Thiols, Disulfides, and Thioesters

  • Ryan J. Huxtable
Part of the Biochemistry of the Elements book series (BOTE, volume 6)


The thiol group is among the chemically most reactive functions occurring within the cell. This versatile and important function is centrally involved in enzymatic processes and cellular structure. The biochemistry of few other functions expresses so well our understanding of the underlying chemistry. As a result, model chemical reactions for thiols have been evolved that explain much of the biochemistry of this ubiquitous function. Thiols, responsible for the odor that has uniquely associated sulfur-containing compounds with Lucifer and his works (e.g., Tennyson: “... near me stood, in fuming sulphur blue and green, a fiend...”), have helped demystify the processes of life.


Fatty Acid Synthesis Lipoic Acid Flavin Adenine Dinucleotide Pantothenic Acid Acyl Carrier Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, W. A., and Meister, A., 1982. Biliary glutathione: Hepatic and pancreatic contributions, Fed. Proc. 41:1430.Google Scholar
  2. Abiko, Y., 1967a. Investigations on pantothenic acid and its related compounds. Separation and substrate specificity of pantothenate kinase and phosphopantothenoyl cysteine synthetase, J. Biochem. (Tokyo) 61:290–299.Google Scholar
  3. Abiko, Y., 1967b. Investigations on pantothenic acid and its related compounds. Purification and substrate specificity of phosphopantothenoylcysteine decarboxylase from rat liver, J. Biochem. (Tokyo) 61:300–308.Google Scholar
  4. Abiko, Y., 1970a. Pantothenic acid and coenzyme A: phosphopantothenoylcysteine synthetase from rat liver (pantothenate 4′-phosphate:L-cysteine ligase, EC, in Methods in Enzymology, Vol. 18, Part A (D. B. McCormick and L. D. Wright, eds.), Academic Press, New York, pp. 350–354.Google Scholar
  5. Abiko, Y., 1970b. Pantothenic acid and coenzyme A: phosphopantothenoylcysteine decarboxylase from rat liver [4′-phospho-N-(D-pantothenoyl)-L-cysteine carboxy-lyase, E.C.], in Methods in Enzymology, Vol. 18, Part A (D. B. McCormick and L. D. Wright, eds.), Academic Press, New York, pp. 354–358.Google Scholar
  6. Abiko, Y, 1975. Metabolism of coenzyme A, in Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 1–25.Google Scholar
  7. Abiko, Y., Suzuki, T., and Shimizu, M., 1967. Investigations on pantothenic acid and its related compounds. A final stage in the biosynthesis of CoA, J. Biochem. (Tokyo) 61:309–312.Google Scholar
  8. Abiko, Y., Tomikawa, M., and Shimizu, M., 1968. Further studies on phosphopantothenoylcysteine synthetase, J. Biochem. (Tokyo) 64:115–117.Google Scholar
  9. Abiko, Y., Tomikawa, M., Hosokawa, Y., and Shimizu, M., 1969. Investigations on pantothenic acid and its related compounds. Further studies on metabolism of pantothenoylalcohol in rat liver, Chem. Pharm. Bull. 17:200–201.PubMedGoogle Scholar
  10. Abiko, Y., Ashida, S., and Shimizu, M., 1972. Purification and properties of D-pantothenate kinase from rat liver, Biochim. Biophys. Acta 268:364–372.PubMedGoogle Scholar
  11. Adamu, I., Joseph, P. K., and Augusti, K. T., 1982. Hypolipidemic action of onion and garlic unsaturated oils in sucrose fed rats over a two-month period, Experientia 38:899–901.PubMedGoogle Scholar
  12. Andersen, K. K., and Bernstein, D. T., 1980. Sulfur compounds in mustelids, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 399–406.Google Scholar
  13. Anderson, M. E., and Meister, A., 1980. Dynamic state of glutathione in blood plasma, J. Biol. Chem. 255:9530–9533.PubMedGoogle Scholar
  14. Anderson, M. E., and Meister, A., 1983. Transport and direct utilization of gamma-glutamylcysteine for glutathione biosynthesis, Proc. Natl. Acad. Sci. USA 80:707–711.PubMedGoogle Scholar
  15. Arias, I. M., and Jakoby, W. B. (eds.), 1976. Glutathione: Metabolism and Function, Kroc Found. Ser., Vol. 6, Raven, New York, pp. 1–382.Google Scholar
  16. Ariga, T., Oshiba, S., and Terumi, T., 1981. Platelet aggregation inhibitor in garlic, Lancet.Google Scholar
  17. Aurbach, G. D., and Jakoby, W. R., 1962. The multiple functions of thiooxidase, J. Biol. Chem. 237:565–568.PubMedGoogle Scholar
  18. Bacq, Z. M., 1965. Chemical Protection against Ionizing Radiation, C. C. Thomas, Springfield, Illinois.Google Scholar
  19. Bacq, Z. M., and Alexander, P., 1961. Fundamentals of’ Radiobiology, Pergamon, London.Google Scholar
  20. Baddiley, J., 1955. The structure of coenzyme A, Adv. Enzymol. 16:1–21.Google Scholar
  21. Banks, B. E. C., 1969. Thermodynamics and biology, Chemistry in Britain 5:514–519.PubMedGoogle Scholar
  22. Banks, B. E. C., 1970. A reply to Linus Pauling and A. F. Huxley, Chemistry in Britain 6:541–542.PubMedGoogle Scholar
  23. Barltrop, J. A., Hayes, P. M., and Calvin, M., 1954. The chemistry of 1,2-dithiolane (trimethylene disulfide) as a model for the primary quantum conversion act in photosynthesis, J. Am. Chem. Soc. 76:4348–4367.Google Scholar
  24. Barron, E. S. G., Miller, Z. B., Bartlett, G. R., Meyer, J., and Singer, T. P., 1947. Reactivation by dithiols of enzymes inhibited by lewisite, Biochem. J. 41:69–74.Google Scholar
  25. Battersby, A. R., and Craig, L. C., 1951. The molecular weight determination of polypeptides, J. Am. Chem. Soc. 73:1887–1888.Google Scholar
  26. Battersby, A. R., and Craig, L. C., 1952a. The chemistry of tyrocidine. I. Isolation and characterization of a single peptide, J. Am. Chem. Soc. 74:4019–4023.Google Scholar
  27. Battersby, A. R., and Craig, L. C., 1952b. The chemistry of tyrocidine. II. Molecular weight studies, J. Am. Chem. Soc. 74:4023–4027.Google Scholar
