Skip to main content

Thiols, Disulfides, and Thioesters

  • Chapter
Biochemistry of Sulfur

Part of the book series: Biochemistry of the Elements ((BOTE,volume 6))

Abstract

The thiol group is among the chemically most reactive functions occurring within the cell. This versatile and important function is centrally involved in enzymatic processes and cellular structure. The biochemistry of few other functions expresses so well our understanding of the underlying chemistry. As a result, model chemical reactions for thiols have been evolved that explain much of the biochemistry of this ubiquitous function. Thiols, responsible for the odor that has uniquely associated sulfur-containing compounds with Lucifer and his works (e.g., Tennyson: “... near me stood, in fuming sulphur blue and green, a fiend...”), have helped demystify the processes of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, W. A., and Meister, A., 1982. Biliary glutathione: Hepatic and pancreatic contributions, Fed. Proc. 41:1430.

    Google Scholar 

  • Abiko, Y., 1967a. Investigations on pantothenic acid and its related compounds. Separation and substrate specificity of pantothenate kinase and phosphopantothenoyl cysteine synthetase, J. Biochem. (Tokyo) 61:290–299.

    CAS  Google Scholar 

  • Abiko, Y., 1967b. Investigations on pantothenic acid and its related compounds. Purification and substrate specificity of phosphopantothenoylcysteine decarboxylase from rat liver, J. Biochem. (Tokyo) 61:300–308.

    CAS  Google Scholar 

  • Abiko, Y., 1970a. Pantothenic acid and coenzyme A: phosphopantothenoylcysteine synthetase from rat liver (pantothenate 4′-phosphate:L-cysteine ligase, EC 6.3.2.5), in Methods in Enzymology, Vol. 18, Part A (D. B. McCormick and L. D. Wright, eds.), Academic Press, New York, pp. 350–354.

    Google Scholar 

  • Abiko, Y., 1970b. Pantothenic acid and coenzyme A: phosphopantothenoylcysteine decarboxylase from rat liver [4′-phospho-N-(D-pantothenoyl)-L-cysteine carboxy-lyase, E.C. 4.1.1.36], in Methods in Enzymology, Vol. 18, Part A (D. B. McCormick and L. D. Wright, eds.), Academic Press, New York, pp. 354–358.

    Google Scholar 

  • Abiko, Y, 1975. Metabolism of coenzyme A, in Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 1–25.

    Google Scholar 

  • Abiko, Y., Suzuki, T., and Shimizu, M., 1967. Investigations on pantothenic acid and its related compounds. A final stage in the biosynthesis of CoA, J. Biochem. (Tokyo) 61:309–312.

    CAS  Google Scholar 

  • Abiko, Y., Tomikawa, M., and Shimizu, M., 1968. Further studies on phosphopantothenoylcysteine synthetase, J. Biochem. (Tokyo) 64:115–117.

    CAS  Google Scholar 

  • Abiko, Y., Tomikawa, M., Hosokawa, Y., and Shimizu, M., 1969. Investigations on pantothenic acid and its related compounds. Further studies on metabolism of pantothenoylalcohol in rat liver, Chem. Pharm. Bull. 17:200–201.

    CAS  PubMed  Google Scholar 

  • Abiko, Y., Ashida, S., and Shimizu, M., 1972. Purification and properties of D-pantothenate kinase from rat liver, Biochim. Biophys. Acta 268:364–372.

    CAS  PubMed  Google Scholar 

  • Adamu, I., Joseph, P. K., and Augusti, K. T., 1982. Hypolipidemic action of onion and garlic unsaturated oils in sucrose fed rats over a two-month period, Experientia 38:899–901.

    CAS  PubMed  Google Scholar 

  • Andersen, K. K., and Bernstein, D. T., 1980. Sulfur compounds in mustelids, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 399–406.

    Google Scholar 

  • Anderson, M. E., and Meister, A., 1980. Dynamic state of glutathione in blood plasma, J. Biol. Chem. 255:9530–9533.

    CAS  PubMed  Google Scholar 

  • Anderson, M. E., and Meister, A., 1983. Transport and direct utilization of gamma-glutamylcysteine for glutathione biosynthesis, Proc. Natl. Acad. Sci. USA 80:707–711.

    CAS  PubMed  Google Scholar 

  • Arias, I. M., and Jakoby, W. B. (eds.), 1976. Glutathione: Metabolism and Function, Kroc Found. Ser., Vol. 6, Raven, New York, pp. 1–382.

    Google Scholar 

  • Ariga, T., Oshiba, S., and Terumi, T., 1981. Platelet aggregation inhibitor in garlic, Lancet.

    Google Scholar 

  • Aurbach, G. D., and Jakoby, W. R., 1962. The multiple functions of thiooxidase, J. Biol. Chem. 237:565–568.

    CAS  PubMed  Google Scholar 

  • Bacq, Z. M., 1965. Chemical Protection against Ionizing Radiation, C. C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Bacq, Z. M., and Alexander, P., 1961. Fundamentals of’ Radiobiology, Pergamon, London.

    Google Scholar 

  • Baddiley, J., 1955. The structure of coenzyme A, Adv. Enzymol. 16:1–21.

    CAS  Google Scholar 

  • Banks, B. E. C., 1969. Thermodynamics and biology, Chemistry in Britain 5:514–519.

    CAS  PubMed  Google Scholar 

  • Banks, B. E. C., 1970. A reply to Linus Pauling and A. F. Huxley, Chemistry in Britain 6:541–542.

    CAS  PubMed  Google Scholar 

  • Barltrop, J. A., Hayes, P. M., and Calvin, M., 1954. The chemistry of 1,2-dithiolane (trimethylene disulfide) as a model for the primary quantum conversion act in photosynthesis, J. Am. Chem. Soc. 76:4348–4367.

    CAS  Google Scholar 

  • Barron, E. S. G., Miller, Z. B., Bartlett, G. R., Meyer, J., and Singer, T. P., 1947. Reactivation by dithiols of enzymes inhibited by lewisite, Biochem. J. 41:69–74.

    CAS  Google Scholar 

  • Battersby, A. R., and Craig, L. C., 1951. The molecular weight determination of polypeptides, J. Am. Chem. Soc. 73:1887–1888.

    CAS  Google Scholar 

  • Battersby, A. R., and Craig, L. C., 1952a. The chemistry of tyrocidine. I. Isolation and characterization of a single peptide, J. Am. Chem. Soc. 74:4019–4023.

    CAS  Google Scholar 

  • Battersby, A. R., and Craig, L. C., 1952b. The chemistry of tyrocidine. II. Molecular weight studies, J. Am. Chem. Soc. 74:4023–4027.

    CAS  Google Scholar 

  • Beatty, P. W., and Reed, D. J., 1980. Involvement of the cystathionine pathway in the biosynthesis of glutathione by isolated rat hepatocytes, Arch. Biochem. Biophys. 204:80–87.

    CAS  PubMed  Google Scholar 

  • Bellomo, G., Jewell, S. A., Thor, H., and Orrenius, S., 1982. Regulation of intracellular calcium compartmentation: Studies with isolated hepatocytes and/-butyl hydroperoxide, Proc. Natl. Acad. Sci. USA 79:6842–6846.

