lawrence, R. A., and Burk, R. F., 1976. Glutathione peroxidase activity in selenium deficient rat liver, Biochem. Biophys. Res. Commun. 71:952–958.PubMedCrossRefGoogle Scholar
  18. Levine, W. G., and Finkelstein, T. T., 1978. Biliary excretion of N,N′-dimethyl-4-aminoazobenzene (DAB) in the rat. Effects of pretreatment with inducers and inhibitors of the mixed function oxidase system with agents that deplete liver glutathione, Drug Metab. Dispos. 6:265–272.PubMedGoogle Scholar
  19. Lyon, E. S., and Jakoby, W. B., 1980. The identity of alcohol sulfotransferases with hydroxysteroid sulfotransferases, Arch. Biochem. Biophys. 202:474–481.PubMedCrossRefGoogle Scholar
  20. Mannervik, B., 1985. The isoenzymes of glutathione transferase, Adv. Enzymol. 57:357–417.PubMedGoogle Scholar
  21. Mannervik, B., and Jensson, H., 1982. Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat lilver cytosol, J. Biol. Chem. 257:9909–9912.PubMedGoogle Scholar
  22. Mavelli, I., Ciriola, M. R., Rossi, L., Meloni, T., Forteleioni, G., Déflora, A., Benatti, V., Morelli, A., and Rotilio, G., 1984. Favism: A hemolytic disease associated with increased superoxide dismutase and decreased glutathione peroxidase activities in red blood cells, Eur. J. Biochem. 139:13–18.PubMedCrossRefGoogle Scholar
  23. Meerman, J. H., and Mulder, G. J., 1981. Prevention of the hepatotoxic action of N-hydroxy-2-acetylaminofluorene in the rat by inhibition of N-O-sulfation with pentachlorophenol, Life Sci. 28:2361–2365.PubMedCrossRefGoogle Scholar
  24. Miller, E. C., and Miller, J. A., 1947. The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene, Cancer Res. 7:468–480.Google Scholar
  25. Miller, J. A., and Miller, E. C., 1984. The concept of reactive electrophilic metabolites in chemical carcinogenesis: Recent results with aromatic amines safrole and alflatoxin B1, in Biological Reactive Intermediates (D. J. Jollow, J. J. Koscsis, R. Snyder, and H. Vianio, eds.), Plenum Press, New York.Google Scholar
  26. Morgenstern, R., Guthenberg, C., and DePierre, J. W., 1982. Microsomal glutathione S-transferase: Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferase A, B, C, Eur. J. Biochem. 128:243–248.PubMedCrossRefGoogle Scholar
  27. Nash, J., King, L., Lock, E. A., and Green, T., 1984. The metabolism and disposition of hexachloro-l:3-butadiene in the rat and its relevance to nephrotoxicity, Toxicol. Appl. Pharmacol. 73:124–137.PubMedCrossRefGoogle Scholar
  28. Nemoto, N., Gelboin, H. V., Habig, W. H., Ketley, J. N., and Jakoby, W. B., 1975. K Region benzo[a]pyrene-4,5 oxide is conjugated by homogeneous glutathione S-transferases, Nature 255:512.PubMedCrossRefGoogle Scholar
  29. Noguchi, H., Toda, K., and Iwasaki, K., 1982. Urinary metabolite profile of tiaramide in man and in some animal species, Xenobiotica 12:211–220.PubMedCrossRefGoogle Scholar
  30. Orrenius, S. and Jones, D. P., 1978. Functions of glutathione in drug metabolism, in Functions of Glutathione in Liver and Kidney (H. Sies and A. Wendel, eds.), Springer-Verlag, New York.Google Scholar
  31. Redick, J. A., Jakoby, W. B., and Baron, J. J., 1982. Immunohistochemical localization of glutathione S-transferases in livers of untreated rats, J. Biol. Chem. 257:15200–15203.PubMedGoogle Scholar
  32. Robertson, I. G. C., Jensson, H., Gluthenberg, C., Tahir, M. K., Jernstrom, B., and Mannervik, B., 1985. Differences in the occurrence of glutathione transferase isozymes in rat lung and liver, Biochem. Biophys. Res. Commun. 127:80–86.PubMedCrossRefGoogle Scholar
  33. Sekura, R. D., Duffel, M. W., and Jakoby, W. B., 1981. Arylsulfotransferases, Method. Enzymol. 77:197–206.CrossRefGoogle Scholar
  34. Siegers, C. P., Strubelt, O., and Schutt, A., 1978. Relations between hepatotoxicity and pharmacokinetics of paracetamol in rats and mie, Pharmacology 16:273–278.PubMedCrossRefGoogle Scholar
  35. Strittmatter, P., and Ball, E. G., 1955. Formaldehyde dehydrogenase, a glutathione-dependent enzyme system, J. Biol. Chem. 213:445-461. Thor, H., Moldeus, P., Hermanson, R., Hogberg, J., Reed, D. J., and Orrenius, J., 1978. Metabolic activation and hepatotoxicity. Toxicity of bromobenzene in hepatocytes isolated from phénobarbital and diethylmaleate treated rats, Arch. Biochem. Biophys. 188:122–129.Google Scholar
  36. Tonda, K., and Hirata, M., 1983. Glucuronidation and sulfation of p-nitrophenol in isolated rat hepatocyte subpopulations. Effects of phénobarbital and 3-methylcholanthrene pretreatment, Chem. Biol. Interact. 47:277–287.PubMedCrossRefGoogle Scholar
  37. van Bladeren, P., van der Gen, Breimer, D., and Moh, G., 1979. Stereoselective activation of vicinal dihalogen compounds to mutagens by glutathione conjugation, Biochem. Pharmacol. 28:2521–2524.PubMedCrossRefGoogle Scholar
  38. Watabe, T., Ishizuka, T., Isobe, M., and Ozawa, N., 1982. A 7-hyrdroxymethy sulfate ester as an active metabolite of 7,12-dimethylbenzo[a]anthracene, Science 215:403–405.PubMedCrossRefGoogle Scholar
  39. Watabe, T., Hiratsuka, A., and Tsurumor, T., 1984. Regiospecific and diastereoselective inactivation of mutagenic 9,10-dihydrobenzo[a]pyrene 7,8-oxide by hepatic cytosolic glutathione S-transferase, Biochem. Pharmacol. 33:4051–4056.PubMedCrossRefGoogle Scholar
  40. Wendel, A., Feuerstein, S., and Konz, K. H., 1978. Drug induced lipid peroxidation in mouse liver, in Functions of Glutathione in Liver and Kidney (H. Sies and A. Wendel, eds.), Springer-Verlag, New York.Google Scholar
  41. Williams, R. T., 1959. Detoxication Mechanisms, 2nd Ed., Chapman and Hall, London.Google Scholar
  42. Yalcin, S., Jensson, H., and Mannervik, B., 1983. A set of inhibitors for discrimination between the basic isozymes of glutathione transferase in rat liver, Biochem. Biophys. Res. Commun. 114:829–834.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • W. Mark Lafranconi
    • 1
  1. 1.Health and Personal Care Technology DivisionThe Procter and Gamble CompanyCincinnatiUSA

Personalised recommendations