  28. Beatty, P. W., and Reed, D. J., 1980. Involvement of the cystathionine pathway in the biosynthesis of glutathione by isolated rat hepatocytes, Arch. Biochem. Biophys. 204:80–87.PubMedGoogle Scholar
  29. Bellomo, G., Jewell, S. A., Thor, H., and Orrenius, S., 1982. Regulation of intracellular calcium compartmentation: Studies with isolated hepatocytes and/-butyl hydroperoxide, Proc. Natl. Acad. Sci. USA 79:6842–6846.PubMedGoogle Scholar
  30. Bellomo, G., Mirabelli, F., Richelmi, P., and Orrenius, S., 1983. Critical role of sulfhydryl group(s) in ATP-dependent Ca2+ sequestration by the plasma membrane fraction from rat liver, FEBS Lett. 163:136–139.PubMedGoogle Scholar
  31. Bersin, T., 1950. Die Phytochemie des Schwefels, Adv. Enzymol. 10:223–323.Google Scholar
  32. Birnbaum, S. M., Winitz, M., and Greenstein, J. P., 1957. Quantitative nutritional studies with water-soluble, chemically defined diets. III. Individual amino acids as sources of ‘non-essential’ nitrogen, Arch. Biochem. Biophys. 72:428–436.PubMedGoogle Scholar
  33. Black, S., 1963. The biochemistry of sulfur-containing compounds, Annu. Rev. Biochem. 32:399–418.PubMedGoogle Scholar
  34. Bloch, K., and Vance, D., 1977. Control mechanisms in the synthesis of saturated fatty acids, Annu. Rev. Biochem. 46:263–298.PubMedGoogle Scholar
  35. Bordia, A., 1981. Effect of garlic on blood lipids in patients with coronary heart disease, Am. J. Clin. Nutr. 34:2100–2103.PubMedGoogle Scholar
  36. Bordia, A., and Bansal, H. C., 1973. Essential oil of garlic in the prevention of atherosclerosis, Lancet 1973(ii):1491–1492.Google Scholar
  37. Boullin, D. J., 1981. Garlic as a platelet inhibitor, Lancet 1981(i):776–777.Google Scholar
  38. Bremer, J., Wojtczak, A., and Skrede, S., 1972. Leakage and destruction of CoA in isolated mitochondria, Eur. J. Biochem. 25:190–197.PubMedGoogle Scholar
  39. Brigelius, R., Lenzen, R., and Sies, H., 1982. Increase in hepatic mixed disulfide and glutathione disulfide levels elicited by paraquat, Biochem. Pharmacol. 31:1637–1641.PubMedGoogle Scholar
  40. Brown, G. M., 1957. Pantothenylcysteine, a precursor of pantetheine in Lactobacillus helveticus, J. Biol. Chem. 226:651–661.PubMedGoogle Scholar
  41. Brown, G. M., 1959a. The metabolism of pantothenic acid, J. Biol. Chem. 234:370–378.PubMedGoogle Scholar
  42. Brown, G. M., 1959b. Assay and distribution of bound forms of pantothenic acid, J. Biol. Chem. 234:379–382.PubMedGoogle Scholar
  43. Brown, G. M., 1971. Metabolism of water-soluble vitamins Sec. D. Biosynthesis of pantothenic acid and coenzyme A, in Comprehensive Biochemistry, Vol. 21 (M. Florkin and E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 73–80.Google Scholar
  44. Brown, G. M., and Snell, E. E., 1954. Pantothenic acid conjugates and growth of Acetobacter suboxydans, J. Bacteriol. 67:465–471.PubMedGoogle Scholar
  45. Bruice, T. C., and Benkovic, S., 1966. Thiolesters, in Bioorganic Mechanisms, Vol. I, W. A. Benjamin, Inc., New York, pp. 259–297.Google Scholar
  46. Buckner, J. S., and Kolattakudy, P. E., 1976. One step purification and properties of a two peptide fatty acid synthetase from uropygial gland of goose, Biochemistry 15:1948–1957.PubMedGoogle Scholar
  47. Buell, M. V., and Hansen, R. E., 1960. Reaction of pyridoxal-5-phosphate with aminothiols, J. Am. Chem. Soc. 82:6042–6049.Google Scholar
  48. Bullock, M. W., Brockman, J. A., Patterson, E. L., Pierce, J. V., and Stokstad, E. L. R., 1952. Synthesis of compounds in the thioctic acid series, J. Am. Chem. Soc. 74:3455.Google Scholar
  49. Bullock, M. W., Brockman, J. A., Patterson, E. L., Pierce, J. V., von Saltza, M. H., Sanders, F. and Stokstad, E. L. R. 1954. Syntheses in the thioctic acid series, J. Am. Chem. Soc. 76:1828–1832.Google Scholar
  50. Burk, R. F., Nishiki, K., Lawrence, R. A., and Chance, B., 1978. Peroxide removal by selenium-dependent and selenium-independent glutathione peroxidases in hemoglobinfree perfused rat liver, J. Biol. Chem., 253:43–46.PubMedGoogle Scholar
  51. Burleigh, B. D., and Williams, C. H., 1972. Isolation and primary structure of a peptide containing oxidation-reduction active cystine of Escherichia coli lipoamide dehydrogenase, J. Biol. Chem. 247:2077–2082.PubMedGoogle Scholar
  52. Calvin, M., 1954. Chemical and photochemical reactions of thioctic acid and related disulfides, Fed. Proc. 13:697–711.PubMedGoogle Scholar
  53. Caporaso, N., Smith, S. M., and Eng, R. H. K., 1983. Antifungal activity in human urine and serum after ingestion of garlic (Allium sativum), Antimicrob. Agents Chemother. 23:700–702.PubMedGoogle Scholar
  54. Cardeilhac, P. T., 1967. A toxic effect of 2-thiouracil on pyrimidine metabolism, Proc. Soc. Exp. Biol. Med. 125:692–696.PubMedGoogle Scholar
  55. Carmack, M., and Kelly, C., 1968. Synthesis of optically active Cleland’s reagent: (—)-1,4-Dithio-L-threitol, J. Org. Chem. 33:2171–2173.Google Scholar
  56. Cavallini, D., De Marco, C., and Mondovi, B., 1961. The enzymic conversion of cystamine and thiocysteamine into thiotaurine and hypotaurine, Enzymologia 23:101–110.PubMedGoogle Scholar
  57. Cavallini, D., Duprè, S., Graziani, M. T., and Tinti, M. G., 1968. Identification of pantethinase in horse kidney extract, FEBS Lett. 1:119–121.PubMedGoogle Scholar
  58. Cavallito, C. J., and Bailey, J. H., 1944. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action, J. Am. Chem. Soc. 66:1950–1951.Google Scholar
  59. Chance, B., Sies, H., and Boveris, A., 1979. Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59:527–605.PubMedGoogle Scholar
  60. Clark, R. W., 1971. Einstein: The Life and Times, World Publishing Co., New York, 718 pp.Google Scholar