    CAS  PubMed  Google Scholar 

  • Bellomo, G., Mirabelli, F., Richelmi, P., and Orrenius, S., 1983. Critical role of sulfhydryl group(s) in ATP-dependent Ca2+ sequestration by the plasma membrane fraction from rat liver, FEBS Lett. 163:136–139.

    CAS  PubMed  Google Scholar 

  • Bersin, T., 1950. Die Phytochemie des Schwefels, Adv. Enzymol. 10:223–323.

    Google Scholar 

  • Birnbaum, S. M., Winitz, M., and Greenstein, J. P., 1957. Quantitative nutritional studies with water-soluble, chemically defined diets. III. Individual amino acids as sources of ‘non-essential’ nitrogen, Arch. Biochem. Biophys. 72:428–436.

    CAS  PubMed  Google Scholar 

  • Black, S., 1963. The biochemistry of sulfur-containing compounds, Annu. Rev. Biochem. 32:399–418.

    CAS  PubMed  Google Scholar 

  • Bloch, K., and Vance, D., 1977. Control mechanisms in the synthesis of saturated fatty acids, Annu. Rev. Biochem. 46:263–298.

    CAS  PubMed  Google Scholar 

  • Bordia, A., 1981. Effect of garlic on blood lipids in patients with coronary heart disease, Am. J. Clin. Nutr. 34:2100–2103.

    CAS  PubMed  Google Scholar 

  • Bordia, A., and Bansal, H. C., 1973. Essential oil of garlic in the prevention of atherosclerosis, Lancet 1973(ii):1491–1492.

    Google Scholar 

  • Boullin, D. J., 1981. Garlic as a platelet inhibitor, Lancet 1981(i):776–777.

    Google Scholar 

  • Bremer, J., Wojtczak, A., and Skrede, S., 1972. Leakage and destruction of CoA in isolated mitochondria, Eur. J. Biochem. 25:190–197.

    CAS  PubMed  Google Scholar 

  • Brigelius, R., Lenzen, R., and Sies, H., 1982. Increase in hepatic mixed disulfide and glutathione disulfide levels elicited by paraquat, Biochem. Pharmacol. 31:1637–1641.

    CAS  PubMed  Google Scholar 

  • Brown, G. M., 1957. Pantothenylcysteine, a precursor of pantetheine in Lactobacillus helveticus, J. Biol. Chem. 226:651–661.

    CAS  PubMed  Google Scholar 

  • Brown, G. M., 1959a. The metabolism of pantothenic acid, J. Biol. Chem. 234:370–378.

    CAS  PubMed  Google Scholar 

  • Brown, G. M., 1959b. Assay and distribution of bound forms of pantothenic acid, J. Biol. Chem. 234:379–382.

    CAS  PubMed  Google Scholar 

  • Brown, G. M., 1971. Metabolism of water-soluble vitamins Sec. D. Biosynthesis of pantothenic acid and coenzyme A, in Comprehensive Biochemistry, Vol. 21 (M. Florkin and E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 73–80.

    Google Scholar 

  • Brown, G. M., and Snell, E. E., 1954. Pantothenic acid conjugates and growth of Acetobacter suboxydans, J. Bacteriol. 67:465–471.

    CAS  PubMed  Google Scholar 

  • Bruice, T. C., and Benkovic, S., 1966. Thiolesters, in Bioorganic Mechanisms, Vol. I, W. A. Benjamin, Inc., New York, pp. 259–297.

    Google Scholar 

  • Buckner, J. S., and Kolattakudy, P. E., 1976. One step purification and properties of a two peptide fatty acid synthetase from uropygial gland of goose, Biochemistry 15:1948–1957.

    CAS  PubMed  Google Scholar 

  • Buell, M. V., and Hansen, R. E., 1960. Reaction of pyridoxal-5-phosphate with aminothiols, J. Am. Chem. Soc. 82:6042–6049.

    CAS  Google Scholar 

  • Bullock, M. W., Brockman, J. A., Patterson, E. L., Pierce, J. V., and Stokstad, E. L. R., 1952. Synthesis of compounds in the thioctic acid series, J. Am. Chem. Soc. 74:3455.

    CAS  Google Scholar 

  • Bullock, M. W., Brockman, J. A., Patterson, E. L., Pierce, J. V., von Saltza, M. H., Sanders, F. and Stokstad, E. L. R. 1954. Syntheses in the thioctic acid series, J. Am. Chem. Soc. 76:1828–1832.

    CAS  Google Scholar 

  • Burk, R. F., Nishiki, K., Lawrence, R. A., and Chance, B., 1978. Peroxide removal by selenium-dependent and selenium-independent glutathione peroxidases in hemoglobinfree perfused rat liver, J. Biol. Chem., 253:43–46.

    CAS  PubMed  Google Scholar 

  • Burleigh, B. D., and Williams, C. H., 1972. Isolation and primary structure of a peptide containing oxidation-reduction active cystine of Escherichia coli lipoamide dehydrogenase, J. Biol. Chem. 247:2077–2082.

    CAS  PubMed  Google Scholar 

  • Calvin, M., 1954. Chemical and photochemical reactions of thioctic acid and related disulfides, Fed. Proc. 13:697–711.

    CAS  PubMed  Google Scholar 

  • Caporaso, N., Smith, S. M., and Eng, R. H. K., 1983. Antifungal activity in human urine and serum after ingestion of garlic (Allium sativum), Antimicrob. Agents Chemother. 23:700–702.

    CAS  PubMed  Google Scholar 

  • Cardeilhac, P. T., 1967. A toxic effect of 2-thiouracil on pyrimidine metabolism, Proc. Soc. Exp. Biol. Med. 125:692–696.

    CAS  PubMed  Google Scholar 

  • Carmack, M., and Kelly, C., 1968. Synthesis of optically active Cleland’s reagent: (—)-1,4-Dithio-L-threitol, J. Org. Chem. 33:2171–2173.

    CAS  Google Scholar 

  • Cavallini, D., De Marco, C., and Mondovi, B., 1961. The enzymic conversion of cystamine and thiocysteamine into thiotaurine and hypotaurine, Enzymologia 23:101–110.

    CAS  PubMed  Google Scholar 

  • Cavallini, D., Duprè, S., Graziani, M. T., and Tinti, M. G., 1968. Identification of pantethinase in horse kidney extract, FEBS Lett. 1:119–121.

    CAS  PubMed  Google Scholar 

  • Cavallito, C. J., and Bailey, J. H., 1944. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action, J. Am. Chem. Soc. 66:1950–1951.

    CAS  Google Scholar 

  • Chance, B., Sies, H., and Boveris, A., 1979. Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59:527–605.

    CAS  PubMed  Google Scholar 

  • Clark, R. W., 1971. Einstein: The Life and Times, World Publishing Co., New York, 718 pp.

    Google Scholar 

  • Cleland, W. W., 1964. Dithiothreitol, a new protective reagent for SH groups, Biochemistry 3:480–482.

    CAS  PubMed  Google Scholar 

  • Colowick, S., Lazarow, A., Racker, E., Schwarz, D. R., Stadtman, E., and Waelsch, H. (eds.), 1954. Glutathione, Academic Press, New York, 341 pp.