  61. Cleland, W. W., 1964. Dithiothreitol, a new protective reagent for SH groups, Biochemistry 3:480–482.PubMedGoogle Scholar
  62. Colowick, S., Lazarow, A., Racker, E., Schwarz, D. R., Stadtman, E., and Waelsch, H. (eds.), 1954. Glutathione, Academic Press, New York, 341 pp.Google Scholar
  63. Crome, P., Volans, G. N., Vale, J. A., Widdop, B., Goulding, R., and Williams, R. S., 1976. The use of methionine for acute paracetamol poisoning, J. Int. Med. Res. 4 (Suppl.4):105–111.PubMedGoogle Scholar
  64. Crook, E. M. (ed.), 1959. Glutathione (Biochemical Society Symposium 17), Cambridge University Press, Cambridge.Google Scholar
  65. Daigo, K., and Reed, L. J., 1962. The amino acid sequence around the N-lipoyl-lysine residue in α-keto acid dehydrogenation complexes, J. Am. Chem. Soc. 84:666–671.Google Scholar
  66. De Marco, C., and Bognolo, D., 1962. The reaction between cysteamine and pyridoxal phosphate, Arch. Biochem. Biophys. 98:526–527.Google Scholar
  67. Dickens, F., 1964. Carcinogenic lactones and related substances, Br. Med. Bull. 20:96–101.PubMedGoogle Scholar
  68. Draeger, M., and Gattow, G., 1968. Chalcogenocarbonic acids and their anions, Angew. Chem. Int. Ed. Engl. 7:868–879.Google Scholar
  69. Duprè, S., Graziani, M. T., Rosei, M. A., Fabi, A., and Del Grosso, E., 1970a. The enzymatic breakdown of pantethine to pantothenic acid and cystamine, Eur. J. Biochem. 16:571–578.PubMedGoogle Scholar
  70. Duprè, S., Graziani, M. T., and Rosei, M. A., 1970b. A new method for determination of enzymatic pantethine-splitting activity, Ital. J. Biochem. 19:132–138.PubMedGoogle Scholar
  71. Ehrlich, P., and Hata, S., 1910. Die Experimentellen Chemotherapie der Spirillosen, Springer, Berlin.Google Scholar
  72. Einstein, A., 1905. Über die von molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [On the motion of small particles], Ann. Physik 17:549–560.Google Scholar
  73. Eisenstein, D., Azari, J., and Huxtable, R., 1979. Attenuation of the toxicity of a pyrrolizidine alkaloid (monocrotaline) by metabolic inhibition, Proc. West. Pharmacol. Soc. 22:193–198.PubMedGoogle Scholar
  74. Elovson, J., and Vagelos, P. R., 1968. Acyl carrier protein. X. Acyl carrier protein synthetase, J. Biol. Chem. 243:3603–3611.PubMedGoogle Scholar
  75. Fasella, P., 1967. Pyridoxal phosphate, Annu. Rev. Biochem. 36:185–210.PubMedGoogle Scholar
  76. Flohe, L., 1979. Glutathione peroxidase: Fact and fiction, CIBA Found. Symp. 65:95–122.Google Scholar
  77. Fluharty, A. L., and Sanadi, D. R., 1963. On the mechanism of oxidative phosphorylation. VI. Localization of the dithiol in oxidative phosphorylation with respect to the oligomycin inhibition site, Biochemistry 2:519–522.PubMedGoogle Scholar
  78. Forstrom, J. W., and Tappel, A. L., 1979. Donor substrate specificity and thiol reduction of glutathione disulfide peroxidase, J. Biol. Chem. 254:2888–2891.PubMedGoogle Scholar
  79. Forstrom, J. W., Zakowski, J. J., and Tappel, A. L., 1978. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine, Biochemistry 17:2639–2644.PubMedGoogle Scholar
  80. Fridrichsons, J., and Mathieson, A. M., 1962. The structure of sporidesmin: Causative agent of facial excema in sheep, Tetrahedron Lett. 1962:1265–1268.Google Scholar
  81. Friedheim, E. A. H., 1949. Mel B in the treatment of human trypanosomiasis, Am. J. Trop. Med. 29:173–184.Google Scholar
  82. Fromtling, R. A. F., and Bulmer, G. S., 1978. The in vitro effect of an aqueous extract of garlic (Allium sativum) on growth and viability of Cryptococcus neoformans, Mycologia 70:397–409.PubMedGoogle Scholar
  83. Gawron, O., Fernando, J., Keil, J., and Weismann, T. J., 1962. Zwitterion structure and acylative ring-opening reactions of 2-amino-thiazoline-4-carboxylic acid, J. Org. Chem. 27:3117–3123.Google Scholar
  84. Goldman, P., and Vagelos, R., 1964. Acyl-transferase reactions (CoA-structure, function), in Comprehensive Biochemistry, Vol. 15 (M. Florkin and E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 71–92.Google Scholar
  85. Gould, S. J., 1982. Wasps and WASPs, Natural History 91:8–15.Google Scholar
  86. Gray, E. G., and Whittaker, V. P., 1962. The isolation of nerve endings from brain: An electron microscopic study of cell fragments derived by homogenization and centrifugation, J. Anat. 96:431–435.Google Scholar
  87. Griffith, O. W., and Meister, A., 1979. Translocation of intracellular glutathione to membrane-bound γ-glutamyltranspeptidase as a discrete step in the γ-glutamylcycle: Glutathionuria after inhibition of transpeptidase, Proc. Natl. Acad. Sci. USA 76:268–272.PubMedGoogle Scholar
  88. Griffith, O. W., and Meister, A., 1980. Excretion of cysteine and γ-glutamylcysteine moieties in human and experimental animal γ-glutamyl transpeptidase deficiency, Proc. Natl. Acad. Sci. USA 77:3384–3387.PubMedGoogle Scholar
  89. Haugaard, N., Lee, N. H., Kostrzewa, R., and Haugaard, E. S., 1969. Effects of a disulfide (Ellman’s reagent) and thiols on oxidative phosphorylation and ion transport by rat liver mitochondria, Biochem. Pharmacol. 18:2385–2391.PubMedGoogle Scholar
  90. Hayakawa, T., Hirashima, M., Ide, S., Hamada, M., Okabe, K., and Koike, M., 1966. Mammalian α-keto acid dehydrogenase complex, J. Biol. Chem. 241:4694–4699.PubMedGoogle Scholar
  91. Hayakawa, T., Kanzaki, T., Kitamura, T., Fukuyoshi, Y., Sakurai, Y., Koike, K., Suematsu, T., and Koike, M., 1969. Mammalian α-keto acid dehydrogenase complexes. V. Resolution and reconstitution studies of the pig heart pyruvate dehydrogenase complex, J. Biol. Chem. 244:3660–3670.PubMedGoogle Scholar
  92. Heller, J., 1968. Structure of visual pigments. II. Binding of retinal and conformational changes on light exposure in bovine visual pigment 500, Biochemistry 7:2914–2920.PubMedGoogle Scholar
  93. Henriksen, T., 1961. Electron paramagnetic resonance studies on irradiated thiols and disulfides, in Free Radicals in Biological Systems (M. S. Blois, ed.), Academic Press, London and New York, pp. 279–294.Google Scholar
  94. Himmelweit, F., 1960. The Collected Papers of Paul Ehrlich, Pergamon Press, Oxford, pp. 505–510.Google Scholar
  95. Hirashima, M., Hayakawa, T., and Koike, M., 1967. Mammalian α-keto acid dehydrogenase complexes. II. An improved procedure for the preparation of 2-oxoglutarate dehydrogenase complex from pig heart muscle, J. Biol. Chem. 242:902–907.PubMedGoogle Scholar
  96. Hitchcock, C., and Nichols, B. W., 1971. Plant Lipid Biochemistry (Experimental Botany, Vol. 4), Academic Press, London, 388 pp.Google Scholar
  97. Hoagland, M. B., and Novelli, G. D., 1954. Biosynthesis of coenzyme A from phosphopantetheine and of pantetheine from pantothenate, J. Biol. Chem. 201:761–113.Google Scholar
  98. Hopkins, F. G., 1929. On glutathione: A reinvestigation, J. Biol. Chem. 84:269–320.Google Scholar
  99. Huxley, A. F., 1970. Energetics of muscle, Chemistry in Britain 6:477–479.PubMedGoogle Scholar
  100. Huxtable, R., 1979. New aspects of the toxicology and pharmacology of pyrrolizidine alkaloids, Gen. Pharmacol. 10:159–167.PubMedGoogle Scholar
  101. Huxtable, R. J., and Barbeau, A. (eds.), 1976. Taurine, Raven Press, New York, 398 pp.Google Scholar
  102. Huxtable, R. J., Laird, H., Lippincott, S. E., and Walson, P., 1983. Epilepsy and the concentrations of plasma amino acids in humans, Neurochem. International 5:125–135.Google Scholar
  103. Hylin, J. W., and Wood, J. L., 1959. Enzymatic formation of polysulfides from mercaptopyruvate, J. Biol. Chem. 234:2141–2144.PubMedGoogle Scholar
  104. Jaenicke, L. and Lynen, F., 1960. Coenzyme A, in The Enzymes, 2nd Ed., Vol. 3 (P. D. Boyer, H. Lardy, and K. Myrback, eds), Academic Press, New York. pp. 1–103.Google Scholar
  105. Janssen, M. J., 1969. Thiolo, thiono, and dithio acids and esters, in The Chemistry of Carboxylic Acids and Esters (S. Patai, ed.), Wiley, London, pp. 705–764.Google Scholar
  106. Jeffcoat, R., 1977. The physiological role and control of mammalian fatty acyl-coenzyme A desaturases, Biochem. Soc. Trans. 5:811–818.PubMedGoogle Scholar
  107. Jewell, S. A., Bellomo, G., Thor, H., Orrenius, S., and Smith, M. T., 1982. Changes in the surface structure of isolated hepatocytes during drug metabolism are caused by alterations in intracellular thiol and Ca2+ homeostatis, Science 217:1257–1259.PubMedGoogle Scholar
  108. Jocelyn, P. C. 1972. Biochemistry of the SH Group, Academic Press, London, 404 pp.Google Scholar
  109. Johnson, M. G., and Reese, V. H., 1969. Death of Salmonella typhimurium and Escherichia coli in the presence of freshly reconstituted dehydrated garlic and onion, Appl. Microbiol. 17:903–905.PubMedGoogle Scholar
  110. Jones, D. P., Moldéus, P., Stead, H., Ormstad, H., Jornvall, H., and Orrenius, S., 1979. Metabolism of glutathione and glutathione conjugate by isolated kidney cells, J. Biol. Chem. 254:2787–2792.PubMedGoogle Scholar
  111. Jones, M. E., Lipmann, F., Hilz, H., and Lynen, F., 1953. On the enzymatic mechanism of coenzyme A acetylation with adenosine triphosphate and acetate, J. Am. Chem. Soc. 75:3285–3286.Google Scholar
  112. Kaplowitz, N., 1981. The importance and regulation of hepatic glutathione, Yale J. Biol. Med. 54:497–502.PubMedGoogle Scholar
  113. Karlsen, R. L., Grofova, I., Malthe-Sorenssen, D., and Fonnum, F., 1981. Morphological changes in rat brain induced by L-cysteine injection in newborn animals, Brain Res. 208:167–180.PubMedGoogle Scholar
  114. Kato, A., and Hashimoto, Y., 1980. Biologically active 1,2-dithiolane derivatives from mangrove plants and related compounds, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. E. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 361–374.Google Scholar
  115. Katoh, S., and Takamiya, A., 1964. Nature of copper-protein binding in spinach plastocyanin, J. Biochem. (Tokyo) 55:378–387.Google Scholar
  116. Ke, B., 1957. The polarographic behavior of α-lipoic acid, Biochim. Biophys. Acta 25:650–651.PubMedGoogle Scholar
  117. King, T. E., and Cheldelin, V. H., 1953. Pantothenic acid derivatives and growth of Acetobacter suboxydans, Proc. Soc. Exp. Biol. Med. 84:591–593.PubMedGoogle Scholar
  118. Kinsey, A. C., Pomeroy, W. B., and Martin C. E., 1948. Sexual Behavior in the Human Male, W. B. Saunders Co., Philadelphia.Google Scholar
  119. Kinsey, A. C., Pomeroy, W. B., Martin, C. E., and Gebhard, P. H., 1953. Sexual Behavior in the Human Female, W. B. Saunders Co., Philadelphia.Google Scholar
  120. Knox, W. E., 1960. Glutathione, Enzymes (Part A) 2:253–294.Google Scholar
  121. Koechlin, B. A., 1954. The isolation and identification of the major anion fraction of the axoplasm of squid giant nerve fibers, Proc. Natl. Acad. Sci. USA 40:60–62.PubMedGoogle Scholar
  122. Koike, M., and Koike, K., 1975. Lipoic acid, in Metabolic Pathways, 3rd. Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 87–99.Google Scholar
  123. Koike, M., and Reed, L. J., 1960. α-Keto acid dehydrogenation complexes. II. The role of protein-bound lipoic acid and flavin adenine dinucleotide, J. Biol. Chem. 235:1931–1938.PubMedGoogle Scholar
  124. Koike, M., Reed, L. J., and Carroll, W. R., 1960. α-Keto acid dehydrogenation complexes. I. Purification and properties of pyruvate and α-ketoglutarate dehydrogenation complexes of Escherichia coli, J. Biol. Chem. 235:1924–1930.Google Scholar