    Google Scholar 

  • Crome, P., Volans, G. N., Vale, J. A., Widdop, B., Goulding, R., and Williams, R. S., 1976. The use of methionine for acute paracetamol poisoning, J. Int. Med. Res. 4 (Suppl.4):105–111.

    CAS  PubMed  Google Scholar 

  • Crook, E. M. (ed.), 1959. Glutathione (Biochemical Society Symposium 17), Cambridge University Press, Cambridge.

    Google Scholar 

  • Daigo, K., and Reed, L. J., 1962. The amino acid sequence around the N-lipoyl-lysine residue in α-keto acid dehydrogenation complexes, J. Am. Chem. Soc. 84:666–671.

    CAS  Google Scholar 

  • De Marco, C., and Bognolo, D., 1962. The reaction between cysteamine and pyridoxal phosphate, Arch. Biochem. Biophys. 98:526–527.

    Google Scholar 

  • Dickens, F., 1964. Carcinogenic lactones and related substances, Br. Med. Bull. 20:96–101.

    CAS  PubMed  Google Scholar 

  • Draeger, M., and Gattow, G., 1968. Chalcogenocarbonic acids and their anions, Angew. Chem. Int. Ed. Engl. 7:868–879.

    CAS  Google Scholar 

  • Duprè, S., Graziani, M. T., Rosei, M. A., Fabi, A., and Del Grosso, E., 1970a. The enzymatic breakdown of pantethine to pantothenic acid and cystamine, Eur. J. Biochem. 16:571–578.

    PubMed  Google Scholar 

  • Duprè, S., Graziani, M. T., and Rosei, M. A., 1970b. A new method for determination of enzymatic pantethine-splitting activity, Ital. J. Biochem. 19:132–138.

    PubMed  Google Scholar 

  • Ehrlich, P., and Hata, S., 1910. Die Experimentellen Chemotherapie der Spirillosen, Springer, Berlin.

    Google Scholar 

  • Einstein, A., 1905. Über die von molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [On the motion of small particles], Ann. Physik 17:549–560.

    CAS  Google Scholar 

  • Eisenstein, D., Azari, J., and Huxtable, R., 1979. Attenuation of the toxicity of a pyrrolizidine alkaloid (monocrotaline) by metabolic inhibition, Proc. West. Pharmacol. Soc. 22:193–198.

    CAS  PubMed  Google Scholar 

  • Elovson, J., and Vagelos, P. R., 1968. Acyl carrier protein. X. Acyl carrier protein synthetase, J. Biol. Chem. 243:3603–3611.

    CAS  PubMed  Google Scholar 

  • Fasella, P., 1967. Pyridoxal phosphate, Annu. Rev. Biochem. 36:185–210.

    CAS  PubMed  Google Scholar 

  • Flohe, L., 1979. Glutathione peroxidase: Fact and fiction, CIBA Found. Symp. 65:95–122.

    CAS  Google Scholar 

  • Fluharty, A. L., and Sanadi, D. R., 1963. On the mechanism of oxidative phosphorylation. VI. Localization of the dithiol in oxidative phosphorylation with respect to the oligomycin inhibition site, Biochemistry 2:519–522.

    CAS  PubMed  Google Scholar 

  • Forstrom, J. W., and Tappel, A. L., 1979. Donor substrate specificity and thiol reduction of glutathione disulfide peroxidase, J. Biol. Chem. 254:2888–2891.

    CAS  PubMed  Google Scholar 

  • Forstrom, J. W., Zakowski, J. J., and Tappel, A. L., 1978. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine, Biochemistry 17:2639–2644.

    CAS  PubMed  Google Scholar 

  • Fridrichsons, J., and Mathieson, A. M., 1962. The structure of sporidesmin: Causative agent of facial excema in sheep, Tetrahedron Lett. 1962:1265–1268.

    Google Scholar 

  • Friedheim, E. A. H., 1949. Mel B in the treatment of human trypanosomiasis, Am. J. Trop. Med. 29:173–184.

    CAS  Google Scholar 

  • Fromtling, R. A. F., and Bulmer, G. S., 1978. The in vitro effect of an aqueous extract of garlic (Allium sativum) on growth and viability of Cryptococcus neoformans, Mycologia 70:397–409.

    CAS  PubMed  Google Scholar 

  • Gawron, O., Fernando, J., Keil, J., and Weismann, T. J., 1962. Zwitterion structure and acylative ring-opening reactions of 2-amino-thiazoline-4-carboxylic acid, J. Org. Chem. 27:3117–3123.

    CAS  Google Scholar 

  • Goldman, P., and Vagelos, R., 1964. Acyl-transferase reactions (CoA-structure, function), in Comprehensive Biochemistry, Vol. 15 (M. Florkin and E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 71–92.

    Google Scholar 

  • Gould, S. J., 1982. Wasps and WASPs, Natural History 91:8–15.

    Google Scholar 

  • Gray, E. G., and Whittaker, V. P., 1962. The isolation of nerve endings from brain: An electron microscopic study of cell fragments derived by homogenization and centrifugation, J. Anat. 96:431–435.

    Google Scholar 

  • Griffith, O. W., and Meister, A., 1979. Translocation of intracellular glutathione to membrane-bound γ-glutamyltranspeptidase as a discrete step in the γ-glutamylcycle: Glutathionuria after inhibition of transpeptidase, Proc. Natl. Acad. Sci. USA 76:268–272.

    CAS  PubMed  Google Scholar 

  • Griffith, O. W., and Meister, A., 1980. Excretion of cysteine and γ-glutamylcysteine moieties in human and experimental animal γ-glutamyl transpeptidase deficiency, Proc. Natl. Acad. Sci. USA 77:3384–3387.

    CAS  PubMed  Google Scholar 

  • Haugaard, N., Lee, N. H., Kostrzewa, R., and Haugaard, E. S., 1969. Effects of a disulfide (Ellman’s reagent) and thiols on oxidative phosphorylation and ion transport by rat liver mitochondria, Biochem. Pharmacol. 18:2385–2391.

    CAS  PubMed  Google Scholar 

  • Hayakawa, T., Hirashima, M., Ide, S., Hamada, M., Okabe, K., and Koike, M., 1966. Mammalian α-keto acid dehydrogenase complex, J. Biol. Chem. 241:4694–4699.

    CAS  PubMed  Google Scholar 

  • Hayakawa, T., Kanzaki, T., Kitamura, T., Fukuyoshi, Y., Sakurai, Y., Koike, K., Suematsu, T., and Koike, M., 1969. Mammalian α-keto acid dehydrogenase complexes. V. Resolution and reconstitution studies of the pig heart pyruvate dehydrogenase complex, J. Biol. Chem. 244:3660–3670.

    CAS  PubMed  Google Scholar 

  • Heller, J., 1968. Structure of visual pigments. II. Binding of retinal and conformational changes on light exposure in bovine visual pigment 500, Biochemistry 7:2914–2920.

    CAS  PubMed  Google Scholar 

  • Henriksen, T., 1961. Electron paramagnetic resonance studies on irradiated thiols and disulfides, in Free Radicals in Biological Systems (M. S. Blois, ed.), Academic Press, London and New York, pp. 279–294.