  125. Koike, M., Reed, L. J., and Carroll, W. R., 1963. α-Keto acid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex, J. Biol. Chem. 238:30–39.PubMedGoogle Scholar
  126. Kozarich, J. W., and Chari, R. V. J., 1982. (Glutathiomethyl)glyoxal: Mirror-image catalysis by glyoxalase I, J. Am. Chem. Soc. 104:2655–2657.Google Scholar
  127. Lafranconi, M., and Huxtable, R. J., 1981. Pyrrolizidines and the pulmonary vasculature, Reviews on Drug Metabolism and Drug Interactions 3:271–315.Google Scholar
  128. Larsson, A., Orrenius, S., Holmgren, A., and Mannervik, B. (eds.), 1983. Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects, Raven, New York, 393 pp.Google Scholar
  129. Lee, R., and McElroy, W. D., 1969. Role and reactivity of sulfhydryl groups in firefly luciferase, Biochemistry 8:130–136.PubMedGoogle Scholar
  130. Levintow, L., and Novelli, G. D., 1954. The synthesis of coenzyme A from pantetheine: Preparation and properties of pantetheine kinase, J. Biol. Chem. 207:761–765.PubMedGoogle Scholar
  131. Lewis, W. L., and Stiegler, H. W., 1925. The ß-chlorovinylarsines and their derivatives, J. Am. Chem. Soc. 47:2546–2556.Google Scholar
  132. Lipmann, F., 1945. Acetylation of sulfanilamide by liver homogenates and extracts, J. Biol. Chem. 160:173–190.Google Scholar
  133. Lipmann, F., 1953. On the chemistry and function of coenzyme A, Bacteriol. Rev. 17:1–16.PubMedGoogle Scholar
  134. Little, C., and O’Brien, P. J., 1968. Intracellular glutathione reduced peroxidase with a lipid peroxide substrate, Biochem. Biophys. Res. Commun. 31:145–150.PubMedGoogle Scholar
  135. Lowe, J. N., and Ingraham, L. L., 1974. An Introduction to Biochemical Reactions Mechanisms, Chap. 3, Foundation of Molecular Biology Series, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  136. Lowenstein, J. M., 1967. The tricarboxylic acid cycle, in Metabolic Pathways, 3rd Ed., Vol. 1 (D. M. Greenberg, ed.), Academic Press, New York, pp. 146–270.Google Scholar
  137. Lumper, L., and Zahn, H., 1965. Chemie und Biochemie des Disulfidaustausches, Adv. Enzymol. 27:199–237.PubMedGoogle Scholar
  138. Lynen, F., 1970. Chemical reactivity and biological role of functional groups, in Enzymes (R. M. S. Smellie, ed.), Academic Press, New York, pp. 1–19.Google Scholar
  139. Lynen, F., 1980. On the structure of fatty acid synthetase of yeast, Eur. J. Biochem. 112:431–442.PubMedGoogle Scholar
  140. Maloof, F., and Soodak, M., 1963. Intermediary metabolism of thyroid tissue and the action of drugs. A. Thiocarbamides, Pharmacol. Rev. 15:72–79.Google Scholar
  141. Makheja, A. N., Vanderho, J. Y., and Bailey, J. M., 1979. Inhibition of platelet aggregation and thromboxane synthesis by onion and garlic, Lancet 1979(i):781.Google Scholar
  142. Mandels, G. R., 1956. Properties and surface location of a sulfhydryl oxidizing enzyme in fungus spores, J. Bacteriol. 72:230–234.PubMedGoogle Scholar
  143. Marmstal, E., and Mannervik, B., 1979. Purification, characterization and kinetic studies of glyoxalase I from rat liver, Biochim. Biophys. Acta 566:262–270.Google Scholar
  144. Marquardt, M., 1951. Paul Ehrlich, Henry Schuman, New York.Google Scholar
  145. Mclntyre, T. M., and Curthoys, N. P., 1980. The interorgan metabolism of glutathione, Int. J. Biochem. 12:545–551.Google Scholar
  146. Meacham, J., 1968. Ascorbic acid oxidizes thiol groups of plasma proteins, Experientia 24:125–126.PubMedGoogle Scholar
  147. Meister, A., 1974. Glutathione synthesis, in Enzymes, Vol. 10 (Paul D. Boyer, ed.), Academic Press, New York, pp. 671–697.Google Scholar
  148. Meister, A., 1975. Biochemistry of glutathione, in Metabolic Pathways, 3rd Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 101–188.Google Scholar
  149. Meister, A., 1981. On the cycles of glutathione metabolism and transport, Curr. Top. Cell. Regul. 18:21–58.PubMedGoogle Scholar
  150. Meister, A., 1983. Selective modification of glutathione metabolism, Science 220:473–477.Google Scholar
  151. Meister, A., 1984. New developments in glutathione metabolism and their potential application in therapy, Hepatology 4:739–742.PubMedGoogle Scholar
  152. Meister, A., and Anderson, M. E., 1983. Glutathione, Annu. Rev. Biochem. 52:711–760.PubMedGoogle Scholar
  153. Meister, A., and Tate, S. S., 1976. Glutathione and related γ-glutamyl compounds: Biosynthesis and utilization, Annu. Rev. Biochem. 45:559–604.PubMedGoogle Scholar
  154. Melville, D. B., 1959. Ergothioneine, Vitam. Horm. 17:155–204.Google Scholar
  155. Meredith, M. J., and Reed, D. J., 1982. Status of the mitochondrial pool of glutathione in the isolated hepatocyte, J. Biol. Chem. 257:3747–3753.PubMedGoogle Scholar
  156. Minato, H., Matsumoto, M., and Katayama, T., 1971. Verticillin A, a new antibiotic from Verticillium sp., J. Chem. Soc, Chem. Commun. 1971:44–45.Google Scholar
  157. Miner, R. W., 1954. Paul Ehrlich Centennial, Ann. N.Y. Acad. Sci. 59:141–276.Google Scholar
  158. Mueller, J. H., 1922. A new sulphur-containing amino acid isolated from casein, Proc. Soc. Exp. Biol. Med. 19:161–163.Google Scholar
  159. Nakamura, T., Kusunoki, T., and Soyama, K., 1967. Effect of pantothenic acid administration on 4′-phosphopantetheine and dephospho-coenzyme A content in rat liver determined by the use of biosynthetic reaction of coenzyme A in vitro from these precursor substances, J. Vitaminol. (Kyoto) 13:289–297.Google Scholar
  160. Nakamura, T., Kusunoki, T., Soyama, K., and Kuwagata, M., 1969. Distribution of pantothenic acid, coenzyme A, and their intermediates in rat liver. III. Isolation of pantothenic acid, 4′-phosphopantetheine, and coenzyme A by column chromatography, Vitamins 40:412–415.Google Scholar
  161. Nawa, H., Brady, W. T., Koike, M., and Reed, L. J., 1960. Studies on the nature of protein-bound lipoic acid, J. Am. Chem. Soc. 82:896–903.Google Scholar
  162. Neims, A. H., and Hellerman, L., 1970. Flavoenzyme catalysis, Annu. Rev. Biochem. 39:867–888.PubMedGoogle Scholar
  163. Ober, W. A., 1979. Boswell’s Clap and Other Essays, Feffer and Simons, Inc., London, 291 pp.Google Scholar
  164. Oesterhelt, D., Bauer, H., Kresze, G., Steber, L., and Lynen, F., 1977. Reaction of yeast fatty acid synthetase with iodoacetamide: Kinetics of inactivation and extent of carboxyamidomethylation, Eur. J. Biochem. 79:173–180.PubMedGoogle Scholar
  165. O’Leary, W. M., 1970. Bacterial lipid metabolism, in Lipid metabolism, Chapter 5 of Comprehensive Biochemistry, Vol. 18 (M. Florkinand E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 229–264.Google Scholar
  166. Ormstad, K., Lastbom, T., and Orrenius, S., 1980. Translocation of amino acids and glutathione studied with the perfused kidney and isolated renal cells, FEBS Lett. 112:55–59.PubMedGoogle Scholar
  167. Orrenius, S., Ormstad, K., Thor, H., and Jewell, S. A., 1983. Turnover and functions of glutathione studied with isolated hepatic and renal cells, Fed. Proc. 42:3177–3188.PubMedGoogle Scholar
  168. Overberger, C. G., Burg, K. H., and Daly, W. H. 1965. Oxidation of polyvinyl mercaptan and related model compounds by molecular oxygen, J. Am. Chem. Soc. 87:4125–4130.Google Scholar
  169. Patai, S., 1974a. The Chemistry of the Thiol Group, Part I, John Wiley and Sons, London, pp. 1–480.Google Scholar
  170. Patai, S., 1974b. The Chemistry of the Thiol Group, Part 2, John Wiley and Sons, London, pp. 481–956.Google Scholar
  171. Patterson, E. L., Brockman, J. A., Day, F. P., Pierce, J. V., Macchi, M. E., Hoffmann, C. E., Fong, C. T. O., Stokstad, E. L. R., and Jukes, T. H., 1951. Crystallization of a derivative of protogen-B, J. Am. Chem. Soc. 73:5919–5920.Google Scholar
  172. Pauling, L., 1970. Structure of high energy molecules, Chemistry in Britain 6:468–472.PubMedGoogle Scholar
  173. Pestana, A., and Sols, A., 1970. Reversible inactivation by elemental sulfur and mercurials of rat liver serine dehydratase and certain sulfhydryl enzymes, Biochem. Biophys. Res. Commun 39:522–529.PubMedGoogle Scholar
  174. Peters, R. A., Stocken, L. A., and Thompson, R. H. S., 1945. British anti-Lewisite, Nature 156:616–617.PubMedGoogle Scholar
  175. Porqué, P. G., Baldesten, A., and Reichard, P., 1970. Purification of a thioredoxin system from yeast, J. Biol. Chem. 245:2363–2370.Google Scholar
  176. Pottle, F. A. (ed.), 1950. Boswell’s London Journal 1762-1763. William Heinemann Ltd., London.Google Scholar
  177. Powell, G. L., Elovson, J., and Vagelos, P. R., 1969. Acyl carrier protein. XII. Synthesis and turnover of the prosthetic group of acyl carrier protein in vivo, J. Biol. Chem. 244:5616–5624.PubMedGoogle Scholar
  178. Prescott, D. J., and Vagelos, P. R., 1972. Acyl carrier protein, Adv. Enzymol. 36:269–311.PubMedGoogle Scholar
  179. Prescott, L. F., Park, J., Sutherland, G. R., Smith, I. J., and Proudfoot, A. T., 1976. Cysteamine, methionine and penicillamine in the treatment of paracetamol poisoning, Lancet 1976(ii)2:109–113.Google Scholar
  180. Racker, E., 1955. Glutathione-homocystine transhydrogenase, J. Biol. Chem. 217:867–874.PubMedGoogle Scholar
  181. Reed, L. J., 1960. Lipoic acid, in The Enzymes, 2nd Ed., Vol. 3 (P. D. Boyer, H. Lardy and K. Myrbäck, eds.), Academic Press, New York, pp. 195–223.Google Scholar
  182. Reed, L. J., 1966. Chemistry and function of lipoic acid, in Comprehensive Biochemistry, Vol. 14 (M. Florkin and E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 99–126.Google Scholar
  183. Reed, D. J., and Beatty, P. W., 1980. Biosynthesis and regulation of glutathione: Toxicological implications, in Review of Biochemical Toxicology (E. Hodgson, J. R. Bend, and R. N. Philpot, eds.), Elsevier/North Holland, New York, pp. 213–241.Google Scholar
  184. Reed, L. J., and Cox, D. J., 1970. Multienzyme complexes, in The Enzymes, 3rd Ed., Vol. 1 (P. D. Boyer, ed.), Academic Press, New York, pp. 213–240.Google Scholar
  185. Reed, L. J., DeBusk, B. G., Gunsalus, I. C., and Hornberger, C. S., 1951. Crystalline α-lipoic acid: A catalytic agent associated with pyruvate dehydrogenase, Science 114:93–94.PubMedGoogle Scholar
  186. Reed, L. J., Gunsalus, I. C., Schnakenberg, G. H. F., Soper, O. F., Boaz, H. E., Kern, S. F., and Parke, T. V., 1953. Isolation, characterization and structure of α-lipoic acid, J. Am. Chem. Soc. 75:1267–1273.Google Scholar
  187. Richman, P. G., and Meister, A., 1975. Regulation of γ-glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione, J. Biol. Chem. 250:1422–1426.PubMedGoogle Scholar
  188. Richman, P. G., Orlowski, M., and Meister, A., 1973. Inhibition of γ-glutamycysteine synthetase by L-methionine-S-sulfoximine, J. Biol. Chem. 248:6684–6690.PubMedGoogle Scholar
  189. Robinson, H. C., and Pasternak, C., 1964. The isolation of S-sulphoglutathione from the small intestine of the rat, Biochem. J. 93:487–492.PubMedGoogle Scholar
  190. Robishaw, J. D., and Neely, J. R., 1985. Coenzyme A metabolism, Am. J. Physiol. 248:E1–E9.PubMedGoogle Scholar
  191. Rogers, S. J., 1969. Textbook errors, 88: Composite pK’s of cysteine, J. Chem. Educ. 46:239–240.PubMedGoogle Scholar
  192. Ronchi, S., and Williams, C. H., 1972. Isolation and primary structure of a peptide containing the oxidation-reduction active cystine of Escherichia coli thioredoxin reductase, J. Biol. Chem. 247:2083–2086.PubMedGoogle Scholar