    Google Scholar 

  • Himmelweit, F., 1960. The Collected Papers of Paul Ehrlich, Pergamon Press, Oxford, pp. 505–510.

    Google Scholar 

  • Hirashima, M., Hayakawa, T., and Koike, M., 1967. Mammalian α-keto acid dehydrogenase complexes. II. An improved procedure for the preparation of 2-oxoglutarate dehydrogenase complex from pig heart muscle, J. Biol. Chem. 242:902–907.

    CAS  PubMed  Google Scholar 

  • Hitchcock, C., and Nichols, B. W., 1971. Plant Lipid Biochemistry (Experimental Botany, Vol. 4), Academic Press, London, 388 pp.

    Google Scholar 

  • Hoagland, M. B., and Novelli, G. D., 1954. Biosynthesis of coenzyme A from phosphopantetheine and of pantetheine from pantothenate, J. Biol. Chem. 201:761–113.

    Google Scholar 

  • Hopkins, F. G., 1929. On glutathione: A reinvestigation, J. Biol. Chem. 84:269–320.

    CAS  Google Scholar 

  • Huxley, A. F., 1970. Energetics of muscle, Chemistry in Britain 6:477–479.

    CAS  PubMed  Google Scholar 

  • Huxtable, R., 1979. New aspects of the toxicology and pharmacology of pyrrolizidine alkaloids, Gen. Pharmacol. 10:159–167.

    CAS  PubMed  Google Scholar 

  • Huxtable, R. J., and Barbeau, A. (eds.), 1976. Taurine, Raven Press, New York, 398 pp.

    Google Scholar 

  • Huxtable, R. J., Laird, H., Lippincott, S. E., and Walson, P., 1983. Epilepsy and the concentrations of plasma amino acids in humans, Neurochem. International 5:125–135.

    CAS  Google Scholar 

  • Hylin, J. W., and Wood, J. L., 1959. Enzymatic formation of polysulfides from mercaptopyruvate, J. Biol. Chem. 234:2141–2144.

    CAS  PubMed  Google Scholar 

  • Jaenicke, L. and Lynen, F., 1960. Coenzyme A, in The Enzymes, 2nd Ed., Vol. 3 (P. D. Boyer, H. Lardy, and K. Myrback, eds), Academic Press, New York. pp. 1–103.

    Google Scholar 

  • Janssen, M. J., 1969. Thiolo, thiono, and dithio acids and esters, in The Chemistry of Carboxylic Acids and Esters (S. Patai, ed.), Wiley, London, pp. 705–764.

    Google Scholar 

  • Jeffcoat, R., 1977. The physiological role and control of mammalian fatty acyl-coenzyme A desaturases, Biochem. Soc. Trans. 5:811–818.

    CAS  PubMed  Google Scholar 

  • Jewell, S. A., Bellomo, G., Thor, H., Orrenius, S., and Smith, M. T., 1982. Changes in the surface structure of isolated hepatocytes during drug metabolism are caused by alterations in intracellular thiol and Ca2+ homeostatis, Science 217:1257–1259.

    CAS  PubMed  Google Scholar 

  • Jocelyn, P. C. 1972. Biochemistry of the SH Group, Academic Press, London, 404 pp.

    Google Scholar 

  • Johnson, M. G., and Reese, V. H., 1969. Death of Salmonella typhimurium and Escherichia coli in the presence of freshly reconstituted dehydrated garlic and onion, Appl. Microbiol. 17:903–905.

    CAS  PubMed  Google Scholar 

  • Jones, D. P., Moldéus, P., Stead, H., Ormstad, H., Jornvall, H., and Orrenius, S., 1979. Metabolism of glutathione and glutathione conjugate by isolated kidney cells, J. Biol. Chem. 254:2787–2792.

    CAS  PubMed  Google Scholar 

  • Jones, M. E., Lipmann, F., Hilz, H., and Lynen, F., 1953. On the enzymatic mechanism of coenzyme A acetylation with adenosine triphosphate and acetate, J. Am. Chem. Soc. 75:3285–3286.

    CAS  Google Scholar 

  • Kaplowitz, N., 1981. The importance and regulation of hepatic glutathione, Yale J. Biol. Med. 54:497–502.

    CAS  PubMed  Google Scholar 

  • Karlsen, R. L., Grofova, I., Malthe-Sorenssen, D., and Fonnum, F., 1981. Morphological changes in rat brain induced by L-cysteine injection in newborn animals, Brain Res. 208:167–180.

    CAS  PubMed  Google Scholar 

  • Kato, A., and Hashimoto, Y., 1980. Biologically active 1,2-dithiolane derivatives from mangrove plants and related compounds, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. E. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 361–374.

    Google Scholar 

  • Katoh, S., and Takamiya, A., 1964. Nature of copper-protein binding in spinach plastocyanin, J. Biochem. (Tokyo) 55:378–387.

    CAS  Google Scholar 

  • Ke, B., 1957. The polarographic behavior of α-lipoic acid, Biochim. Biophys. Acta 25:650–651.

    CAS  PubMed  Google Scholar 

  • King, T. E., and Cheldelin, V. H., 1953. Pantothenic acid derivatives and growth of Acetobacter suboxydans, Proc. Soc. Exp. Biol. Med. 84:591–593.

    CAS  PubMed  Google Scholar 

  • Kinsey, A. C., Pomeroy, W. B., and Martin C. E., 1948. Sexual Behavior in the Human Male, W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Kinsey, A. C., Pomeroy, W. B., Martin, C. E., and Gebhard, P. H., 1953. Sexual Behavior in the Human Female, W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Knox, W. E., 1960. Glutathione, Enzymes (Part A) 2:253–294.

    Google Scholar 

  • Koechlin, B. A., 1954. The isolation and identification of the major anion fraction of the axoplasm of squid giant nerve fibers, Proc. Natl. Acad. Sci. USA 40:60–62.

    CAS  PubMed  Google Scholar 

  • Koike, M., and Koike, K., 1975. Lipoic acid, in Metabolic Pathways, 3rd. Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 87–99.

    Google Scholar 

  • Koike, M., and Reed, L. J., 1960. α-Keto acid dehydrogenation complexes. II. The role of protein-bound lipoic acid and flavin adenine dinucleotide, J. Biol. Chem. 235:1931–1938.

    CAS  PubMed  Google Scholar 

  • Koike, M., Reed, L. J., and Carroll, W. R., 1960. α-Keto acid dehydrogenation complexes. I. Purification and properties of pyruvate and α-ketoglutarate dehydrogenation complexes of Escherichia coli, J. Biol. Chem. 235:1924–1930.

    Google Scholar 

  • Koike, M., Reed, L. J., and Carroll, W. R., 1963. α-Keto acid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex, J. Biol. Chem. 238:30–39.

    CAS  PubMed  Google Scholar 

  • Kozarich, J. W., and Chari, R. V. J., 1982. (Glutathiomethyl)glyoxal: Mirror-image catalysis by glyoxalase I, J. Am. Chem. Soc. 104:2655–2657.