  193. Ross, R. A., and Vernon, C. A., 1970. Biological energetics—the other view, Chemistry in Britain 6:539–542.PubMedGoogle Scholar
  194. Schneider, V. F., Schauer, R., Martini, O., and Hahn, J., 1967. Reversibilität der Glutathion—Insulin-Transhydrogenierung (Proteindisulfid Reduktase Reaktion), Hoppe-Seyler’s Z. Physiol. Chem. 348:391.Google Scholar
  195. Schreckenbach, T., Wobser, H., and Lynen, F., 1977. Palmityl binding sites of fatty acid synthetase from yeast, Eur. J. Biochem. 80:13–23.PubMedGoogle Scholar
  196. Schweizer, E., Kniep, B., Castorph, H., and Holzner, U., 1973. Pantetheine-free mutants of the yeast fatty acid synthetase complex, Eur. J. Biochem 39:353–362.PubMedGoogle Scholar
  197. Schweizer, E., Dietlein, G., Gimmler, G., Knobling, A., Tahedl, H. W., and Schweizer, M., 1975. Yeast fatty acid synthetase comprising two multifunctional polypeptide chains, Proc. FEBS Meet. 40:85–97.Google Scholar
  198. Seelig, G. F., and Meister, A., 1982. Cystamine-sepharose. A probe for the active site of γ-glutamylcysteine synthetase, J. Biol. Chem. 257:5092–5096.PubMedGoogle Scholar
  199. Seelig, G. F., and Meister, A., 1984. γ-dutamylcysteine synthetase. Interactions of an essential sulfydryl group, J. Biol. Chem. 257:5092–5096.Google Scholar
  200. Seneca, H., Kane, J. H., and Rockenbach, J., 1952. Bactericidal, protozoicidal and fungicidal properties of thiolutin, Antibiot. Chemother. 2:357–360.Google Scholar
  201. Seven, M. J., 1960. Metal-binding in Medicine, Lippincott, Philadelphia.Google Scholar
  202. Shimakata, T., and Stumpf, P. K., 1982a. The prokaryotic nature of the fatty acid synthetase of developing Carthamus tineorius L. (safflower) seeds, Arch. Biochem. Biophys. 217:144–154.PubMedGoogle Scholar
  203. Shimakata, T., and Stumpf, P. K., 1982b. Fatty acid synthetase of Spinacia oleracea leaves, Plant Physiol. 69:1257–1262.PubMedGoogle Scholar
  204. Shimizu, M., and Abiko, Y., 1965. Investigations on pantothenic acid and its related compounds. Biosynthesis of coenzyme A from pantothenate, pantethine and from S-benzoylpantetheine in vitro and in vivo, Chem. Pharm. Bull. 13:189–197.PubMedGoogle Scholar
  205. Shimizu, M., Nagase, O., Hosokawa, Y., and Tagawa, H., 1968. Chemical synthesis of coenzyme A analogs of a modified cysteamine moiety, Tetrahedron 24:5241–5250.PubMedGoogle Scholar
  206. Sies, H., and Wendel, A. (eds.), 1978. Functions of Glutathione in Liver and Kidney, Springer, New York, 212 pp.Google Scholar
  207. Silverman, M., 1941. Magic in a Bottle, Macmillan, New York. Skrede, S., 1973. Degradation of CoA. Subcellular localization and kinetic properties of CoA-and dephospho-CoA pyrophosphatase, Eur. J. Biochem. 38:401–407.Google Scholar
  208. Smith, S., and Stern, A., 1979. Subunit structure of the mammalian fatty acid synthetase—further evidence for a homodimer, Arch. Biochem. Biophys. 197:379–387.PubMedGoogle Scholar
  209. Snell, E. E., and Brown, G. M., 1953. Pantethine and related forms of the Lactobacillus bulgaricus factor (LBF), Adv. Enzymol. 14:49–71.Google Scholar
  210. Spiller, M. A., 1984. The chemical components of coffee, in The Methylxanthine Beverages and Foods: Chemistry, Consumption, and Health Effects (A. Spiller, ed.), A. R. Liss, New York, pp. 91–147.Google Scholar
  211. Srere, P. A., Bottger, B., and Brooks, G. C., 1972. Citrate lyase. A pantothenate-containing enzyme, Proc. Natl. Acad. Sci. USA 69:1201–1202.PubMedGoogle Scholar
  212. Stocken, L. A., and Thompson, R. H. S., 1946. British anti-lewisite. Dithiol compounds as antidotes for arsenic, Biochem. J. 40:535–548.Google Scholar
  213. Stocken, L. A., Thompson, R. H. S., and Whittaker, V. P., 1947. British anti-lewisite. Antidotal effects against therapeutic arsenicals, Biochem. J. 41:47–51.Google Scholar
  214. Stoll, S., and Seebeck, E. 1950. Die Synthese des naturlichen Alliins, Experientia 6:330.PubMedGoogle Scholar
  215. Stoops, J. K., and Wakil, S. J., 1980. Yeast fatty acid synthetase: Structure-function relationship and nature of the ß-ketoacyl synthetase site, Proc. Natl. Acad. Sci. USA 77:4544–4548.PubMedGoogle Scholar
  216. Stoops, J. K., and Wakil, S. J., 1981a. Animal fatty acid synthetase. A novel arrangement of the ß-ketoacyl synthetase sites comprising domains of the two subunits, J. Biol. Chem. 256:5128–5133.PubMedGoogle Scholar
  217. Stoops, J. K., and Wakil, S. J., 1981b. The yeast fatty acid synthetase. Structure-function relationship and the role of the active cysteine-sulfhydryl and pantetheine-sulfhydryl, J. Biol. Chem. 256:8364–8370.PubMedGoogle Scholar
  218. Stoops, J. K., and Wakil, S. J., 1982. Animal fatty acid synthetase. Identification of the residues comprising the novel arrangement of the ß-ketoacyl synthetase site and their role in its cold inactivation, J. Biol. Chem. 257:3230–3235.PubMedGoogle Scholar
  219. Stoops, J. K., Arslanian, M. J., Oh, Y. H., Aune, K. C., Vanaman, T. C., and Wakil, S. J., 1975. Presence of two polypeptide chains comprising fatty acid synthetase, Proc. Natl. Acad. Sci. USA 72:1940–1944.PubMedGoogle Scholar
  220. Stoops, J. K., Arslanian, M. J., Chalmers Jr., J. H., Joshi, V. C., and Wakil, S. J., 1977. Fatty acid synthetase complexes, Bioorg. Chem. 1:339–370.Google Scholar
  221. Stoops, J. K., Ross, P. R., Arslanian, M. J., Aune, K. C., Wakil, S. J., and Oliver, R. M., 1979. Physicochemical studies of the rat liver and adipose fatty acid synthetases, J. Biol. Chem. 254:7418–7426.PubMedGoogle Scholar