    CAS  Google Scholar 

  • Lafranconi, M., and Huxtable, R. J., 1981. Pyrrolizidines and the pulmonary vasculature, Reviews on Drug Metabolism and Drug Interactions 3:271–315.

    CAS  Google Scholar 

  • Larsson, A., Orrenius, S., Holmgren, A., and Mannervik, B. (eds.), 1983. Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects, Raven, New York, 393 pp.

    Google Scholar 

  • Lee, R., and McElroy, W. D., 1969. Role and reactivity of sulfhydryl groups in firefly luciferase, Biochemistry 8:130–136.

    CAS  PubMed  Google Scholar 

  • Levintow, L., and Novelli, G. D., 1954. The synthesis of coenzyme A from pantetheine: Preparation and properties of pantetheine kinase, J. Biol. Chem. 207:761–765.

    CAS  PubMed  Google Scholar 

  • Lewis, W. L., and Stiegler, H. W., 1925. The ß-chlorovinylarsines and their derivatives, J. Am. Chem. Soc. 47:2546–2556.

    CAS  Google Scholar 

  • Lipmann, F., 1945. Acetylation of sulfanilamide by liver homogenates and extracts, J. Biol. Chem. 160:173–190.

    CAS  Google Scholar 

  • Lipmann, F., 1953. On the chemistry and function of coenzyme A, Bacteriol. Rev. 17:1–16.

    CAS  PubMed  Google Scholar 

  • Little, C., and O’Brien, P. J., 1968. Intracellular glutathione reduced peroxidase with a lipid peroxide substrate, Biochem. Biophys. Res. Commun. 31:145–150.

    CAS  PubMed  Google Scholar 

  • Lowe, J. N., and Ingraham, L. L., 1974. An Introduction to Biochemical Reactions Mechanisms, Chap. 3, Foundation of Molecular Biology Series, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Lowenstein, J. M., 1967. The tricarboxylic acid cycle, in Metabolic Pathways, 3rd Ed., Vol. 1 (D. M. Greenberg, ed.), Academic Press, New York, pp. 146–270.

    Google Scholar 

  • Lumper, L., and Zahn, H., 1965. Chemie und Biochemie des Disulfidaustausches, Adv. Enzymol. 27:199–237.

    PubMed  Google Scholar 

  • Lynen, F., 1970. Chemical reactivity and biological role of functional groups, in Enzymes (R. M. S. Smellie, ed.), Academic Press, New York, pp. 1–19.

    Google Scholar 

  • Lynen, F., 1980. On the structure of fatty acid synthetase of yeast, Eur. J. Biochem. 112:431–442.

    CAS  PubMed  Google Scholar 

  • Maloof, F., and Soodak, M., 1963. Intermediary metabolism of thyroid tissue and the action of drugs. A. Thiocarbamides, Pharmacol. Rev. 15:72–79.

    Google Scholar 

  • Makheja, A. N., Vanderho, J. Y., and Bailey, J. M., 1979. Inhibition of platelet aggregation and thromboxane synthesis by onion and garlic, Lancet 1979(i):781.

    Google Scholar 

  • Mandels, G. R., 1956. Properties and surface location of a sulfhydryl oxidizing enzyme in fungus spores, J. Bacteriol. 72:230–234.

    CAS  PubMed  Google Scholar 

  • Marmstal, E., and Mannervik, B., 1979. Purification, characterization and kinetic studies of glyoxalase I from rat liver, Biochim. Biophys. Acta 566:262–270.

    Google Scholar 

  • Marquardt, M., 1951. Paul Ehrlich, Henry Schuman, New York.

    Google Scholar 

  • Mclntyre, T. M., and Curthoys, N. P., 1980. The interorgan metabolism of glutathione, Int. J. Biochem. 12:545–551.

    Google Scholar 

  • Meacham, J., 1968. Ascorbic acid oxidizes thiol groups of plasma proteins, Experientia 24:125–126.

    CAS  PubMed  Google Scholar 

  • Meister, A., 1974. Glutathione synthesis, in Enzymes, Vol. 10 (Paul D. Boyer, ed.), Academic Press, New York, pp. 671–697.

    Google Scholar 

  • Meister, A., 1975. Biochemistry of glutathione, in Metabolic Pathways, 3rd Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 101–188.

    Google Scholar 

  • Meister, A., 1981. On the cycles of glutathione metabolism and transport, Curr. Top. Cell. Regul. 18:21–58.

    CAS  PubMed  Google Scholar 

  • Meister, A., 1983. Selective modification of glutathione metabolism, Science 220:473–477.

    Google Scholar 

  • Meister, A., 1984. New developments in glutathione metabolism and their potential application in therapy, Hepatology 4:739–742.

    CAS  PubMed  Google Scholar 

  • Meister, A., and Anderson, M. E., 1983. Glutathione, Annu. Rev. Biochem. 52:711–760.

    CAS  PubMed  Google Scholar 

  • Meister, A., and Tate, S. S., 1976. Glutathione and related γ-glutamyl compounds: Biosynthesis and utilization, Annu. Rev. Biochem. 45:559–604.

    CAS  PubMed  Google Scholar 

  • Melville, D. B., 1959. Ergothioneine, Vitam. Horm. 17:155–204.

    CAS  Google Scholar 

  • Meredith, M. J., and Reed, D. J., 1982. Status of the mitochondrial pool of glutathione in the isolated hepatocyte, J. Biol. Chem. 257:3747–3753.

    CAS  PubMed  Google Scholar 

  • Minato, H., Matsumoto, M., and Katayama, T., 1971. Verticillin A, a new antibiotic from Verticillium sp., J. Chem. Soc, Chem. Commun. 1971:44–45.

    Google Scholar 

  • Miner, R. W., 1954. Paul Ehrlich Centennial, Ann. N.Y. Acad. Sci. 59:141–276.

    Google Scholar 

  • Mueller, J. H., 1922. A new sulphur-containing amino acid isolated from casein, Proc. Soc. Exp. Biol. Med. 19:161–163.

    Google Scholar 

  • Nakamura, T., Kusunoki, T., and Soyama, K., 1967. Effect of pantothenic acid administration on 4′-phosphopantetheine and dephospho-coenzyme A content in rat liver determined by the use of biosynthetic reaction of coenzyme A in vitro from these precursor substances, J. Vitaminol. (Kyoto) 13:289–297.

    CAS  Google Scholar 

  • Nakamura, T., Kusunoki, T., Soyama, K., and Kuwagata, M., 1969. Distribution of pantothenic acid, coenzyme A, and their intermediates in rat liver. III. Isolation of pantothenic acid, 4′-phosphopantetheine, and coenzyme A by column chromatography, Vitamins 40:412–415.

    CAS  Google Scholar 

  • Nawa, H., Brady, W. T., Koike, M., and Reed, L. J., 1960. Studies on the nature of protein-bound lipoic acid, J. Am. Chem. Soc. 82:896–903.

    CAS  Google Scholar 

  • Neims, A. H., and Hellerman, L., 1970. Flavoenzyme catalysis, Annu. Rev. Biochem. 39:867–888.

    CAS  PubMed  Google Scholar 

  • Ober, W. A., 1979. Boswell’s Clap and Other Essays, Feffer and Simons, Inc., London, 291 pp.

    Google Scholar 

  • Oesterhelt, D., Bauer, H., Kresze, G., Steber, L., and Lynen, F., 1977. Reaction of yeast fatty acid synthetase with iodoacetamide: Kinetics of inactivation and extent of carboxyamidomethylation, Eur. J. Biochem. 79:173–180.

    CAS  PubMed  Google Scholar 

  • O’Leary, W. M., 1970. Bacterial lipid metabolism, in Lipid metabolism, Chapter 5 of Comprehensive Biochemistry, Vol. 18 (M. Florkinand E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 229–264.

    Google Scholar 

  • Ormstad, K., Lastbom, T., and Orrenius, S., 1980. Translocation of amino acids and glutathione studied with the perfused kidney and isolated renal cells, FEBS Lett. 112:55–59.

    CAS  PubMed  Google Scholar 

  • Orrenius, S., Ormstad, K., Thor, H., and Jewell, S. A., 1983. Turnover and functions of glutathione studied with isolated hepatic and renal cells, Fed. Proc. 42:3177–3188.

    CAS  PubMed  Google Scholar 

  • Overberger, C. G., Burg, K. H., and Daly, W. H. 1965. Oxidation of polyvinyl mercaptan and related model compounds by molecular oxygen, J. Am. Chem. Soc. 87:4125–4130.

    CAS  Google Scholar 

  • Patai, S., 1974a. The Chemistry of the Thiol Group, Part I, John Wiley and Sons, London, pp. 1–480.

    Google Scholar 

  • Patai, S., 1974b. The Chemistry of the Thiol Group, Part 2, John Wiley and Sons, London, pp. 481–956.

    Google Scholar 

  • Patterson, E. L., Brockman, J. A., Day, F. P., Pierce, J. V., Macchi, M. E., Hoffmann, C. E., Fong, C. T. O., Stokstad, E. L. R., and Jukes, T. H., 1951. Crystallization of a derivative of protogen-B, J. Am. Chem. Soc. 73:5919–5920.

    Google Scholar 

  • Pauling, L., 1970. Structure of high energy molecules, Chemistry in Britain 6:468–472.

    CAS  PubMed  Google Scholar 

  • Pestana, A., and Sols, A., 1970. Reversible inactivation by elemental sulfur and mercurials of rat liver serine dehydratase and certain sulfhydryl enzymes, Biochem. Biophys. Res. Commun 39:522–529.

    CAS  PubMed  Google Scholar 

  • Peters, R. A., Stocken, L. A., and Thompson, R. H. S., 1945. British anti-Lewisite, Nature 156:616–617.

    CAS  PubMed  Google Scholar 

  • Porqué, P. G., Baldesten, A., and Reichard, P., 1970. Purification of a thioredoxin system from yeast, J. Biol. Chem. 245:2363–2370.

    Google Scholar 

  • Pottle, F. A. (ed.), 1950. Boswell’s London Journal 1762-1763. William Heinemann Ltd., London.

    Google Scholar 

  • Powell, G. L., Elovson, J., and Vagelos, P. R., 1969. Acyl carrier protein. XII. Synthesis and turnover of the prosthetic group of acyl carrier protein in vivo, J. Biol. Chem. 244:5616–5624.

    CAS  PubMed  Google Scholar 

  • Prescott, D. J., and Vagelos, P. R., 1972. Acyl carrier protein, Adv. Enzymol. 36:269–311.

    CAS  PubMed  Google Scholar 

  • Prescott, L. F., Park, J., Sutherland, G. R., Smith, I. J., and Proudfoot, A. T., 1976. Cysteamine, methionine and penicillamine in the treatment of paracetamol poisoning, Lancet 1976(ii)2:109–113.

    Google Scholar 

  • Racker, E., 1955. Glutathione-homocystine transhydrogenase, J. Biol. Chem. 217:867–874.

    CAS  PubMed  Google Scholar 

  • Reed, L. J., 1960. Lipoic acid, in The Enzymes, 2nd Ed., Vol. 3 (P. D. Boyer, H. Lardy and K. Myrbäck, eds.), Academic Press, New York, pp. 195–223.

    Google Scholar 

  • Reed, L. J., 1966. Chemistry and function of lipoic acid, in Comprehensive Biochemistry, Vol. 14 (M. Florkin and E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 99–126.

    Google Scholar 

  • Reed, D. J., and Beatty, P. W., 1980. Biosynthesis and regulation of glutathione: Toxicological implications, in Review of Biochemical Toxicology (E. Hodgson, J. R. Bend, and R. N. Philpot, eds.), Elsevier/North Holland, New York, pp. 213–241.

    Google Scholar 

  • Reed, L. J., and Cox, D. J., 1970. Multienzyme complexes, in The Enzymes, 3rd Ed., Vol. 1 (P. D. Boyer, ed.), Academic Press, New York, pp. 213–240.

    Google Scholar 

  • Reed, L. J., DeBusk, B. G., Gunsalus, I. C., and Hornberger, C. S., 1951. Crystalline α-lipoic acid: A catalytic agent associated with pyruvate dehydrogenase, Science 114:93–94.

    CAS  PubMed  Google Scholar 

  • Reed, L. J., Gunsalus, I. C., Schnakenberg, G. H. F., Soper, O. F., Boaz, H. E., Kern, S. F., and Parke, T. V., 1953. Isolation, characterization and structure of α-lipoic acid, J. Am. Chem. Soc. 75:1267–1273.

    CAS  Google Scholar 

  • Richman, P. G., and Meister, A., 1975. Regulation of γ-glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione, J. Biol. Chem. 250:1422–1426.

    CAS  PubMed  Google Scholar 

  • Richman, P. G., Orlowski, M., and Meister, A., 1973. Inhibition of γ-glutamycysteine synthetase by L-methionine-S-sulfoximine, J. Biol. Chem. 248:6684–6690.

    CAS  PubMed  Google Scholar 

  • Robinson, H. C., and Pasternak, C., 1964. The isolation of S-sulphoglutathione from the small intestine of the rat, Biochem. J. 93:487–492.

    CAS  PubMed  Google Scholar 

  • Robishaw, J. D., and Neely, J. R., 1985. Coenzyme A metabolism, Am. J. Physiol. 248:E1–E9.

    CAS  PubMed  Google Scholar 

  • Rogers, S. J., 1969. Textbook errors, 88: Composite pK’s of cysteine, J. Chem. Educ. 46:239–240.

    CAS  PubMed  Google Scholar 

  • Ronchi, S., and Williams, C. H., 1972. Isolation and primary structure of a peptide containing the oxidation-reduction active cystine of Escherichia coli thioredoxin reductase, J. Biol. Chem. 247:2083–2086.

    CAS  PubMed  Google Scholar 

  • Ross, R. A., and Vernon, C. A., 1970. Biological energetics—the other view, Chemistry in Britain 6:539–542.

    CAS  PubMed  Google Scholar 

  • Schneider, V. F., Schauer, R., Martini, O., and Hahn, J., 1967. Reversibilität der Glutathion—Insulin-Transhydrogenierung (Proteindisulfid Reduktase Reaktion), Hoppe-Seyler’s Z. Physiol. Chem. 348:391.