  222. Stumpf, P. K., and Harwood, J. L., 1975. Fatty acid biosynthesis in plants, in Recent Advances in the Chemistry and Biochemistry of Plant Lipids (T. Galliard and E. I. Mercer, eds.), Academic Press, London.Google Scholar
  223. Sunner, S., 1955. Strain in 6,8-thioctic acid, Nature (London) 176:217.Google Scholar
  224. Suzuki, T., Abiko, Y., and Shimizu, M., 1967. Pantothenic acid and its related compounds. XII. Biochemical studies. 7. Dephospho-coenzyme A pyrophosphorylase and dephospho-coenzyme A kinase as a possible bifunctional enzyme complex, J. Biochem. (Tokyo) 62:642–649.Google Scholar
  225. Tanaka, N., Koike, K., Hamada, M., Otsuka, K-I., Suematsu, T., and Koike, M., 1972. Mammalian α-keto acid dehydrogenase complexes. VII. Resolution and reconstitution of the pig heart 2-oxoglutarate dehydrogenase complex, J. Biol. Chem. 247:4043–4049.PubMedGoogle Scholar
  226. Tanaka, N., Koike, K., Otsuka, K-I., Hamada, M., Ogasahara, K., and Koike, M., 1974. Mammalian α-keto acid dehydrogenase complexes. VIII. Properties and subunit composition of the pig heart lipoate succinyltransferase, J. Biol. Chem. 249:191–198.PubMedGoogle Scholar
  227. Thomas, R. C., and Reed, L. J., 1956. Disulfide polymers of DL-a-lipoic acid, J. Am. Chem. Soc. 78:6148–6149.Google Scholar
  228. Thompson, G. A., and Meister, A., 1977. Interrelationships between the binding sites for amino acids, dipeptides, and γ-glutamyl donors in γ-glutamyl transpeptidase, J. Biol. Chem. 252:6792–6798.PubMedGoogle Scholar
  229. Thorn, M. B., and Jackson, F. L., 1959. Interaction of non-specific reducing and oxidizing agents with the cytochrome system in heart-muscle preparations, Biochim. Biophys. Acta 35:65–76.PubMedGoogle Scholar
  230. Tomizawa, H. H., and Varandani, P. T., 1965. Glutathione-insulin transhydrogenase of human liver, J. Biol. Chem. 240:3191–3194.PubMedGoogle Scholar
  231. Tweto, J., Liberti, M., and Larrabee, A. R., 1971. Protein turnover and 4′-phosphopantetheine exchange in rat liver fatty acid synthetase, J. Biol. Chem. 246:2468–2471.PubMedGoogle Scholar
  232. Vagelos, P. R., 1973. Acyl group transfer (acyl carrier protein), in The Enzymes, 3rd Ed., Vol. 8 (P. D. Boyer, ed.), Academic Press, New York, pp. 155–199.Google Scholar
  233. Vagelos, P. R., and Larrabee, A. R., 1967. Acyl carrier protein. IX. Acyl carrier protein hydrolase, J. Biol. Chem. 242:1776–1781.PubMedGoogle Scholar
  234. Vallée, B. L., Coombs, T. L., and Hoch, F. L., 1960. The ‘active site’ of bovine pancreatic carboxypeptidase A, J. Biol. Chem. 235:PC45–PC47.PubMedGoogle Scholar
  235. Van Eys, J., and Kaplan, N. O., 1957. The addition of sulfhydryl compounds to diphosphopyridine nucleotide and its analogues, J. Biol. Chem. 228:305–314.Google Scholar
  236. Varandani, P. T., 1967. Acceleration of regeneration of insulin activity from its inactive reduced A and B chains by pancreatic glutathione-insulin transhydrogenase, Biochim. Biophys. Acta 132:10–14.PubMedGoogle Scholar
  237. Varandani, P. T., and Tomizawa, H. H., 1966. Purification and properties of pancreatic glutathione-insulin transhydrogenase, Biochim. Biophys. Acta 113:498–506.PubMedGoogle Scholar
  238. Vina, J., Reginald, H., and Krebs, H. A., 1978. Maintenance of glutathione content in isolated hepatocytes, Biochem. J. 170:627–630.PubMedGoogle Scholar
  239. Voegtlin, C., and Smith, H. W. L., 1920. Quantitative studies in chemotherapy. II. The trypanocidal action of arsenic compounds, J. Pharmacol. Exp. Therap. 15:475–493.Google Scholar
  240. Valope, J. J., and Vagelos, P. R., 1976. Mechanisms and regulation of biosynthesis of saturated fatty acids, Physiol. Rev. 56:339–417.Google Scholar
  241. Wakil, S. J., 1970. Fatty acid metabolism, in Lipid Metabolism (S. J. Wakil, ed.), Academic Press, New York, pp. 1–48.Google Scholar
  242. Wakil, S. J., and Barnes, E. M., 1971. Fatty acid metabolism, in Comprehensive Biochemistry, Vol. 18 (M. Florkin and E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 57–104.Google Scholar
  243. Wakil, S. J., Stoops, J. K., and Mattick, J. S., 1981. The fatty acid synthetase—structure-function and mechanism of palmitate synthesis, Cardiovasc. Res. Cent. Bull. (Houston) 20:1–23.Google Scholar
  244. Wakil, S. J., Stoops, J. K., and Joshi, V. C., 1983. Fatty acid synthesis and its regulation, Annu. Rev. Biochem. 52:537–579.PubMedGoogle Scholar
  245. Wang, S. F., and Volini, M., 1968. The active site of rhodanese, J. Biol. Chem. 243:5465–5470.PubMedGoogle Scholar
  246. Waring, M. J., 1979. Echinomycin, triostin, and related antibiotics, in Antibiotics, Vol. 5, Part 2 (F. E. Hahn, ed.), Springer-Verlag, New York, pp. 173–194.Google Scholar
  247. Waters, L. L., and Stock, C., 1945. BAL (British anti-lewisite), Science 102:601–606.Google Scholar
  248. Weil-Malherbe, H., 1948. Biological oxidations and reductions, Annu. Rev. Biochem. 17:1–16.PubMedGoogle Scholar
  249. Weis, C. M., and Pottle, F. A., 1970. Boswell in Extremes: 1776-1778, McGraw-Hill, New York.Google Scholar
  250. Weisberger, A. S., and Pensky, J., 1957. Tumor-inhibiting effects derived from an active principle of garlic (allium sativum), Science 126:1112–1114.PubMedGoogle Scholar
  251. Whittaker, V. P., 1947. An experimental investigation of the ‘ring hypothesis’ of arsenical toxicity, Biochem. J. 41:56–62.PubMedGoogle Scholar
  252. Wilkie, D., 1970. Thermodynamics and biology, Chemistry in Britain 6:472–476.PubMedGoogle Scholar
  253. Williamson, J. M., and Meister, A., 1982. New substrates of 5-oxo-L-prolinase, J. Biol. Chem. 257:12039–12042.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ryan J. Huxtable
    • 1
  1. 1.University of Arizona Health Sciences CenterTucsonUSA

Personalised recommendations