    CAS  Google Scholar 

  • Schreckenbach, T., Wobser, H., and Lynen, F., 1977. Palmityl binding sites of fatty acid synthetase from yeast, Eur. J. Biochem. 80:13–23.

    CAS  PubMed  Google Scholar 

  • Schweizer, E., Kniep, B., Castorph, H., and Holzner, U., 1973. Pantetheine-free mutants of the yeast fatty acid synthetase complex, Eur. J. Biochem 39:353–362.

    CAS  PubMed  Google Scholar 

  • Schweizer, E., Dietlein, G., Gimmler, G., Knobling, A., Tahedl, H. W., and Schweizer, M., 1975. Yeast fatty acid synthetase comprising two multifunctional polypeptide chains, Proc. FEBS Meet. 40:85–97.

    CAS  Google Scholar 

  • Seelig, G. F., and Meister, A., 1982. Cystamine-sepharose. A probe for the active site of γ-glutamylcysteine synthetase, J. Biol. Chem. 257:5092–5096.

    CAS  PubMed  Google Scholar 

  • Seelig, G. F., and Meister, A., 1984. γ-dutamylcysteine synthetase. Interactions of an essential sulfydryl group, J. Biol. Chem. 257:5092–5096.

    Google Scholar 

  • Seneca, H., Kane, J. H., and Rockenbach, J., 1952. Bactericidal, protozoicidal and fungicidal properties of thiolutin, Antibiot. Chemother. 2:357–360.

    CAS  Google Scholar 

  • Seven, M. J., 1960. Metal-binding in Medicine, Lippincott, Philadelphia.

    Google Scholar 

  • Shimakata, T., and Stumpf, P. K., 1982a. The prokaryotic nature of the fatty acid synthetase of developing Carthamus tineorius L. (safflower) seeds, Arch. Biochem. Biophys. 217:144–154.

    CAS  PubMed  Google Scholar 

  • Shimakata, T., and Stumpf, P. K., 1982b. Fatty acid synthetase of Spinacia oleracea leaves, Plant Physiol. 69:1257–1262.

    CAS  PubMed  Google Scholar 

  • Shimizu, M., and Abiko, Y., 1965. Investigations on pantothenic acid and its related compounds. Biosynthesis of coenzyme A from pantothenate, pantethine and from S-benzoylpantetheine in vitro and in vivo, Chem. Pharm. Bull. 13:189–197.

    CAS  PubMed  Google Scholar 

  • Shimizu, M., Nagase, O., Hosokawa, Y., and Tagawa, H., 1968. Chemical synthesis of coenzyme A analogs of a modified cysteamine moiety, Tetrahedron 24:5241–5250.

    CAS  PubMed  Google Scholar 

  • Sies, H., and Wendel, A. (eds.), 1978. Functions of Glutathione in Liver and Kidney, Springer, New York, 212 pp.

    Google Scholar 

  • Silverman, M., 1941. Magic in a Bottle, Macmillan, New York. Skrede, S., 1973. Degradation of CoA. Subcellular localization and kinetic properties of CoA-and dephospho-CoA pyrophosphatase, Eur. J. Biochem. 38:401–407.

    Google Scholar 

  • Smith, S., and Stern, A., 1979. Subunit structure of the mammalian fatty acid synthetase—further evidence for a homodimer, Arch. Biochem. Biophys. 197:379–387.

    CAS  PubMed  Google Scholar 

  • Snell, E. E., and Brown, G. M., 1953. Pantethine and related forms of the Lactobacillus bulgaricus factor (LBF), Adv. Enzymol. 14:49–71.

    CAS  Google Scholar 

  • Spiller, M. A., 1984. The chemical components of coffee, in The Methylxanthine Beverages and Foods: Chemistry, Consumption, and Health Effects (A. Spiller, ed.), A. R. Liss, New York, pp. 91–147.

    Google Scholar 

  • Srere, P. A., Bottger, B., and Brooks, G. C., 1972. Citrate lyase. A pantothenate-containing enzyme, Proc. Natl. Acad. Sci. USA 69:1201–1202.

    CAS  PubMed  Google Scholar 

  • Stocken, L. A., and Thompson, R. H. S., 1946. British anti-lewisite. Dithiol compounds as antidotes for arsenic, Biochem. J. 40:535–548.

    CAS  Google Scholar 

  • Stocken, L. A., Thompson, R. H. S., and Whittaker, V. P., 1947. British anti-lewisite. Antidotal effects against therapeutic arsenicals, Biochem. J. 41:47–51.

    CAS  Google Scholar 

  • Stoll, S., and Seebeck, E. 1950. Die Synthese des naturlichen Alliins, Experientia 6:330.

    CAS  PubMed  Google Scholar 

  • Stoops, J. K., and Wakil, S. J., 1980. Yeast fatty acid synthetase: Structure-function relationship and nature of the ß-ketoacyl synthetase site, Proc. Natl. Acad. Sci. USA 77:4544–4548.

    CAS  PubMed  Google Scholar 

  • Stoops, J. K., and Wakil, S. J., 1981a. Animal fatty acid synthetase. A novel arrangement of the ß-ketoacyl synthetase sites comprising domains of the two subunits, J. Biol. Chem. 256:5128–5133.

    CAS  PubMed  Google Scholar 

  • Stoops, J. K., and Wakil, S. J., 1981b. The yeast fatty acid synthetase. Structure-function relationship and the role of the active cysteine-sulfhydryl and pantetheine-sulfhydryl, J. Biol. Chem. 256:8364–8370.

    CAS  PubMed  Google Scholar 

  • Stoops, J. K., and Wakil, S. J., 1982. Animal fatty acid synthetase. Identification of the residues comprising the novel arrangement of the ß-ketoacyl synthetase site and their role in its cold inactivation, J. Biol. Chem. 257:3230–3235.

    CAS  PubMed  Google Scholar 

  • Stoops, J. K., Arslanian, M. J., Oh, Y. H., Aune, K. C., Vanaman, T. C., and Wakil, S. J., 1975. Presence of two polypeptide chains comprising fatty acid synthetase, Proc. Natl. Acad. Sci. USA 72:1940–1944.

    CAS  PubMed  Google Scholar 

  • Stoops, J. K., Arslanian, M. J., Chalmers Jr., J. H., Joshi, V. C., and Wakil, S. J., 1977. Fatty acid synthetase complexes, Bioorg. Chem. 1:339–370.

    CAS  Google Scholar 

  • Stoops, J. K., Ross, P. R., Arslanian, M. J., Aune, K. C., Wakil, S. J., and Oliver, R. M., 1979. Physicochemical studies of the rat liver and adipose fatty acid synthetases, J. Biol. Chem. 254:7418–7426.

    CAS  PubMed  Google Scholar 

  • Stumpf, P. K., and Harwood, J. L., 1975. Fatty acid biosynthesis in plants, in Recent Advances in the Chemistry and Biochemistry of Plant Lipids (T. Galliard and E. I. Mercer, eds.), Academic Press, London.

    Google Scholar 

  • Sunner, S., 1955. Strain in 6,8-thioctic acid, Nature (London) 176:217.

    CAS  Google Scholar 

  • Suzuki, T., Abiko, Y., and Shimizu, M., 1967. Pantothenic acid and its related compounds. XII. Biochemical studies. 7. Dephospho-coenzyme A pyrophosphorylase and dephospho-coenzyme A kinase as a possible bifunctional enzyme complex, J. Biochem. (Tokyo) 62:642–649.

    CAS  Google Scholar 

  • Tanaka, N., Koike, K., Hamada, M., Otsuka, K-I., Suematsu, T., and Koike, M., 1972. Mammalian α-keto acid dehydrogenase complexes. VII. Resolution and reconstitution of the pig heart 2-oxoglutarate dehydrogenase complex, J. Biol. Chem. 247:4043–4049.

    CAS  PubMed  Google Scholar 

  • Tanaka, N., Koike, K., Otsuka, K-I., Hamada, M., Ogasahara, K., and Koike, M., 1974. Mammalian α-keto acid dehydrogenase complexes. VIII. Properties and subunit composition of the pig heart lipoate succinyltransferase, J. Biol. Chem. 249:191–198.

    CAS  PubMed  Google Scholar 

  • Thomas, R. C., and Reed, L. J., 1956. Disulfide polymers of DL-a-lipoic acid, J. Am. Chem. Soc. 78:6148–6149.

    CAS  Google Scholar 

  • Thompson, G. A., and Meister, A., 1977. Interrelationships between the binding sites for amino acids, dipeptides, and γ-glutamyl donors in γ-glutamyl transpeptidase, J. Biol. Chem. 252:6792–6798.

    CAS  PubMed  Google Scholar 

  • Thorn, M. B., and Jackson, F. L., 1959. Interaction of non-specific reducing and oxidizing agents with the cytochrome system in heart-muscle preparations, Biochim. Biophys. Acta 35:65–76.

    CAS  PubMed  Google Scholar 

  • Tomizawa, H. H., and Varandani, P. T., 1965. Glutathione-insulin transhydrogenase of human liver, J. Biol. Chem. 240:3191–3194.

    CAS  PubMed  Google Scholar 

  • Tweto, J., Liberti, M., and Larrabee, A. R., 1971. Protein turnover and 4′-phosphopantetheine exchange in rat liver fatty acid synthetase, J. Biol. Chem. 246:2468–2471.

    CAS  PubMed  Google Scholar 

  • Vagelos, P. R., 1973. Acyl group transfer (acyl carrier protein), in The Enzymes, 3rd Ed., Vol. 8 (P. D. Boyer, ed.), Academic Press, New York, pp. 155–199.

    Google Scholar 

  • Vagelos, P. R., and Larrabee, A. R., 1967. Acyl carrier protein. IX. Acyl carrier protein hydrolase, J. Biol. Chem. 242:1776–1781.

    CAS  PubMed  Google Scholar 

  • Vallée, B. L., Coombs, T. L., and Hoch, F. L., 1960. The ‘active site’ of bovine pancreatic carboxypeptidase A, J. Biol. Chem. 235:PC45–PC47.

    PubMed  Google Scholar 

  • Van Eys, J., and Kaplan, N. O., 1957. The addition of sulfhydryl compounds to diphosphopyridine nucleotide and its analogues, J. Biol. Chem. 228:305–314.

    CAS  Google Scholar 

  • Varandani, P. T., 1967. Acceleration of regeneration of insulin activity from its inactive reduced A and B chains by pancreatic glutathione-insulin transhydrogenase, Biochim. Biophys. Acta 132:10–14.

    CAS  PubMed  Google Scholar 

  • Varandani, P. T., and Tomizawa, H. H., 1966. Purification and properties of pancreatic glutathione-insulin transhydrogenase, Biochim. Biophys. Acta 113:498–506.

    CAS  PubMed  Google Scholar 

  • Vina, J., Reginald, H., and Krebs, H. A., 1978. Maintenance of glutathione content in isolated hepatocytes, Biochem. J. 170:627–630.

    CAS  PubMed  Google Scholar 

  • Voegtlin, C., and Smith, H. W. L., 1920. Quantitative studies in chemotherapy. II. The trypanocidal action of arsenic compounds, J. Pharmacol. Exp. Therap. 15:475–493.

    CAS  Google Scholar 

  • Valope, J. J., and Vagelos, P. R., 1976. Mechanisms and regulation of biosynthesis of saturated fatty acids, Physiol. Rev. 56:339–417.

    Google Scholar 

  • Wakil, S. J., 1970. Fatty acid metabolism, in Lipid Metabolism (S. J. Wakil, ed.), Academic Press, New York, pp. 1–48.

    Google Scholar 

  • Wakil, S. J., and Barnes, E. M., 1971. Fatty acid metabolism, in Comprehensive Biochemistry, Vol. 18 (M. Florkin and E. H. Stotz, eds.), Elsevier Publishing Co., Amsterdam, pp. 57–104.

    Google Scholar 

  • Wakil, S. J., Stoops, J. K., and Mattick, J. S., 1981. The fatty acid synthetase—structure-function and mechanism of palmitate synthesis, Cardiovasc. Res. Cent. Bull. (Houston) 20:1–23.

    CAS  Google Scholar 

  • Wakil, S. J., Stoops, J. K., and Joshi, V. C., 1983. Fatty acid synthesis and its regulation, Annu. Rev. Biochem. 52:537–579.

    CAS  PubMed  Google Scholar 

  • Wang, S. F., and Volini, M., 1968. The active site of rhodanese, J. Biol. Chem. 243:5465–5470.

    CAS  PubMed  Google Scholar 

  • Waring, M. J., 1979. Echinomycin, triostin, and related antibiotics, in Antibiotics, Vol. 5, Part 2 (F. E. Hahn, ed.), Springer-Verlag, New York, pp. 173–194.

    Google Scholar 

  • Waters, L. L., and Stock, C., 1945. BAL (British anti-lewisite), Science 102:601–606.

    CAS  Google Scholar 

  • Weil-Malherbe, H., 1948. Biological oxidations and reductions, Annu. Rev. Biochem. 17:1–16.

    CAS  PubMed  Google Scholar 

  • Weis, C. M., and Pottle, F. A., 1970. Boswell in Extremes: 1776-1778, McGraw-Hill, New York.

    Google Scholar 

  • Weisberger, A. S., and Pensky, J., 1957. Tumor-inhibiting effects derived from an active principle of garlic (allium sativum), Science 126:1112–1114.

    CAS  PubMed  Google Scholar 

  • Whittaker, V. P., 1947. An experimental investigation of the ‘ring hypothesis’ of arsenical toxicity, Biochem. J. 41:56–62.

    CAS  PubMed  Google Scholar 

  • Wilkie, D., 1970. Thermodynamics and biology, Chemistry in Britain 6:472–476.

    CAS  PubMed  Google Scholar 

  • Williamson, J. M., and Meister, A., 1982. New substrates of 5-oxo-L-prolinase, J. Biol. Chem. 257:12039–12042.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huxtable, R.J. (1986). Thiols, Disulfides, and Thioesters. In: Biochemistry of Sulfur. Biochemistry of the Elements, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9438-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9438-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9440-3

  • Online ISBN: 978-1-4757-9438-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics