Skip to main content

The Metabolism and Functions of Methionine

  • Chapter
Biochemistry of Sulfur

Part of the book series: Biochemistry of the Elements ((BOTE,volume 6))

Abstract

Met has three ubiquitous functions: it is utilized in protein synthesis, and, via its metabolite, AdoMet, it serves as a methyl donor in transmethylation reactions and as an aminopropyl donor in the synthesis of polyamines. In addition, Met provides sulfur for Cys synthesis in organisms incapable of fixing inorganic sulfur. Met has other, more limited, functions. In bacteria, it initiates protein synthesis via its N-formyl metabolite, and, in plants, it is a precursor of ethylene, a fruit-ripening hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, H., Uchiyama, M., Tanaka, Y., and Saito, H., 1976. Structure of discadenine, a spore germination inhibitor from cellular slime-mold, Dictyostelium discoideum, Tetrahedron Lett. 42:3807–3810.

    Article  Google Scholar 

  • Abe, H., Hashimoto, K., and Uchiyama, M., 1981. Discadenine distribution in cellular slime-molds and its inhibitor activity on spore germination, Agric. Biol. Chem. 45:1295–1296.

    Article  CAS  Google Scholar 

  • Abraham, A. K., and Pihl, A., 1981. Role of polyamines in macromolecular synthesis, Trends Biochem. Sci. 6:106–107.

    Article  CAS  Google Scholar 

  • Adams, D. O., and Yang, S. F., 1979. Ethylene biosynthesis—identification of 1-amino cyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene, Proc. Natl. Acad. Sci. USA 76:170–174.

    Article  PubMed  CAS  Google Scholar 

  • Adams, D. O., and Yang, S. F., 1981. Ethylene, the gaseous plant hormone: mechanism and regulation of biosynthesis, Trends Biochem. Sci. 6:161–164.

    Article  CAS  Google Scholar 

  • Aleksijevic, A., Grove, J., and Schuber, F., 1979. Studies in polyamine biosynthesis in Euglena gracilis, Biochim. Biophys. Acta 565:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Alhonen-Hongisto, L., 1980. Regulation of S-adenosylmethionine decarboxylase by polyamines in Ehrlich ascites-carcinoma cells grown in culture, Biochem. J. 190:747–754.

    PubMed  CAS  Google Scholar 

  • Amess, J. A. L., Burman, J. F., Rees, G. M., Nancekievill, D. G., and Mollin, D. L., 1978. Megaloblastic haemopoiesis in patients receiving nitrous oxide, Lancet 2:339–342.

    Article  PubMed  CAS  Google Scholar 

  • Amrhein, N., Schneebeck, D., Skorupka, H., and Tophof, S., 1981. Identification of a major metabolite of the ethylene precursor 1-aminocyclopropane-l-carboxylic acid in higher plants, Naturwissenchaften 68:619–620.

    Article  CAS  Google Scholar 

  • Andersson, G., Christensson, E., and Heby, O., 1976. Increase in amount of nuclear-RNA in liver of ascites tumor-bearing mice, Acta Path. Microbiol. Scand, Sect. A 84:225–234.

    CAS  Google Scholar 

  • Anonymous, 1983. Have the pteroylpolyglutamates a regulatory function? Nutr. Rev. 6:190-192.

    Google Scholar 

  • Apelbaum, A., Burgoon, A. C., Anderson, J. D., Solomos, T., and Lieberman, M., 1981. Some characteristics of the system converting l-aminocyclopropane-l-carboxylic acid to ethylene, Plant Physiol. 67:80–84.

    Article  PubMed  CAS  Google Scholar 

  • Arber, W., 1974. DNA modification and restriction progress, Prog. Nucl. Acid Res. Mol. Biol. 14:1–37.

    Article  CAS  Google Scholar 

  • Atkins, J. F., Lewis, J. B., Anderson, C. W., and Gesteland, R. F., 1975. Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines, J. Biol. Chem. 250:5688–5695.

    PubMed  CAS  Google Scholar 

  • Atkinson, D. E., 1977. Cellular Energy Metabolism and Its Regulation, Academic Press, New York, 75 pp.

    Google Scholar 

  • Audubert F., and Vance, D. E., 1983. Pitfalls and problems in studies on the methylation of phosphatidylethanolamine, J. Biol. Chem. 258:10695–10701.

    PubMed  CAS  Google Scholar 

  • Axelrod, J., Wurtman, R. J., and Snyder, S. H., 1965. Control of hydroxyindole O-methyltransferase in the rat pineal gland by environmental lighting, J. Biol. Chem. 240:949–954.

    PubMed  CAS  Google Scholar 

  • Bachrach, U., 1973. Function of Naturally Occurring Polyamines, Academic Press, New York, 212 pp.

    Google Scholar 

  • Bachrach, U., Kaye, A., and Chayen, R. (eds.), 1983. Advances in Polyamine Research, Vol. 4, Raven, New York, 808 pp.

    Google Scholar 

  • Backlund, P. S. Jr., and Smith, R. A., 1981. Methionine synthesis from 5′-methylthioadenosine in rat liver, J. Biol. Chem. 256:1533–1535.

    PubMed  CAS  Google Scholar 

  • Backlund, P. S., and Smith, R. A., 1982. Methionine synthesis from 5′-methylthioadenosine in rat liver, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 723–728.

    Google Scholar 

  • Backlund, P. S., Jr., Chang, C. P., and Smith, R. A., 1982. Identification of 2-keto-4-methylthiobutyrate as an intermediate compound in methionine synthesis from 5′-meth-ylthiodenosine, J. Biol. Chem. 257:4196–4202.

    PubMed  CAS  Google Scholar 

  • Bagliono, C., and Colombo, B., 1975. Protein synthesis, in Metabolic Pathways, Vol. 4, Third Ed., (D. M. Greenberg, ed.), Academic Press, New York, pp. 278–352.

    Google Scholar 

  • Baldessarini, R. J., 1975. Biological transmethylation involving S-adenosylmethionine: Development of assay methods and implications for neuropsychiatry, Int. Rev. Neurobiol. 18:41–67.

    Article  PubMed  CAS  Google Scholar 

  • Balish, E., and Shapiro, S. K., 1967. Methionine biosynthesis in Escherichia coli—induction and repression of methylmethionine (or adenosylmethionine)-homocysteine methyltransferase, Arch. Biochem. Biophys. 119:62-67. Barak, A. J., and Tuma, D. J., 1983. Betaine, metabolic by-product or vital methylating agent? Life Sci. 32:771–774.

    Google Scholar 

  • Barak, A. J., Baker, H., and Tuma, D. J., 1981. Influence of ethanol on in vivo levels of hepatic methylators betaine and N-5-methyltetrahydrofolate in the rat, IRCS Med. Sci.: Biochem. 9:527–528.

    CAS  Google Scholar 

  • Barber, J. R., and Clarke, S., 1984. Inhibition of protein carboxyl methylation by S-adenosyl-L-homocy steine in intact erythrocytes. Physiological consequences, J. Biol. Chem. 259:7115–7122.

    PubMed  CAS  Google Scholar 

  • Baugh, C. M., Braverman, E., and Nair, M. G., 1974. The identification of poly-gamma-glutamyl chain lengths in bacterial folates. Biochemistry 13:4952–4957.

    Article  PubMed  CAS  Google Scholar 

  • Baur, A. H., and Yang, S. F., 1972. Formation of ethionine from homocysteine and of S-methylmethionine in apple tissue, Phytoehe mistry 11:2503–2505.

    Article  CAS  Google Scholar 

  • Baxter, C., and Coscia, C. J., 1973. In vitro synthesis of spermidine in the higher plant, Vinea rosea, Biochem. Biophys. Res. Commun. 54:147–154.

    Article  PubMed  CAS  Google Scholar 

  • Beaven, M. A., 1982. Factors regulating availability of histamine at tissue receptors, in Pharmacology of Histamine Receptor (M. Parsons and C. R. Ganellin, eds.), John Wright and Son, London, pp. 103–145.

    Google Scholar 

  • Benevenga, N. J., 1974a. Evidence for alternative pathways of methionine catabolism, in Advances in Nutritional Research, Vol. 6 (H. H. Draper, ed.), Plenum Press, New York, London, pp. 1–18.

    Google Scholar 

  • Benevenga, N. J., 1974b. Toxicities of methionine and other amino acids, J. Agric. Food Chem. 22:2–9.

    Article  PubMed  CAS  Google Scholar 

  • Benevenga, N. J., and Egan, A. R., 1983. Quantitative aspects of methionine metabolism, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuriyama, R. J. Huxtable, and H. Iwata, eds.), Alan R. Liss Inc., New York, pp. 327–341.

    Google Scholar 

  • Benevenga, N. J., and Harper, A. E., 1967. Alleviation of methionine and homocystine toxicity in the rat, J. Nutr. 93:44–52.

    PubMed  CAS  Google Scholar 

  • Benevenga, N. J., Yeh, M.-H., and Lalich, J. J., 1976. Growth depression and tissue reaction to consumption of excess dietary methionine and S-methyl-L-cysteine, J. Nutr. 106:1714–1720.

    PubMed  CAS  Google Scholar 

  • Bills, D. D., and Keenan, T. W., 1968. Dimethyl sulfide and its precursors in sweet corn, J. Agric. Food Chem. 16:643–668.

    Article  CAS  Google Scholar 

  • Bjornstad, P. and Bremer, J., 1966. In vivo studies on pathways for biosynthesis of lecithin in rat, J. Lipid Res. 7:38–45.

    PubMed  CAS  Google Scholar 

  • Bowman, W. H., Tabor, C. W., and Tabor, H., 1973. Spermidine biosynthesis: Purification and properties of propylamine transferase from Escherichia coli, J. Biol. Chem. 248:2480–2486.

    PubMed  CAS  Google Scholar 

  • Bremer, K., and Greenberg, D. M., 1961. Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine), Biochim. Biophys. Acta 46:205–216.

    Article  CAS  Google Scholar 

  • Brody, T., Watson, J. E., and Stokstad, E. L. R., 1982. Folate pentaglutamate and folate hexaglutamate mediated one-carbon metabolism, Biochemistry 21:;276–282.

    Article  PubMed  Google Scholar 

  • Brown, F. C., and Gordon, P. H., 1971. Cystathionine synthase from rat liver. Partial purification and properties, Can. J. Biochem. 49:484–491.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. P., Davidson, G. E., and Scott, J. M., 1974. The identification of the forms of folate found in the liver, kidney, and intestine of the monkey and their biosynthesis from exogenous pteroylglutamate (folic acid), Biochem. Biophys. Acta 343:78–88.

    Article  PubMed  CAS  Google Scholar 

  • Buehring, K. U., Tamura, T., and Stokstad, E. L. R., 1974. Folate coenzymes of Lactobacillus casei and Streptococcus faecalis, J. Biol. Chem. 249:1081–1089.

    PubMed  CAS  Google Scholar 

  • Burke, G. T., Mangum, J. H., and Brodie, J. D., 1971. Mechanism of mammalian cobalamindependent methionine biosynthesis, Biochemistry 10:3079–3085.

    Article  PubMed  CAS  Google Scholar 

  • Burns, R. A., and Milner, J. A., 1981. Sulfur amino acid requirements of immature beagle dogs, J. Nutr. 111:2117–2124.

    CAS  Google Scholar 

  • Cacciapuoti, G., Oliva, A., and Zappia, V., 1978. Studies on phosphate-activated 5′-methylthioadenosine nucleosidase from human placenta, Int. J. Biochem. 9:35–41.

    Article  PubMed  CAS  Google Scholar 

  • Caldarera, C. M., Barbiroli, B., and Moruzzi, G., 1965. Polyamines and nucleic acids during development of chick embryo, Biochem. J. 97:84–88.

    PubMed  CAS  Google Scholar 

  • Caldarera, C. M., Zappia, V., and Bachrach, U. (eds.), 1981. Advances in Poly amine Research, Vol. 3, Raven, New York, 493 pp.

    Google Scholar 

  • Canellakis, E. S., Viceps-Madore, D., Kyriakidis, D. A., and Heller, J. S., 1979. The regulation and function of ornithine decarboxylase and of the polyamines, Curr. Top. Cell.Regul. 15:155–202.

    PubMed  CAS  Google Scholar 

  • Carteni-Farina, M., Oliva, A., Romeo, G., Napolitano, G., DeRosa, M., Gambacorta, A., and Zappia, V., 1979. 5′-Methylthioadenosine phosphorylase from Caldariella acidophila — purification and properties, Eur. J. Biochem. 101:317–324.

    Article  CAS  Google Scholar 

  • Case, G. L., and Benevenga, N. J., 1977. Significance of formate as an intermediate in the oxidation of the methionine, S-methyl-L-cysteine and sarcosine methyl carbons to CO2 in the rat, J. Nutr. 107:1665–1676.

    PubMed  CAS  Google Scholar 

  • Case, G. L., Mitchell, A. D., Harper, A. E., and Benevenga, N. J., 1976. Significance of choline synthesis in the oxidation of the methionine methyl group in rats, J. Nutr. 106:735–747.

    PubMed  CAS  Google Scholar 

  • Challenger, F., and Hayward, B. J., 1954. The occurrence of a methylsulphonium derivative of methionine (α-amino-dimethyl-γ-butyrothetin), Chem. Ind. (London) 25:729–730.

    Google Scholar 

  • Chapman, S. K., Martin, M., Hoover, M. S., and Chiou, C. Y., 1978. Ornithine decarboxylase activity and growth of neuroblastoma-cells—effects of bromoacetylcholine, bromoacetate and 1,3-diaminopropane, Biochem. Pharmacol. 27:717–721.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Zieve, L., and Mahadevan, V., 1970. Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver, J. Lab. Clin. Med. 75:628–635.

    PubMed  CAS  Google Scholar 

  • Cheng, F. W., Shane, B., and Stokstad, E. L. R., 1975. Pentaglutamate derivatives of folate as substrates for rat liver tetrahydropteroylglutamate methyltransferase and 5,10-methylenetetrahydrofolate reductase, Can. J. Biochem. 53:1020–1027.

    Article  CAS  Google Scholar 

  • Cichowicz, D. J., Foo, S. K., and Shane, B., 1981. Folylpoly-γ-glutamate synthesis by bacteria and mammalian cells, Mol. Cell. Biochem. 39:209–228.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, H. P., Choitz, H. C., and Berg, C. P., 1958. Response to diets high in methionine and related compounds, J. Nutr. 65:555–569.

    Google Scholar 

  • Cohen, S. S., 1971. Introduction to the Polyamines, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 179 pp.

    Google Scholar 

  • Cohen, S. S., and Raina, A., 1967. Some interrelations of natural polyamines and nucleic acids in growing and virus-infected bacteria, in Organizational Biosynthesis (H. J. Vogel, J. O. Lampen, and V. Bryson, eds.), Academic Press, New York, pp. 157–182.

    Chapter  Google Scholar 

  • Cohen, S. S., Hoffner, N., Jansen, M., Moore, M., and Raina, A., 1967. Polyamines RNA synthesis and streptomycin lethality in a relaxed mutant of E. coli strain 15 tau, Proc. Natl. Acad. Sci. USA 57:721–728.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S. S., O’Malley, B. W., and Stastney, M., 1970. Estrogenic induction of ornithine decarboxylase in vivo and in vitro, Science 170:336–338.

    Article  PubMed  CAS  Google Scholar 

  • Cohn, M. S., Tabor, C. W., and Tabor, H., 1979. Mutants of Saccharomyces cerevisiae defective in the biosynthesis of polyamines from S-adenosylethionine, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 91–93.

    Google Scholar 

  • Cohn, M. S., Tabor, C. W., and Tabor, H., 1980. Regulatory mutations affecting ornithine decarboxylase activity in Saccharomyces cerevisiae, J. Bacteriol. 142:791–799.

    PubMed  CAS  Google Scholar 

  • Compere, S. J., and Palmiter, R. D., 1981. DNA methylation controls the inducibility of the mouse metallothionein-l gene in lymphoid cells, Cell 25:233–240.

    Article  PubMed  CAS  Google Scholar 

  • Connett, R. J., and Kirschner, N., 1970. Purification and properties of bovine phenylethanolamine N-methyltransferase, J. Biol. Chem. 245:329–334.

    PubMed  CAS  Google Scholar 

  • Cooper, A. J. L., 1977. Asparagine transaminase from rat liver, J. Biol. Chem. 252:2032–2038.

    PubMed  CAS  Google Scholar 

  • Cooper, A. J. L., and Meister, A., 1972. Isolation and properties of highly purified glutamine transaminase, Biochemistry 11:661–671.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A. J. L., and Meister, A., 1974. Isolation and properties of a new glutamine transaminase from rat kidney, J. Biol. Chem. 249:2554–2561.

    CAS  Google Scholar 

  • Cooper, A. J. L., and Meister, A., 1977. Glutamine transaminase-ω-amidase pathway, CRC Crit. Rev. Biochem. 4:281–303.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A. J. L., and Meister, A., 1981. Comparative studies of glutamine transaminases from rat tissues, Comp. Biochem. Physiol. 69B:137–145.

    CAS  Google Scholar 

  • Cornforth, J. W., Reichard, S. A., Talalay, P., Carrell, H. L., and Glusker, J. P., 1977. Determination of absolute configuration at sulfonium center of S-adenosylmethionine—correlation with absolute configuration of diasteromeric S-carboxymethyl-(S)-methionine salts, J. Am. Chem. Soc. 99:7292–7300.

    Article  PubMed  CAS  Google Scholar 

  • Cornforth, J. W., Carrell, H. L., Glusker, J. P., and Talalay, P., 1978. The absolute configuration of the sulfonium center of S-adenosyl-L-methionine, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 19–26.

    Google Scholar 

  • Covey, J. M., 1980. Polyglutamate derivatives of folic acid coenzymes and methotrexate, Life Sci. 26:665–678.

    Article  PubMed  CAS  Google Scholar 

  • Coward, J. K., Chello, P. L., Cashmore, A. R., Parameswaran, K. N., DeAngelis, L. M., and Bertino, J. R., 1975. 5-methyl-5,6,7,8-tetrahydropteroyl oligo-γ-L-glutamates—synthesis and kinetic studies with methionine synthetase from bovine brain. Biochemistry 14:1548–1552.

    Article  PubMed  CAS  Google Scholar 

  • Das, K. C., and Herbert, V., 1976. Vitamin B12-folate interrelations, Clin. Haematol. 5:697–725.

    PubMed  CAS  Google Scholar 

  • Deacon, R., Lumb, M., Muir, M., Perry, J., and Chanarin, I., 1979. Studies on cobalamin and folate metabolism in rats exposed to nitrous oxide (N2O), in Vitamin B 12 (B. Zagalak and W. Friedrich, eds.), DeGryter, New York, pp. 1055–1060.

    Google Scholar 

  • De la Haba, G., and Cantoni, G. L., 1959. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine, J. Biol. Chem. 234:603–608.

    Google Scholar 

  • DeRosa, M., Gambacorta, A., and Bu’lock, J. D., 1975. Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius, J. Gen. Microbiol. 86:156–164.

    Article  CAS  Google Scholar 

  • DeRosa, S., DeRosa, A., Gambacorta, A., Carteni-Farina, M., and Zappia, V., 1978. The biosynthetic pathway of new polyamines in Caldariella acidophila, Biochem. J. 176:1–7.

    CAS  Google Scholar 

  • Dice, J. F., and Goldberg, A. L., 1975. Relationship between in vivo degradative rates and isoelectric points of proteins, Proc. Natl. Acad. Sci. USA 72:3893–3897.

    Article  PubMed  CAS  Google Scholar 

  • Dice, J. F., Dehlinger, P. J., and Schimke, R. T., 1973. Studies on the correlation between size and relative degradation rate of soluble proteins, J. Biol. Chem. 248:4220–4228.

    CAS  Google Scholar 

  • Dickerman, H., Steers, E., Jr., Redfield, B. G., and Weissbach, H., 1966. Formylation of Escherichia coli methionyl-sRNA, Cold Spring Harbor Symp. Quant. Biol. 31:287–288.

    Article  PubMed  CAS  Google Scholar 

  • Diliberto, E. J., Jr., O’Dea, R. F., and Viveros, O. H., 1979. The role of protein carboxymethylase in secretory and chemotactic eukaryotic cells, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 529–538.

    Google Scholar 

  • Dillon, M. J., England, J. M., Gompertz, D., Goodney, P. A., Grant, D. B., Hussein, H. A. A., Linnell, J. C., Matthews, D. M., Mudd, S. H., Newns, G. H., Seakins, J. W. T., Uhlendorf, B. W., and Wise, I. J., 1974. Mental retardation, megaloblastic anemia, methylmalonic aciduria and abnormal homocysteine metabolism due to an error in vitamin B12 metabolism, Clin. Sci. Mol. Med. 41:43–61.

    Google Scholar 

  • DiPerri, B., Calderini, G., Battistella, A., Raciti, R., and Toffano, G., 1983. Phospholipid methylation increases [3H]diazepam and [3H]GABA binding in membrane preparations of rat cerebellum, J. Neurochem. 41:302–308.

    Article  CAS  Google Scholar 

  • Dolnick, B. J., and Cheng, V-C., 1978. Human thymidylate synthetase. II. Derivatives of pteroylmono-and polyglutamates as substrates and inhibitors, J. Biol. Chem. 253:3563–3567.

    PubMed  CAS  Google Scholar 

  • Duerre, J. A., 1982. Regulation of S-adenosylmethionine and S-adenosylhomocysteine levels in isolated rat liver, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 595–602.

    Google Scholar 

  • Duffy, P. E., and Kremzner, L. T., 1977. Ornithine decarboxylase activity and polyamines in relation to aging of human fibroblasts, Exp. Cell Res. 108:435–440.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, M., and Wang, R.Y.-H., 1981. 5-Methylcytosine in eukaryotic DNA, Science 212:1350–1357.

    Article  PubMed  CAS  Google Scholar 

  • Eiden, L. E., Borchardt, R. T., and Rutledge, C. O., 1979. Protein carboxymethylation in neurosecretory processes, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 539–546.

    Google Scholar 

  • Eisenberg, M. A., and Stoner, G. L., 1971. Biosynthesis of 7,8-diaminopelargonic acid, a biotin intermediate, from 7-keto-8-aminopelargonic acid and S-adenosyl-L-methionine, J.Bacteriol. 108:1135–1140.

    PubMed  CAS  Google Scholar 

  • Eloranta, T. O., 1977. Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Biochim. J. 166:521–529.

    CAS  Google Scholar 

  • Eloranta, T. O., and Raina, A. M., 1977. S-Adenosylmethionine metabolism and its relation to polyamine synthesis in rat liver. Effect of nutritional state, adrenal function, some drugs and partial hepatectomy, Biochem. J. 168:179–185.

    PubMed  CAS  Google Scholar 

  • Eto, I., and Krumdieck, C. L., 1982. Changes in the chain length of folylpolyglutamates during liver regeneration, Life Sci. 30:183–189.

    Article  CAS  PubMed  Google Scholar 

  • Everett, G. B., Mitchell, A. D., and Benevenga, N.J., 1979. Methionine transamination and catabolism in Vitamin B-6 deficient rats, J. Nutr. 109:597–605.

    PubMed  CAS  Google Scholar 

  • Fausto, N., 1972. RNA metabolism in isolated perfused normal and regenerating livers: Polyamine effects, Biochim. Biophys. Acta 281:543–553.

    Article  PubMed  CAS  Google Scholar 

  • Ferger, M. F., and du Vigneaud, V., 1950. Oxidation in vivo of the methyl groups of choline, betaine, dimethylthetin, and dimethyl-ß-propiothetin, J. Biol. Chem. 185:53–57.

    PubMed  CAS  Google Scholar 

  • Ferro, A. J., Barrett, A., and Shapiro, S. K., 1976. Kinetic properties and the effect of substrate analogues on 5′-methylthioadenosine nucleosidase from Escherichia coli, Biochim. Biophys. Acta 438:487–494.

    Article  PubMed  CAS  Google Scholar 

  • Fillingame, R. H., Jorstad, C. M., and Morris, D. R., 1975. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A, Proc. Natl. Acad. Sci. USA 72:4042–4045.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, J. D., 1971. Methionine metabolism in mammals, in Inherited Disorders of Sulphur Metabolism (N. A. J. Carson and D. N. Raine, eds.), Churchill Livingstone, London, pp. 1–13.

    Google Scholar 

  • Finkelstein, J. D., 1974. Methionine metabolism in mammals: The biochemical basis for homocystinuria, Metabolism 23:387–398.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, J. D., 1975. Enzyme defects in sulfur amino acid metabolism in man, in Metabolic Pathways, Third Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 547–597.

    Google Scholar 

  • Finkelstein, J. D., 1978. Regulation of methionine metabolism in mammals, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 49–58.

    Google Scholar 

  • Finkelstein, J. D., and Harris, B., 1973. Methionine metabolism in mammals: Synthesis of S-adenosylhomocysteine in rat tissues, Arch. Biochem. Biophys. 159:160–165.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, J. D., Harris, B. J., and Kyle, W. E., 1972. Methionine metabolism in mammals: Kinetic study of betaine-homocysteine methyltransferase, Arch. Biochem. Biophys. 153:320–324.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, J. D., Kyle, W. E., and Harris, B. J., 1974. Methionine metabolism in mammals: Regulatory effects of S-adenosylhomocysteine, Arch. Biochem. Biophys. 165:774–779.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, J. D., Kyle, W. E., and Martin, J. J., 1975a. Abnormal methionine adenosyltransferase in hypermethioninemia, Biochem. Biophys. Res. Commun. 66:1491–1497.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, J. D., Kyle, W. E., Martin, J. J., and Pick, A. M., 1975b. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine, Biochem. Biophys. Res. Commun. 66:81–87.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, C. D., Jellinek, M., and Mueller, E. J., 1974. Experimental depletion of creatine and phosphocreatine from skeletal muscle, J. Biol. Chem. 249:1060–1063.

    PubMed  CAS  Google Scholar 

  • Flavin, M., 1975. Methionine biosynthesis, in Metabolic Pathways, Third Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 457–503.

    Google Scholar 

  • Foo, S. K., and Shane, B., 1982. Regulation of folylpoly-γ-glutamate synthesis in mammalian cells: in vivo and in vitro synthesis of pteroylpoly-y-glutamate by Chinese hamster ovary cells, J. Biol. Chem. 257:13587–13592.

    PubMed  CAS  Google Scholar 

  • Freeman, J. M., Finkelstein, J. D., and Mudd, S. H., 1975. Folate responsive homocystinuria and schizophrenia. A defect in methylation due to deficient 5,10-methylenetrahydrofolate reductase activity, N. Engl. J. Med. 292:491.

    Article  CAS  Google Scholar 

  • French, S. W., 1966. Effect of chronic ethanol ingestion on liver enzyme changes induced by thiamine, riboflavin pyridoxine or choline deficiency, J. Nutr. 88:291–302.

    PubMed  CAS  Google Scholar 

  • Friedkin, M., Plante, L. T., Crawford, E. J., and Crumm, M., 1975. Inhibition of thymidylate synthetase and dihydrofolate reductase by naturally occurring oligoglutamate derivatives of folic acid, J. Biol. Chem. 250:5614.

    PubMed  CAS  Google Scholar 

  • Fujii, K., 1979. Folate and cobalamin interrelationships in mouse leukemia L1210 cells, in Chemistry and Biology of Pteridines (R. L. Kisliuk and G. M. Brown, eds.), Elsevier, New York, pp. 297–302.

    Google Scholar 

  • Gagnon, C., 1979. Presence of a protein methylesterase in mammalian tissues, Biochem. Biophys. Res. Commun. 88:847–853.

    Article  PubMed  CAS  Google Scholar 

  • Gagnon, C., 1982. The protein-carboxyl methylating-demethylating system: Modulation of protein function, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 55–64.

    Google Scholar 

  • Gagnon, C., 1983. Enzymatic carboxyl methylation of calcium-binding proteins, Can. J. Biochem. Cell Biol. 61:921–926.

    Article  PubMed  CAS  Google Scholar 

  • Gagnon, C., Viveros, O. H., Diliberto, E. J., Jr., and Axelrod, J., 1978. Enzymatic methylation of carboxyl groups of chromaffin granule membrane proteins, J. Biol. Chem. 253:3778–3781.

    PubMed  CAS  Google Scholar 

  • Garbers, D. L., 1978. Demonstration of 5′-methylthioadenosine phosphorylase activity in various rat tissues. Some properties of the enzyme from rat lung, Biochim. Biophys. Acta 523:82–93.

    Article  PubMed  CAS  Google Scholar 

  • Gaugas, J. M., 1980. Biogenic diamines and polyamines in support and in inhibition of lymphocyte proliferation, in Polyamines in Biomedical Research (J. M. Gaugas, ed.), Wiley, New York, pp. 343–362.

    Google Scholar 

  • Gaull, G. E., Sturman, J. A., and Raiha, N. C. R., 1972. Development of mammalian sulfur metabolism: Absence of cystathionase in human fetal tissues, Pediat. Res. 6:538–547.

    Article  PubMed  CAS  Google Scholar 

  • Gawthorne, J. M., and Smith, R. M., 1974. Folic acid metabolism in vitamin B12-deficient sheep. Effects of injected methionine on methotrexate transport and the activity of enzymes associated with folate metabolism in liver, Biochem. J. 142:119.

    PubMed  CAS  Google Scholar 

  • Gefter, M., Hausmann, R. L., Gold, M., and Hurwitz, J., 1966. Enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. X. Bacteriophage T3-induced S-adenosylmethionine cleavage, J. Biol. Chem. 241:1995–2006.

    PubMed  CAS  Google Scholar 

  • Giovanelli, J., Mudd, S. H., and Datko, A. H., 1980. Homocysteine biosynthesis in plants, in Natural Sulfur Compounds (D. Cavallini, G. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 81–92.

    Chapter  Google Scholar 

  • Giovanelli, J., Mudd, S. H., and Datko, A. H., 1981. Recycling of methionine sulfur in a higher plant by two pathways characterized by either loss or retention of the 4-carbon moiety, Biochem. Biophys. Res. Commun. 100:831–839.

    Article  PubMed  CAS  Google Scholar 

  • Goldemberg, S. H., and Algranati, I. D., 1981. Polyamines and antibiotic effect on translation, Med. Biol. 59:360–367.

    PubMed  CAS  Google Scholar 

  • Goldstein, D. A., Heby, O., and Marton, L. J., 1976. Biphasic stimulation of polyamine biosynthesis in primary mouse kidney cells by infection with polyoma virus: Uncoupling from DNA and rRNA synthesis, Proc. Natl. Acad. Sci. USA 73:4022–4026.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, D. M., 1975a. Biosynthesis of cysteine and cystine, in Metabolic Pathways, Third Ed., Vol. VII, Metabolism of Sulfur Compunds (D. M. Greenberg, ed.), Academic Press, New York, pp. 505–528.

    Google Scholar 

  • Greenberg, D. M., 1975b. Utilization and dissimilation of methionine, in Metabolic Pathways, Third Ed., Vol. VII, Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 529–534.

    Google Scholar 

  • Greene, R. C., and Davis, N. B., 1960. Biosynthesis of S-methylmethionine in the jack bean, Biochim. Biophys. Acta 43:360–362.

    Article  PubMed  CAS  Google Scholar 

  • Groudine, M., Eisenman, R., and Weintraub, H., 1981. Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation, Nature 292:311–317.

    Article  PubMed  CAS  Google Scholar 

  • Guranowski, A. B., Chiang, P. K., and Cantoni, G. L., 1981. 5′-Methylthioadenosine nucleosidase. Purification and characterization of the enzyme from Lupinus luteus seeds, Eur. J. Biochem. 114:293–299.

    Article  PubMed  CAS  Google Scholar 

  • Hafner, E. W., Tabor, H., and Tabor, C. W., 1978. Mutants of Escherichia coli defective in the biosynthesis of polyamines from SAM, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 85–90.

    Google Scholar 

  • Handler, P., and Bernheim, M. L. C., 1943. The specificity of L(—)-methionine in creatine synthesis, J. Biol. Chem. 150:335–338.

    CAS  Google Scholar 

  • Hannonen, P., 1975. Enzymic decarboxylation of S-adenosyl-L-methionine in rat-liver—possible interaction of putrescine with prosthetic group, Acta Chem. Scand. B29:295–299.

    Article  CAS  Google Scholar 

  • Harper, A. E., Benevenga, N. J., and Wohlhueter, R. M., 1970. Effects of ingestion of disproportionate amounts of amino-acids, Physiol. Rev. 50:428–458.

    PubMed  CAS  Google Scholar 

  • Hatch, F. T., Larrabee, A. R., Cathou, R. E., and Buchanan, J. M., 1961. Enzymatic synthesis of the methyl group of methionine. I. Identification of the enzymes and cofactors involved in the system isolated from Escherichia coli, J. Biol. Chem. 236:1095–1101.

    PubMed  CAS  Google Scholar 

  • Hausmann, R., 1967. Synthesis of an S-adenosylmethionine-cleaving enzyme in T3-infected Escherichia coli and its disturbance by co-infection with enzymatically incompetent bacteriophage, J.Virol. 1:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Herbert, V., and Das, K. C., 1976. The role of vitamin B12 and folic acid in hemato-and other cell-poiesis, Vitam. Horm. 34:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Herbert, V., and Zalusky, R., 1962. Interrelations of vitamin B12 and folic acid metabolism: Folic acid clearance studies, J. Clin. Invest. 41:1263–1276.

    Article  PubMed  CAS  Google Scholar 

  • Herbert, V., Larrabee, A. B., and Buchanan, J. M., 1962. Studies on the identification of a folate compound of human serum, J. Clin. Invest. 41:1134–1138.

    Article  PubMed  CAS  Google Scholar 

  • Hibasami, H., Hoffman, J. L., and Pegg, A. E., 1980. Decarboxylated S-adenosylmethionine in mammalian cells, J. Biol. Chem. 255:6675–6678.

    PubMed  CAS  Google Scholar 

  • Hirata, F., 1982. Overviews on phospholipid methylation, in Biochemistry of S-Adenosyl-methionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 109–118.

    Google Scholar 

  • Hirata, F., and Axelrod, J., 1980. Phospholipid methylation and biological signal transmission, Science 209:1082–1090.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D. R., Cornatzer, W. E., and Duerre, J. A., 1979. Relationship between tissue levels of S-adenosylmethionine, S-adenosylhomocysteine, and transmethylation reactions, Can. J. Biochem. 57:56–65.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, J., 1975. A rapid liquid chromatographic determination of S-adenosylmethionine and S-adenosylhomocysteine in subgram amounts of tissue, Anal. Biochem. 68:522–530.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, R. M., 1984. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis, Biochim. Biophys. Acta 738:49–87.

    PubMed  CAS  Google Scholar 

  • Hogan, B. L. M., Mcllhinney, A., and Murden, S., 1974. Effect of growth conditions on the activity of ornithine decarboxylase in cultured hepatoma cells. II. Effect of serum and insulin, J. Cell Physiol. 83:353–358.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R., and Pugh, J. E., 1975. DNA modification mechanisms and gene activity during development, Science 187:226–232.

    Article  PubMed  CAS  Google Scholar 

  • Horne, D. W., and Briggs, W. T., 1980. Effect of dietary and nitrous oxide induced vitamin B12 deficiency on uptake of 5-methyltetrahydrofolate by isolated hepatocytes, J. Nutr. 110:223–230.

    PubMed  CAS  Google Scholar 

  • Home, D. W., Briggs, W. T., and Wagner, C., 1978. Ethanol stimulates 5-methyltetrahydrofolate accumulation is isolated rat liver cells, Biochem. Pharmacol. 27:2069–2074.

    Article  Google Scholar 

  • Horowitz, J. H., Rypins, E. B., Henderson, J. M., Heymsfield, S. B., Moffit, S. D., Bain, R. P., Chawla, R. C., Bleier, J. C., and Rudman, D., 1981. Evidence for impairment of transsulfuration pathway in cirrhosis, Gastroenterology 81:668–675.

    PubMed  CAS  Google Scholar 

  • Hosaka, K., and Yamashita, S., 1981. Induction of choline transport and its role in the stimulation of the incorporation of choline into phosphatidylcholine by polyamines in a polyamine auxotroph of Saccharomyces cerevisiae, Eur. J. Biochem. 116:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Hoshika, Y., 1982. Gas chromatographic determination of trace amounts of ß-methylmercaptopropionaldehyde (methional) in the free form using flame photometric detection, J. Chromatogr. 237:439–445.

    Article  CAS  Google Scholar 

  • Houlihan, C. M., and Scott, J. M., 1972. The identification of pteroylpentaglutamate as the major folate derivative in rat liver and the demonstration of its biosynthesis from exogenous [3H]pteroylglutamate. Biochem. Biophys. Res. Commun. 48:1675–1681.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, K., Kakegawa, T., and Hirose, S., 1982. Stabilization of 30 S ribosomal subunits of Bacillus subtilis W168 by spermidine and magnesium ions, Biochim. Biohys. Acta 697:185–192.

    Article  CAS  Google Scholar 

  • Ikeda, T., Konishi, Y., and Ichihara, A., 1976. Transaminase of branched chain amino acids. XI. Leucine (methionine) transaminase of rat liver mitochondria, Biochim. Biophys. Acta 445:622–631.

    Article  PubMed  CAS  Google Scholar 

  • Im, Y. S., Chiang, P. K., and Cantoni, G. L., 1979. Guanidoacetate methyltransferase, J. Biol. Chem. 254:11047–11050.

    PubMed  CAS  Google Scholar 

  • Ito, S., and Nicol, J. A. C., 1975. Identification of decarboxylated S-adenosylmethionine in tapetum lucidum of catfish, Proc. R. Soc. London, Ser. B 190:33–43.

    CAS  Google Scholar 

  • Ito, S., Thurston, E. L., and Nicol., J. A. C., 1975. Melanoid tapeta lucida in teleost fishes, Proc. R. Soc. London, Ser. B 191:369–385.

    CAS  Google Scholar 

  • Izumi, Y., Sato, K., Tani, Y., and Ogata, K., 1973. Purification of 7,8-diaminopelargonic acid aminotransferase, an enzyme involved in biotin biosynthesis, from Brevibacterium divaricatum, Agric. Biol. Chem. 37:2683–2684.

    Article  CAS  Google Scholar 

  • Jänne, J., and Williams-Ashman, H. G., 1971. On the purification of L-ornithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme, J. Biol. Chem. 246:1725–1732.

    PubMed  Google Scholar 

  • Jänne, J., Pösö, H., and Raina, A., 1978. Polyamines in rapid growth and cancer, Biochim. Biophys. Acta 473:241–293.

    PubMed  Google Scholar 

  • Johnston, M., Raines, R., Chang, M., Esaki, N., Soda, K., and Walsh, C., 1981. Mechanistic studies on reactions of bacterial methionine γ-lyase with olefinic amino acids, Biochemistry 20:4325–4333.

    Article  PubMed  CAS  Google Scholar 

  • Kajander, O., Eloranta, T., and Raina, A., 1976. A sensitive isotopic assay method for S-adenosylhomocysteine hydrolase. Some properties of the enzyme from rat liver, Biochim. Biohys.Acta 438:522–531.

    Article  CAS  Google Scholar 

  • Kaji, H., Hisamura, M., Saito, N., and Murao, M., 1978. Evaluation of volatile sulfur compounds in expired alveolar gas in patients with liver-cirrhosis, Clin. Chim. Acta 85:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Kaji, H., Saito, N., Murao, M., Ishimoto, M., Kondo, H., Gasa, S., and Saito, K., 1980. Gas chromatographic and gas chromatographic-mass spectrometric studies on α-keto-γ-methylthiobutyric acid in urine following ingestion of optical isomers of methionine, J. Chromatogr. 221:145–148.

    PubMed  CAS  Google Scholar 

  • Kamatani, N., and Carson, D. A., 1981. Abnormal regulation of methylthioadenosine and polyamine metabolism in methylthioadenosine phosphorylase-deficient human leukemic cell, Cancer Res. 40:4178–4182.

    Google Scholar 

  • Kamatani, N., Nelson-Rees, W. A., and Carson, D. A., 1981. Selective killing of human malignant cell lines deficient in methylthioadenosine phosphorylase, a purine metabolic enzyme, Proc. Natl. Acad. Sci. USA 78:1219–1223.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwamata, S., and Greenberg, D. M., 1970. Studies on cystathionine synthase of rat liver—properties of the highly purified enzyme, Biochim. Biophys. Acta 212:488–500.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Ogura, M., and Suda, M., 1966. Control mechanism in rat liver enzyme system converting L-methionine to L-cystine, J. Biochem. (Tokyo) 59:40–48.

    CAS  Google Scholar 

  • Kelly, K. L., Kiechle, F. L., and Jarett, L., 1984. Insulin stimulation of phospholipid methylation in isolated rat adipocyte plasma membranes, Proc. Natl. Acad. Sci. USA 81:1089–1092.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., and Paik, W. K., 1970. Purification and properties of protein methylase II, J. Biol. Chem. 245:1806–1813.

    PubMed  CAS  Google Scholar 

  • Kim, S., and Paik, W. K., 1971. Studies on the structural requirements of substrate protein for protein methylase II, Biochemistry 10:3141–3145.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., and Paik, W. K., 1976. Labile protein methyl esters: comparison between chemically and enzymatically synthesized, Experientia 32:982–984.

    Article  PubMed  CAS  Google Scholar 

  • Kisliuk, R. L., 1981. Pteroylpolyglutamates, Mol. Cell. Biochem. 39:331–345.

    Article  PubMed  CAS  Google Scholar 

  • Kisliuk, R. L., Gaumont, Y., and Baugh, C. M., 1974. Polyglutamyl derivatives of folate as substrates and inhibitors of thymidylate synthetase, J. Biol. Chem. 249:4100–4103.

    PubMed  CAS  Google Scholar 

  • Kjaer, A., Grue-Sorensen, G., Kelstrup, E., and Ogaard Madsen, J., 1980. Stereochemical aspects of transmethylations of potential biological interest, in Natural Sulfur Compounds (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 1–14.

    Chapter  Google Scholar 

  • Knappe, J., and Schmitt, T., 1976. A novel reaction of S-adenosyl-L-methionine correlated with the activation of pyruvate formate-lyase, Biochem. Biophys. Res. Commun. 71:1110–1117.

    Article  PubMed  CAS  Google Scholar 

  • Koblin, D. D., Watson, J. E., Deady, J. E., Stockstad, E. L. R., and Eger, E. I., 1981. Inactivation of methionine synthetase by nitrous oxide in mice, Anesthesiology 54:318–324.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, J., Packman, S., Fowler, B., and Rosenberg, L. E., 1978. Purification and properties of cystathionine γ-synthase from human liver, J. Biol. Chem. 253:6523–6528.

    PubMed  CAS  Google Scholar 

  • Krebs, H. A., Hems, R. and Tyler, B., 1976. The regulation of folate and methionine metabolism, Biohem. J. 158:341–353.

    CAS  Google Scholar 

  • Kutzbach, C., and Stokstad, E. L. R., 1968. Partial purification of a 10-formyltetrahydrofolate: NADP oxidoreductase from mammalian liver, Biochem. Biophys. Res. Commun. 30:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Kutzbach, C., and Stokstad, E. L. R., 1971. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition of S-adenosylmethionine, Biochim. Biophys. Acta 250:459–477.

    Article  PubMed  CAS  Google Scholar 

  • Lassen, H. C. A., Henrickson, E., Neukirch, F., and Kristensen, H. S., 1956. Treatment of tetanus. Severe bone-marrow depression after prolonged nitrous oxide anaesthesia, Lancet 1:527–530.

    Article  Google Scholar 

  • Laster, L., Mudd, S. H., Finkelstein, J. D., and Irreverre F., 1965. Homocystinuria due to cystathionine synthase deficiency: The metabolism of L-methionine, J. Clin. Invest. 44:1708–1719.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, F., Richou, M., Vedel, M., Farrugia, G., Blanchard, P., and Robert-Gero, M., 1978. Identification of some metabolic products of 5′-deoxy-5′-S-isobutylthioadenosine, an inhibitor of virus induced cell transformation, Eur. J. Biochem. 87:257–263.

    Article  PubMed  CAS  Google Scholar 

  • Leete, E., Davis, G. E., Hutchinson, C. R., Woo, K. W., and Chedekel, M. R., 1974. Biosynthesis of azetidine-2-carboxylic acid in Convallaria majalis, Phytochemistry 13:427–433.

    Article  CAS  Google Scholar 

  • Leslie, G. I., and Baugh, C. M., 1974. The uptake of pteroyl[14C]glutamate into rat liver and its incorporation into the natural pteroyl poly-γ-glutamates of that organ, Biochemistry 13:4957–4961.

    Article  PubMed  CAS  Google Scholar 

  • Liau, M. C., Linn, G. W., and Hurlbert, R. B., 1977. Partial purification and characterization of tumor and liver S-adenosylmethionine synthetases, Cancer Res. 37:427–435.

    PubMed  CAS  Google Scholar 

  • Liss, M., Maxam, A. M., and Cuprak, L. J., 1969. Methylation of protein by calf spleen methylase. A new protein methylation reaction, J. Biol. Chem. 244:1617–1622.

    PubMed  CAS  Google Scholar 

  • Livesey, G., 1981. Metabolism of ‘essential’ 2-oxo acids by liver and a role for branched-chain oxo acid dehydrogenase in the catabolism of methionine, in Metabolism and Clinical Implications of Branched Chain Amino and Ketoacids (M. Walser and J. R. Williamson, eds.), Elsevier/North Holland, New York, pp. 143–148.

    Google Scholar 

  • Lombardini, J. B., and Talalay, P., 1971. Formation, functions and regulatory importance of S-adenosyl-L-methionine, Adv. Enzyme Regul. 9:349–384.

    Article  Google Scholar 

  • Lombardini, J. B., and Talalay, P., 1973. Effects of inhibitors of adenosine-triphosphate-L-methionine S-adenosyltransferase on levels of S-adenosyl-L-methionine in normal and malignant mammalian tissues, Mol. Pharmacol. 9:542–560.

    CAS  PubMed  Google Scholar 

  • Lombardini, J. B., Chou, T.-C., and Talalay, P., 1973. Regulatory properties of adenosine triphosphate-L-methionine S-adenosyltransferase of rat-liver, Biochem. J. 135:43–57.

    CAS  PubMed  Google Scholar 

  • Lovenberg, W., 1982. Methylation of small molecules: An overview, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 427–436.

    Google Scholar 

  • Lumb, M., Deacon, R., Perry, J., Chanarin, E., Minty, B., Halsey, M. J., and Nunn, J. F., 1980. The effect of nitrous oxide inactivation of vitamin B12 on rat hepatic folate, Biochem. J. 186:933–936.

    PubMed  CAS  Google Scholar 

  • Lund, P., 1980. Glutamine-metabolism in the rat, FEBS Lett. 117:K86–92.

    Article  PubMed  Google Scholar 

  • Mackenzie, R. B., and Baugh, C. M., 1980. Tetrahydropteroyl polyglutamate derivatives as substrates of two multifunctional proteins with folate-dependent enzyme activities, Biochim. Biophys. Acta 611:187–195.

    Article  PubMed  CAS  Google Scholar 

  • Makar, A. B., and Tephly, T. R., 1983. Effect of nitrous oxide and methionine treatments on hepatic S-adenosylmethionine and methylation reactions in the rat, Mol. Pharmacol. 24:124–128.

    CAS  PubMed  Google Scholar 

  • Mamont, P. S., and Danzin, C., 1981. In vitro and in vivo regulation of S-adenosyl-L-methionine decarboxylase by polyamines, in Advances in Polyamine Research, Vol. 3 (C. M. Caldara, V. Zappia, and U. Bachrach, eds.), Raven, New York, pp. 123–135.

    Google Scholar 

  • Mamont, P. S., Joder-Ohlenbusch, A. M., Nussli, M., and Grove, J., 1981. Indirect evidence for a strict negative control of S-adenosyl-L-methionine decarboxylase by spermidine in rat hepatoma cells, Biochem. J. 196:411–422.

    PubMed  CAS  Google Scholar 

  • Mamont, P. S., Danzin, C., Wagner, J., Siat, M., Joder-Ohlenbusch, A. M., and Claverie, N., 1982. Accumulation of decarboxylated S-adenosyl-L-methionine in mammalian cells as a consequence of the inhibition of putrescine biosynthesis, Eur. J. Biochem. 123:499–504.

    Article  PubMed  CAS  Google Scholar 

  • Manen, C. A., and Russell, D. H., 1973. Early cyclical changes in polyamine synthesis during sea urchin development, J. Embryol. Exp. Morph. 30:243–256.

    PubMed  CAS  Google Scholar 

  • Marcker, K., and Sanger, F., 1964. N-Formyl methionyl-s-RNA, J. Mol. Biol. 8:835–840.

    Article  PubMed  CAS  Google Scholar 

  • Marcker, K., and Sanger, F., 1965. The formation of N-formyl-methionyl-sRNA, J. Mol. Biol. 14:63–70.

    Article  CAS  PubMed  Google Scholar 

  • Marcker, K., Clark, B. F. C., and Anderson, J. D., 1966. N-Formylmethionyl-sRNA and its relation to protein biosynthesis, Cold Spring Harbor Symp. Quant. Biol. 31:279–285.

    Article  PubMed  CAS  Google Scholar 

  • Mato, J. M., and Alemany S., 1983. What is the function of phospholipid N-methylation? Biochem. J. 213:1–10.

    PubMed  CAS  Google Scholar 

  • Matsui, S. I., and Amaha, M., 1981. Studies on volatile sulfur-compounds in beer. 5. Production of S-methyl thioacetate from methyl mercaptan by brewers yeast, Agric. Biol. Chem. 45:1341–1349.

    Article  CAS  Google Scholar 

  • Matsui, S., Yabuuchi, S., and Amaha, M., 1981. Studies on volatile sulfur-compounds in beer. 4. Production of S-methyl thioacetate from methyl mercaptan by Saccaromyces cerevisiae, Agric. Biol. Chem. 45:771–772.

    Article  CAS  Google Scholar 

  • Matsuo, Y., and Greenberg, D. M., 1958. A crystalline enzyme that cleaves homoserine and cystathionine. I. Isolation procedure and some physicochemical properties, J. Biol. Chem. 230:545–560.

    CAS  PubMed  Google Scholar 

  • Matthews, R. G., and Baugh, C. M., 1980. Interactions of pig liver methylenetetrahydrofolate reductase with methylenetetrahydropteroylpolyglutamate substrates and with dihydropteroylpolyglutamate inhibitors, Biochemistry 19:2040–2045.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R. G., and Kaufman, S., 1980. Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase, J. Biol. Chem. 255:6014–6017.

    PubMed  CAS  Google Scholar 

  • Maw, G. A., 1956. Thetin-homocysteine transmethylase. A preliminary manometric study of the enzyme from rat liver, Biochem. J. 63:116–123.

    PubMed  CAS  Google Scholar 

  • Maw, G. A., 1958. Thetin-homocysteine transmethylase. Some further characteristics of the enzyme from rat liver, Biochem. J. 70:168–173.

    PubMed  CAS  Google Scholar 

  • McBurney, M. W., and Whitmore, G. F., 1974. Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells, Cell 2:173–182.

    Article  PubMed  CAS  Google Scholar 

  • McGing, P., Reed, B., Weir, D. G., and Scott, J. M., 1978. The effect of vitamin B12 inhibition in vivo: Impaired folate polyglutamate biosynthesis indicating that 5-methyltetrahydropteroylglutamate is not its usual substrate, Biochem. Biophys. Res. Commun. 82:540–546.

    Article  PubMed  CAS  Google Scholar 

  • McGivney, A., Crews, F. T., Hirata, F., Axelrod, J., and Siraganian, R. R., 1981. Rat basophilic leukemia cell lines defective in phospholipid methyltransferase enzyme, Ca2+ influx and histamine release: Reconstruction by hybridization, Proc. Natl. Acad. Sci. USA 78:6176–6180.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, J. J., and Bertino, J. R., 1981. Enzymatic synthesis and function of folylpolyglutamates, Mol. Cell. Biochem. 38:19–48.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, J. J., Hsieh, H., Coward, J. K., and Bertino, J. R., 1980. Enzymatic synthesis of folylpolyglutamates. Characterization of the reaction and its products, J. Biol. Chem. 255:5776–5788.

    PubMed  CAS  Google Scholar 

  • McRorie, R. A., Sutherland, G. L., Lewis, M. S., Barton, A. D., Glazener, M. G., and Shive, A., 1954. Isolation and identification of a naturally occurring analog of methionine, J. Am. Chem. Soc. 76:115–118.

    Article  CAS  Google Scholar 

  • Meister, A., and Wellner, D., 1963. Flavoprotein amino acid oxidases, Enzymes 7:609–648.

    CAS  Google Scholar 

  • Meller, E., Rosengarten, H., Friedhoff, A. J., Stebbins, R. D., and Silver, R., 1975. 5-Methyltetrahydrofolic acid is not a methyl donor for biogenic amines: Enzymatic formation of formaldehyde, Science 187:171–173.

    Article  PubMed  CAS  Google Scholar 

  • Millonig, G., De Rosa, M., Gambacorta, A., and Bu’lock, J. D., 1975. Ultrastructure of an extremely thermophilic acidophilic microorganism, Gen. Microbiol. 86:165–173.

    Article  Google Scholar 

  • Mitchell, A. D., and Benevenga, N. J., 1976. Importance of sarcosine formation in methionine methyl carbon oxidation in the rat, J. Nutr. 106:1702–1713.

    PubMed  CAS  Google Scholar 

  • Mitchell, A. D., and Benevenga, N. J., 1978. Role of transamination in methionine oxidation in rat, J. Nutr. 108:67–78.

    PubMed  CAS  Google Scholar 

  • Morin, A. M., and Liss, M., 1973. Evidence for a methylated protein intermediate in pituitary methanol formation, Biochem. Biophys. Res. Commun. 52:373–378.

    Article  PubMed  CAS  Google Scholar 

  • Morris, D. R., and Marton, L. J. (eds.), 1981. Polyamines in Biology and Medicine, Dekker, New York, 459 pp.

    Google Scholar 

  • Mudd, S. H., 1959a. Enzymatic cleavage of S-adenosylmethionine, J. Biol. Chem. 234:87–92.

    PubMed  CAS  Google Scholar 

  • Mudd, S. H., 1959b. The mechanism of the enzymatic cleavage of S-adenosylmethionine to α-amino-γ-butyrolactone, J. Biol. Chem. 234:1784–1786.

    CAS  Google Scholar 

  • Mudd, S. H., 1980. Diseases of sulphur metabolism: Implications for the methionine-homocysteine cycle, and vitamin responsiveness, Ciba Found. Symp. 72:239–258.

    CAS  Google Scholar 

  • Mudd, S. H., and Levy, H. L., 1978. Disorders of transsulfuration, in The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), McGraw-Hill, New York, pp. 458–503.

    Google Scholar 

  • Mudd, S. H., and Poole, J. R., 1975. Labile methyl balances for normal humans on various dietary regimens, Metab. Clin. Exp. 24:721–735.

    Article  PubMed  CAS  Google Scholar 

  • Murr, D. P., and Yang, S. F., 1975. Conversion of 5′-methylthioadenosine to methionine by apple tissue, Phytochemistry 14:1291–1292.

    Article  CAS  Google Scholar 

  • Nakagawa, H., and Kimura, H., 1968. Purification and properties of cystathionine synthetase from rat liver: Separation of cystathionine synthetase from serine dehydratase, Biochem. Biophys. Res. Commun. 32:208–214.

    Article  CAS  Google Scholar 

  • Naveh-Mary, T., and Cedar, H., 1981. Active gene sequences are undermethylated, Proc. Natl. Acad. Sci. USA 78:4246–4250.

    Article  Google Scholar 

  • Nishimura, S., 1977. Characterization and enzymatic synthesis of 3-(3-amino-3-carboxypropyl)-uridine in transfer RNA: transfer of the 3-amino-3-carboxypropyl group from adenosylmethionine, in The Biochemistry of Adenosylmethionine (F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman, and F. Schlenk, eds.), Columbia University Press, New York, pp. 510–520.

    Google Scholar 

  • Nishimura, S., Taya, Y., Kuchino, Y., and Ohashi, Z., 1974. Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli phenylalanine transfer RNA: Transfer of the 3-amino-3-carboxypropyl group from S-adenosylmethionine, Biochem. Biophys. Res. Commun. 57:702–708.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, P. F., and Bertino, J. R., 1970. Interrelationships of vitamin B12 and folate in man, Am. J. Med. 48:555–561.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, P. F., Slutsky, G., Nahas, A., and Bertino, J. R., 1973. The turnover of folate coenzymes in murine lymphoma cells, J. Biol. Chem. 248:5932–5936.

    PubMed  CAS  Google Scholar 

  • Noguchi, T., Okuno, E., and Kido, R., 1976. Identity of isoenzyme of histidine-pyruvate aminotransferase with serine-pyruvate aminotransferase, Biochem. J. 159:607–613.

    PubMed  CAS  Google Scholar 

  • Noronha, J. M., and Silverman, M., 1962. On folic acid, vitamin B12, methionine, and formiminoglutamate metabolism, in Vitamin B 12 and Intrinsic Factor, 2nd European Symposium (H. C. Heinrich, ed.), Verlag, Stuttgart, pp. 728–736.

    Google Scholar 

  • Ohashi, Z., Maeda, M., McCloskey, J. A., and Nishimura, S., 1974. 3-(3-Amino-3-carboxypropyl)uridine: A novel modified nucleoside isolated from Escherichia coli phenylalanine transfer ribonucleic acid, Biochemistry 13:2620–2625.

    Article  CAS  Google Scholar 

  • Oliva, A., Galletti, P., Zappia, V., Paik, W. K., and Kim, S., 1980. Effect of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine derivatives on protein methylation, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 55–66.

    Chapter  Google Scholar 

  • Olson, J. W., and Russell, D. H., 1980. Prolonged ornithine decarboxylase induction in regenerating carcinogen-treated liver, Cancer Res. 40:4373–4380.

    PubMed  CAS  Google Scholar 

  • Oshima, T., 1975. Thermine—new polyamine from an extreme thermophile, Biochem. Biophys. Res. Commun. 63:1093–1098.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, T., and Baba, M., 1981. Occurrence of sym-homospermidine in extremely thermophilic bacteria. Biochem. Biophys. Res. Commun. 103:156–160.

    Article  PubMed  CAS  Google Scholar 

  • Paik, W. K., and Kim, S. K., 1980. Protein Methylation, John Wiley and Sons, New York.

    Google Scholar 

  • Pajula, R. L., and Raina, A., 1979. Methylthioadenosine, a potent inhibitor of spermine synthase from bovine brain, FEBS Lett. 99:343–345.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. L., and Abeles, R. H., 1979. The mechanism of action of S-adenosylhomocysteinase, J. Biol. Chem. 254:1217–1226.

    PubMed  CAS  Google Scholar 

  • Pariza, M. W., Becker, J. E., Yager, J. D., Bonney, R. J., and Potter, V. R., 1973. Enzyme induction in primary cultures of rat liver parenchymal cells, in Differentiation and Control of Malignancy of Tumor Cells (W. Nakahara, T. Ono, T. Sugimura, and H. Sugano, eds.), University of Tokyo Press, Tokyo, pp. 267–285.

    Google Scholar 

  • Pascal, T. A., Gillam, B. M., and Gaull, G. E., 1972. Cystathionase: Immunochemical evidence for absence from human fetal liver, Pediat. Res. 6:773–778.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, A. E., 1977. Evidence for presence of pyruvate in rat-liver S-adenosylmethionine decarboxylase, FEBS Lett. 84:33–36.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, A. E., 1983. Inhibitors of S-adenosylmethionine decarboxylase, in Methods in Enzymology—Polyamines, Vol. 94 (H. Tabor and C. W. Tabor, eds.), Academic Press, New York, pp. 239–247.

    Google Scholar 

  • Pegg, A. E., 1984. S-Adenosylmethionine decarboxylase—a brief review, in Cell Biochemistry and Function 2:11–15.

    Article  PubMed  CAS  Google Scholar 

  • Pegg, A. E., and Hibasami, H., 1979. The role of S-adenosylmethionine in mammalian polyamine synthesis, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 105–116.

    Google Scholar 

  • Pegg, A. E., and Williams-Ashman, H. G., 1969a. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate, J. Biol. Chem. 244:682–693.

    PubMed  CAS  Google Scholar 

  • Pegg, A. E., and Williams-Ashman, H. G., 1969b. Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate, Biochem. J. 115:241–247.

    PubMed  CAS  Google Scholar 

  • Pegg, A. E., and Williams-Ashman, H. G., 1981. Biosynthesis of putrescine, in Polyamines in Biology and Medicine (D. R. Morris and L. J. Marton, eds.), Dekker, New York, pp. 3–42.

    Google Scholar 

  • Pegg, A. E., Hibasami, H., Matsui, I., and Bethell, D. R., 1981. Formation and interconversion of putrescine and spermidine in mammalian cells, Adv. Enzyme Regul. 19:427–451.

    Article  CAS  Google Scholar 

  • Pegg, A. E., Pösö, H. and Bennett, R. A. 1982. Biosynthesis and accumulation of decar-boxylated S-adenosylmethionine, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 547–556.

    Google Scholar 

  • Poston, J. M., 1980. Cobalamin-dependent formation of leucine and ß-leucine by rat and human tissue. Changes in pernicious anemia, J. Biol. Chem. 255:10067–10072.

    PubMed  CAS  Google Scholar 

  • Prasad, C., and Edwards, R. M., 1984. Stimulation of phospholipid methylation and thyroid hormone secretion by thyrotropin, Endocrinology 114:941–945.

    Article  PubMed  CAS  Google Scholar 

  • Rachele, J. R., Reed, L. J., Kidwai, A. R., Ferger, M. F., and du Vigneaud, V., 1950. Conversion of cystathionine labeled with 35S to cystine in vivo, J. Biol. Chem. 185:817–826.

    PubMed  CAS  Google Scholar 

  • Raina, A. and Jänne, J. (eds), 1981. Polyamines as cellular regulators, Med. Biol. 59:269–461.

    Google Scholar 

  • Razin, A., and Cedar, H., 1984. DNA methylation in eukaryotic cells, Int. Rev. Cytol. 92:159–185.

    Article  PubMed  CAS  Google Scholar 

  • Razin, A., and Friedman, J., 1981. DNA methylation and its possible biological roles, Prog. Nucl. Acid Res. Mol. Biol. 251:33–52.

    Article  Google Scholar 

  • Razin, A., and Riggs, A. D., 1980. DNA methylation and gene function, Science 210:604–610.

    Article  PubMed  CAS  Google Scholar 

  • Razin, A., and Szyf, M., 1984. DNA methylation patterns. Formation and function, Biochim. Biophys. Acta 782:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Razin, A., Cedar, H., and Riggs, A. D. (eds.), 1984. DNA Methylation: Biochemistry and Biological Significance, Springer-Verlag, New York.

    Google Scholar 

  • Reed, L. J., Cavallini, D., Plum, F., Rachele, J. R., and du Vigneaud, V., 1949. Conversion of methionine to cystine in a human cystinuric, J. Biol. Chem. 180:783–790.

    PubMed  CAS  Google Scholar 

  • Richards, H. H., Chiang, P. K., and Cantoni, G. L., 1978. Adenosylhomocysteine hydrolase—crystallization of purified enzyme and its properties, J. Biol. Chem. 253:4476–4480.

    PubMed  CAS  Google Scholar 

  • Roisin, M.-P., and Chatagner, F., 1969. Purification and properties of homocysteine desulfhydrase from rat liver and its identification as cystathionase (French translation), Bull. Soc. Chim. Biol. 51:481–493.

    PubMed  CAS  Google Scholar 

  • Rolle, I., Hobucher, H. E., Kneifel, H., Paschold, B., Riepe, W., and Soeder, C. J., 1977. Amines in unicellular green algae. 2. Amines in Scenedesmus acutus, Anal. Biochem. 77:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, H. M., Yoshimura, N., Hodgman, J. M., and Fischer, J. E., 1977. Plasma amino acid patterns in hepatic encephalopathy of differing etiology, Gastroenterology 72:483–487.

    PubMed  CAS  Google Scholar 

  • Rosenblatt, D. S., Cooper, B. A., Leu-Shing, S., Wong, P. W. K., Berlow, S., Narisawa, K., and Baumgartner, R., 1979. Folate distribution in cultured human cells. Studies on 5,10-CH2-H4PteGlu reductase deficiency, J. Clin. Invest. 63:1019–1025.

    Article  PubMed  CAS  Google Scholar 

  • Russell, D. H., 1973. Polyamines in growth—normal and neoplastic, in Polyamines in Normal and Neoplastic Growth (D. H. Russell, ed.), Raven Press, New York, pp. 1–13.

    Google Scholar 

  • Russell, D. H., 1981. Ornithine decarboxylase: Transcriptional induction by trophic hormones via a cAMP and cAMP-dependent protein kinase pathway, in Polyamines in Biology and Medicine (D. R. Morris and L. J. Marton, eds.), Marcel Dekker, New York, pp. 109–125.

    Google Scholar 

  • Russell, D. H., 1985. Ornithine decarboxylase: A key regulatory enzyme in normal and neoplastic growth, Drugs Metab. Rev. 16:1–88.

    Article  CAS  Google Scholar 

  • Russell, D. H., and Durie, B. G. M., 1978. Progress in Cancer Research and Therapy, Vol. 8: Polyamines as Markers of Normal and Malignant Growth, Raven Press, New York, 178 pp.

    Google Scholar 

  • Russell, D. H., and Levy, C. C., 1971. Polymine accumulation and biosynthesis in a mouse L1210 leukemia, Cancer Res. 31:248–251.

    PubMed  CAS  Google Scholar 

  • Russell, D. H., and McVicker, T. A., 1972. Polyamines in the developing rat and in supportive tissues, Biochim. Biophys. Acta 259:247–258.

    CAS  Google Scholar 

  • Russell, D. H., and Snyder, S. H., 1969. Amine synthesis in regenerating rat liver: Rapid turnover of ornithine decarboxylase, Mol. Pharmacol. 5:253–262.

    PubMed  CAS  Google Scholar 

  • Russell, D. H., Medina, V. J., and Snyder, S. H., 1970. The dynamics of synthesis and degradation of polyamines in normal and regenerating rat liver and brain, J. Biol. Chem. 245:6732–6738.

    PubMed  CAS  Google Scholar 

  • Sahyoun, N. E., LeVine H., Davis, J., Hebdon, G. E., and Cuatrecasas, P., 1981. Molecular complexes involved in the regulation of adenylate cyclase, Proc. Natl. Acad. Sci. USA 78:6158–6162.

    Article  PubMed  CAS  Google Scholar 

  • Salerno, D. M., and Beeler, D. A., 1973. The biosynthesis of phospholipids and their precursors in rat liver involving de novo methylation, and base-exchange pathways, in vivo, Biochim. Biophys. Acta 326:325–338.

    Article  PubMed  CAS  Google Scholar 

  • Salvatore, F., Zappia, V., and Shapiro, S. K., 1968. Quantitative analysis of S-adenosylhomocysteine in liver, Biochim. Biophys. Acta 158:461–464.

    Article  PubMed  CAS  Google Scholar 

  • Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H. G., and Schlenk, F. (eds.), 1977. The Biochemistry of Adenosylmethionine, Columbia University Press, New York, 588 pp.

    Google Scholar 

  • Saponara, A. G., Enger, M. D., and Hanners, J. L., 1974. The isolation from ribonucleic acid of substituted uridines containing α-aminobutyrate moieties derived from methionine, Biochim. Biophys. Acta 349:61–77.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, H., and Wilmanns, W., 1977. Cobalamin dependent methionine synthesis and methylfolate-trap in human vitamin B12 deficiency, Br. J. Haematol. 36:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Schatz, R. A., and Sellinger, O. Z., 1975. Effect of methionine and methionine sulphoximine on rat brain S-adenosylmethionine levels, J. Neurochem. 24:63–66.

    Article  PubMed  CAS  Google Scholar 

  • Schlenk, F., 1978. The biosynthesis of 5-adenosylmethionine by yeast cells, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 3–8.

    Google Scholar 

  • Schlenk, F., 1983. Methylthioadenosine, Adv. Enzymol. 54:195–265.

    PubMed  CAS  Google Scholar 

  • Schlenk, F., and DePalma, R. F., 1955. Note on the metabolism of the methylsulfonium salt of methionine, Arch. Biochem. Biophys. 57:266–269.

    Article  PubMed  CAS  Google Scholar 

  • Schlenk, F., and Ehninger, D. J., 1964. Observations on the metabolism of 5′-methylthioadenosine, Arch. Biochem. Biophys. 106:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Schlenk, F., Zydek-Cwick, C. R., and Hutson, N. K., 1971. Enzymatic deamination of adenosine sulfur compounds, Arch. Biochem. Biophys. 142:144–149.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M., and Shapiro, S. K., 1954. The mechanism of utilization of thiomethyladenosine in the biosynthesis of methionine, J. Bacterial. 67:98–102.

    CAS  Google Scholar 

  • Scott, J. M., Reed, B., McKenna, B., McGing, P., McCann, S., O’Sullivan, H., Wilson, P., and Weir, D. G., 1979. A study of the multiple changes induced in vivo in experimental animals by inactivation of vitamin B12 using nitrous oxide, in Chemistry and Biology of Pteridines (R. L. Kisliuk and G. M. Brown, eds.), Elsevier, New York, pp. 335–340.

    Google Scholar 

  • Scrutton, M. C., and Beis, I., 1979. Inhibitory effects of histidine and their reversal. The roles of pyruvate carboxylase and N10-formyltetrahydrofolate dehydrogenase, Biochem. J. 177:833–846.

    PubMed  CAS  Google Scholar 

  • Seppänen, P., Alhonen-Hongisto, L., and Jänne, J., 1981. Polyamine deprivation-induced enhanced uptake of methylglyoxal bis(guanylhydrazone) by tumor-cells, Biochim. Biophys. Acta 614:169–117.

    Article  Google Scholar 

  • Seyfried, C. E., and Morris, D. R., 1979. Relationships between inhibition of polyamine biosynthesis and DNA replication in activated lymphocytes, Cancer Res. 39:4861–4867.

    PubMed  CAS  Google Scholar 

  • Seyfried, C. E., Oleinik, O. E., Degen, J. L., Resing, K., and Morris, D. R., 1982. Purification, properties and regulation of the level of bovine S-adenosylmethionine decarboxylase during lymphocyte mitogenesis, Biochim. Biophys. Acta 716:169–177.

    Article  PubMed  CAS  Google Scholar 

  • Shane, B., and Stokstad, E. L. R., 1975. Transport and metabolism of folates by bacteria, J. Biol. Chem. 250:2243–2253.

    PubMed  CAS  Google Scholar 

  • Shane, B., and Stokstad, E. L. R., 1976. Transport and utilization of methyltetrahydrofolates by Lactobacillus casei, J. Biol. Chem. 251:3405–3410.

    PubMed  CAS  Google Scholar 

  • Shane, B., and Stokstad, E. L. R., 1977. Rate-limiting steps in folate metabolism by Lactobacillus casei, J. Gen. Microbiol. 103:261–270.

    Article  PubMed  CAS  Google Scholar 

  • Shane, B., and Stokstad, E. L. R., 1983. The interrelationships among folate, vitamin B12, and methionine metabolism, Adv. Nutr. Res. 5:133–170.

    PubMed  CAS  Google Scholar 

  • Shane, B., Watson, J. E., and Stokstad, E. L. R., 1977. Uptake and metabolism of [3H]folate by normal and by vitamin B12-and methionine-deficient rats, Biochim. Biophys. Acta 497:241–252.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, S. K., 1953. Response of Aerobacter aerogenes methionine auxotrophs to adenine thiomethyl compounds, J. Bacteriol. 65:310–312.

    PubMed  CAS  Google Scholar 

  • Shapiro, S. K., 1955. The biosynthesis of methionine from homocysteine and methylmethionine sulfonium salt, Biochim. Biophys. Acta 18:134–135.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, S. K., 1982. Methylthioribose as a precursor of the carbon chain of methionine, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 719–722.

    Google Scholar 

  • Shapiro, S. K., and Barrett, A., 1981. 5-Methylthioribose as a precursor of the carbon chain of methionine, Biochem. Biophys. Res. Commun. 102:302–307.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, S. K., and Mather, A. N., 1958. The enzymatic decomposition of S-adenosylmethionine, J. Biol. Chem. 233:631–633.

    PubMed  CAS  Google Scholar 

  • Shapiro, S. K., and Schlenk, F., 1980. Conversion of 5′-methylthioadenosine into S-adenosylmethionine by yeast cells, Biochim. Biphys. Acta 633:176–180.

    Article  CAS  Google Scholar 

  • Shapiro, S. K., Lohmar, P., and Hertenstein, M., 1963. Utilization of S-adenosylmethionine for the biosynthesis of methionine, Arch. Biochem. Biophys. 100:74–76.

    Article  PubMed  CAS  Google Scholar 

  • Shields, R. P., and Whitehair, C. K., 1973. Muscle creatine: In vivo depletion by feeding ß-guanidinopropionic acid, Can. J. Biochem. 51:1046–1049.

    Article  PubMed  CAS  Google Scholar 

  • Shin, Y. S., Williams, M. A., and Stokstad, E. L. R., 1972. Identification of folic acid compounds in rat liver, Biochem. Biophys. Res. Commun. 47:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Shin, Y. S., Buehring, K. U., and Stokstad, E. L. R., 1975. The relationships between vitamin B12 and folic acid and the effect of methionine on folate metabolism, Mol. Cell. Biochem. 9:97–108.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H. O., 1979. Nucleotide sequence specificity of restriction endonucleases, Science 205:455–462.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H. O., 1982. Biological roles of DNA methylation. An overview, in Biochemistry of S-Adenosylmethionine and Related Compounds (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), MacMillan Press, London, pp. 205–212.

    Google Scholar 

  • Smith, R. M., and Osborne-White, W. S., 1973. Folic acid metabolism in vitamin B12-deficient sheep. Depletion of liver folates, Biochem. J. 136:279–293.

    PubMed  CAS  Google Scholar 

  • Smith, R. M., Osborne-White, W. S., and Gawthorne, J. M., 1974. Folic acid metabolism in vitamin B12-deficient sheep. Effects of injected methionine on liver constituents associated with folate metabolism, Biochem. J. 142:105–117.

    PubMed  CAS  Google Scholar 

  • Smith, T. A., 1975. Recent advances in biochemistry of plant amines, Phytochemistry 14:865–890.

    Article  CAS  Google Scholar 

  • Steele, R. D., and Benevenga, N. J., 1978. Identification of 3-methylthiopropionic acid as an intermediate in the mammalian methionine metabolism in vitro, J. Biol. Chem. 253:7844–7850.

    PubMed  CAS  Google Scholar 

  • Steele, R. D., and Benevenga, N.J., 1979. The metabolism of 3-methylthiopropionate in rat liver homogenates, J. Biol. Chem. 254:8885–8890.

    PubMed  CAS  Google Scholar 

  • Steele, R. D., Barber, T. A., Lalich, J. J., and Benevenga, N. J., 1979. Effects of dietary 3-methylthiopropionate on metabolism, growth and hematopoiesis in the rat, J. Nutr. 109:1739–1751.

    CAS  Google Scholar 

  • Steglich, C., and Scheffler, I. E., 1982. An ornithine decarboxylase-deficient mutant of Chinese hamster ovary cells, J. Biol. Chem. 257:4603–4609.

    PubMed  CAS  Google Scholar 

  • Stetten, D., Jr., 1942. The fate of dietary serine in the body of the rat, J. Biol. Chem. 144:501–506.

    CAS  Google Scholar 

  • Stillway, L. W., and Walle, T., 1977. Identification of the unusual polyamines 3,3′-diaminodipropylamine and N, N′-bis(3-aminopropyl)-l,3,-propanediamine in the white shrimp Penaeus setiferus, Biochem. Biophys. Res. Commun. 77:1103–1107.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. B., and Koshland, D. E., 1979. Identification of a methyltransferase and a methylesterase as essential genes in bacterial chemotaxis, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), Elsevier/North-Holland, New York, pp. 511–520.

    Google Scholar 

  • Stokstad, E. L. R., 1976. Vitamin B12 and folic acid, in Present Knowledge in Nutrition, 4th Ed., Nutrition Foundation, New York, pp. 204–216.

    Google Scholar 

  • Stokstad, E. L. R., 1977. Regulation of folate metabolism by vitamin B12, in Folic Acid: Biochemistry and Physiology in Relation to the Human Nutrition Requirement, National Research Council, National Academy of Sciences, Washington, D.C., pp. 122-135.

    Google Scholar 

  • Stoner, G. L., and Eisenberg, M. A., 1975a. Purification and properties of 7,8-diaminopelargonic acid aminotransferase—an enzyme in the biotin biosynthetic pathway, J. Biol. Chem. 250:4029–4036.

    PubMed  CAS  Google Scholar 

  • Stoner, G. L., and Eisenberg, M. A., 1975b. Biosynthesis of 7,8-diaminopelargonic acid from 7-keto-8-aminopelargonic acid and S-adenosyl-L-methionine—kinetics of reaction. J. Biol. Chem. 250:4037–4043.

    PubMed  CAS  Google Scholar 

  • Stramentinoli, G., and Pezzoli, C., 1983. S-Adenosyl-L-methionine uptake in mammalian cells, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 37–48.

    Google Scholar 

  • Sturman, J., 1980. Methionine metabolism in developing neural tissue, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 107–109.

    Chapter  Google Scholar 

  • Sturman, J. A., Gaull, G., and Raiha, N. C. R., 1970. Absence of cystathionase in human fetal liver: Is cystine essential? Science 169:74–76.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, Y., Toraya, T., and Fukui, S., 1976. Studies on metabolic role of 5′-methylthioadenosine in Ochromonas malhamensis and other microorganisms, Arch. Microbiol. 108:175–182.

    Article  PubMed  CAS  Google Scholar 

  • Sung, M. L., and Fowden, L., 1971. Imino acid biosynthesis in Delonix regia, Phytochemistry 10:1523–1528.

    Article  CAS  Google Scholar 

  • Swiatek, V. R., Simon, L. N., and Chao, K. L., 1973. Nicotinamide methyl-transferase and S-adenosylmethionine: 5′-methylthioadenosine hydrolase. Control of transfer ribonucleic acid methylation, Biochemistry 12:4670–4674.

    Article  PubMed  CAS  Google Scholar 

  • Symonds, G. W., and Brosnan, M. E., 1977. Subcellular-localization of putrescine-dependent S-adenosyl methionine decarboxylase in rat-liver, FEBS Lett. 84:385–387.

    Article  PubMed  CAS  Google Scholar 

  • Tabor, C. W., and Tabor, H., 1976. 1.4-Diaminobutane (putrescine), spermidine, and spermine, Annu. Rev. Biochem. 45:285–306.

    Article  PubMed  CAS  Google Scholar 

  • Tabor, C. W., and Tabor, H., 1984a. Polyamines, Annu. Rev. Biochem. 53:749–790.

    Article  PubMed  CAS  Google Scholar 

  • Tabor, C. W., and Tabor, H., 1984b. Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase, Adv. Enzymol. Rel. Areas Mol. Biol. 56:251–282.

    CAS  Google Scholar 

  • Tabor, H., Rosenthal, S. M., and Tabor, C. W., 1958. The biosynthesis of spermidine and spermine from putrescine and methionine, J. Biol. Chem. 233:907–914.

    PubMed  CAS  Google Scholar 

  • Tabor, H., Hafner, E. W., and Tabor, C. W., 1980. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine—characterization of two genes controlling lysine decarboxylase, J. Bacteriol. 144:952–956.

    PubMed  CAS  Google Scholar 

  • Tabor, H., and Tabor, C. W., 1972. Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines, Adv. Enzymol. 36:203–268.

    PubMed  CAS  Google Scholar 

  • Tallan, H. H., and Cohen, P. A., 1976. Methionine adenosyltransferase—kinetic-properties of human and rat-liver enzymes, Biochem. Med. 16:234–250.

    Article  PubMed  CAS  Google Scholar 

  • Tallan, H. H., Sturman, J. A., Pascal, T. A., and Gaull, G. E., 1974. Cystathionine γ-synthesis from homocysteine and cysteine by mammalian tissue, Biochem. Med. 9:90–101.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Esaki, N., and Soda, K., 1977. Properties of L-methionine γ-lyase from Pseudomonas ovalis, Biochemistry 16:100–106.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Esaki, N., and Soda, K., 1983. Bacterial L-methionine γ-lyase: Characterization and application, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuri-yama, R. J. Huxtable, and H. Iwata, eds.), Alan R. Liss Inc., New York, pp. 365–377.

    Google Scholar 

  • Tarver, H., and Schmidt, C. L. A., 1939. The conversion of methionine to cystine: Experiments with radioactive sulfur, J. Biol. Chem. 130:67–80.

    CAS  Google Scholar 

  • Taya, Y., Tanaka, Y., and Nishimura, S., 1978. 5′-AMP is a direct precursor of cytokinin in Dictyostelium discoideum, Nature 271:545–547.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. H., 1984. DNA Methylation and Cellular Differentiation, Springer-Verlag, New York.

    Book  Google Scholar 

  • Taylor, R. T., and Hanna, M. L., 1977. Folate-dependent enzymes in cultured Chinese hamster cells: Folylpolyglutamate synthetase and its absence in mutants auxotrophic for glycine + adenosine + thymidine, Arch. Biochem. Biophys. 181:331–344.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, R. T., and Weissbach, H., 1973. N5-Methyltetrahydrofolate-homocysteine methyltransferases, in The Enzymes, Vol. 9, 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 121–165.

    Google Scholar 

  • Taylor, R. T., Hanna, M. L., and Hutton, J. J., 1974. 5-Methyltetrahydrofolate homocysteine cobalamin methyltransferase in human bone marrow and its relationship to pernicious anemia, Arch. Biochem. Biophys. 165:787–795.

    Article  PubMed  CAS  Google Scholar 

  • Thenen, S. W., and Stokstad, E. L. R., 1973. Effect of methionine on specific folate coenzyme pools in vitamin B12 deficient and supplemented rats, J. Nutr. 103:363–370.

    PubMed  CAS  Google Scholar 

  • Thorndike, J., and Beck, W. S., 1977. Production of formaldehyde from N 5-methyltetrahydrofolate by normal and leukemic leukocytes, Cancer Res. 37:1125;–l 132.

    PubMed  CAS  Google Scholar 

  • Toohey, J. I., 1977. Methylthio group cleavage from methylthioadenosine. Description of an enzyme and its relationship to the methylthio requirement of certain cells in culture, Biochem. Biophys. Res. Commun. 78:1273–1280.

    Article  PubMed  CAS  Google Scholar 

  • Toohey, J. I., 1978. Methylthioadenosine phosphorylase deficiency in methylthio-dependent cells, Biochem. Biophys. Res. Commun. 83:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Toohey, J. I., and Cline, M. J., 1976. Alkylthiolation. Evidence for involvement in cell division, Biochem. Biophys. Res. Commun. 70:1275–1282.

    Article  PubMed  CAS  Google Scholar 

  • Trackman, P. C., and Abeles, R. H., 1981. The metabolism of l-phospho-5-methylthioribose, Biochem. Biophys. Res. Commun. 103:1238–1244.

    Article  PubMed  CAS  Google Scholar 

  • Trautner, T. A. (ed.), 1984. Methylation of DNA, Springer-Verlag, New York.

    Google Scholar 

  • Tuma, D. J., Barak, A. J., Schafer, D. E., and Sorrell, M. F., 1973. Possible interrelationship of ethanol metabolism and choline oxidation in the liver, Can. J. Biochem. 51:117–120.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B. B., Katz, R. J., Roth, K. A., and Carroll, B. J., 1978. Central elevation of phenylethanolamine N-methyltransferase activity following stress, Brain Res. 153:419–422.

    Article  PubMed  CAS  Google Scholar 

  • Usdin, E., Borchardt, R. T., and Creveling, C. R. (eds.), 1978. Transmethylation, North-Holland, Amsterdam.

    Google Scholar 

  • Usdin, E., Borchardt, R. T., and Creveling, C. R. (eds.), 1979. Transmethylation, Elsevier/North-Holland, New York.

    Google Scholar 

  • Usdin, E., Borchardt, R. T., and Creveling, C. R. (eds.), 1982. Biochemistry of S-Adenosylmethionine and Related Compounds, MacMillan Press, London.

    Google Scholar 

  • Vance, D. E., and de Kruijff, B., 1980. The possible functional significance of phosphatidylethanolamine methylation, Nature 288:277–279.

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin, B. F., 1984. Replicative DNA methylation in animals and higher plants, Curr. Top. Microbiol. Immunol. 108:99–114.

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin, B. F., Belozersky, A. N., Kokurina, N. A., and Kadirova, D. X., 1968. 5-Methylcytosine and 6-methylaminopurine in bacterial DNA, Nature 218:1066–1067.

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin, B. F., Tkacheva, S. G., and Belozersky, A. N., 1970. Rare bases in animal DNA, Nature 225:948–949.

    Article  PubMed  CAS  Google Scholar 

  • Vidal, A. J., and Stokstad, E. L. R., 1974. Urinary excretion of 5-methyltetrahydrofolate and liver S-adenosylmethionine levels in rats fed a vitamin B12-deficient diet, Biochim. Biophys. Acta. 362:245–257.

    Article  PubMed  CAS  Google Scholar 

  • Whitney, P. A., and Morris, D. R., 1978. Polyamine auxotrophs of Saccharomyces cerevisiae, J. Bacteriol. 134:214–220.

    PubMed  CAS  Google Scholar 

  • Wickner, R. B., Tabor, C. W., and Tabor, H., 1970. Purification of adenosylmethionine decarboxylase from Escherichia coli W: Evidence for covalently bound pyruvate, J. Biol. Chem. 245:2132–2139.

    PubMed  CAS  Google Scholar 

  • Williams-Ashman, H. G., and Cannelakis, Z. N., 1979. Polyamines in mammalian biology and medicine, Perspect. Biol. Med. 22:421–453.

    PubMed  CAS  Google Scholar 

  • Williams-Ashman, H. G., and Pegg, A. E., 1981. Aminopropyl group transfers in polyamine biosynthesis, in Polyamines in Biology and Medicine (D. R. Morris and L. J. Marton, eds.), Dekker, New York, pp. 43–73.

    Google Scholar 

  • Williams-Ashman, H. G., and Schenone, A., 1972. Methyl glyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases, Biochem. Biophys. Res. Commun. 46:288–295.

    Article  PubMed  CAS  Google Scholar 

  • Williams-Ashman, H. G., Jänne, J., Coppoc, G. L., Geroch, M. E., and Schenone, A., 1972. New aspects of polyamine biosynthesis in eukaryotic organisms, Adv. Enzyme Regul. 10:225–245.

    Article  PubMed  CAS  Google Scholar 

  • Williams-Ashman, H. G., Seidenfeld, J., and Galletti, P., 1982. Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine, Biochem. Pharmacol. 31:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Womack, M., and Rose, W. C., 1941. The partial replacement of dietary methionine by cystine for purposes of growth, J. Biol. Chem. 141:375–379.

    CAS  Google Scholar 

  • Wong, F. F., and Carson, J. F., 1966. Isolation of S-methyl methionine sulfonium salt from fresh tomatoes, J. Agric. Food Chem. 14:247–249.

    Article  CAS  Google Scholar 

  • Yamakawa, M., Ikehara, N., and Schweiger, H. G., 1977. The occurrence of a 5′-methylthioadenosine nucleosidase in Acetabularia mediterrane a, in Progress in Acetabularia Research (C. L. F. Woodcock, ed.), Academic Press, New York, pp. 33–43.

    Google Scholar 

  • Yang, S. F., 1974. The biochemistry of ethylene: biogenesis and metabolism, in The Chemistry and Biochemistry of Plant Hormones (V. C. Runeckles, E., Sondheimer, and D. C. Walton, eds.), Academic Press, New York, pp. 131–164.

    Google Scholar 

  • Yang, H-Y. T., and Neff, N. H., 1976. Hydroxyindole O-methyltransferase: An immunochemical study of the neuronal regulation of the enzyme, Mol. Pharmacol. 12:433–439.

    PubMed  CAS  Google Scholar 

  • Yu, Y. B., and Yang, S. F., 1980. Biosynthesis of wound ethylene, Plant Physiol. 66:281–285.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y. B., Adams, D. O., and Yang, S. F., 1979. l-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis, Arch. Biochem. Biophys. 198:280–286.

    Article  PubMed  CAS  Google Scholar 

  • Yung, K. H., Yang, S. F., and Schlenk, F., 1982. Methionine synthesis from 5-methylthioribose in apple tissue, Biochem. Biophys Res. Commun. 104:771–777.

    Article  PubMed  CAS  Google Scholar 

  • Zappia, V., Carteni-Farina, M., and Porcelli, M., 1978a. Biochemical and chemical aspects of decarboxylated S-adenosylmethionine, in Transmethylation (E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), North-Holland, Amsterdam, pp. 95–104.

    Google Scholar 

  • Zappia, V., Oliva, A., Cacciapuoti, G., Galletti, P., Mignucci, G., and Carteni-Farina, M., 1978b. Substrate-specificity of 5′-methylthioadenosine phosphorylase from human prostate, Biochem. J. 175:1043–1050.

    PubMed  CAS  Google Scholar 

  • Zappia, V., Porta, R., Carteni-Farina, M., DeRosa, M., and Gambacorta, A., 1978c. Polyamine distribution in eukaryotes—occurrence of sym-nor-spermidine and sym-norspermine in arthropods, FEBS Lett. 94:161–165.

    Article  PubMed  CAS  Google Scholar 

  • Zappia, V., Cacciapuoti, G., Pontoni, G., and Oliva, A., 1980a. Mechanism of propylamine transfer reactions—kinetic and inhibition studies on spermidine synthase from Escherichia coli, J. Biol. Chem. 255:7276–7280.

    PubMed  CAS  Google Scholar 

  • Zappia, V., Carteni-Farina, M., Cacciapuoti, G., Oliva, A., and Gambacorta, A., 1980b. Recent studies on the metabolism of 5′-methylthioadenosine, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 133–148.

    Chapter  Google Scholar 

  • Zieve, L., Doizaki, W. M., and Zieve, F. J., 1974. Synergism between mercaptans and ammonia or fatty acids in production of coma—possible role for mercaptans in pathogenesis of hepatic coma, J. Lab. Clin. Med. 83:16–28.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huxtable, R.J. (1986). The Metabolism and Functions of Methionine. In: Biochemistry of Sulfur. Biochemistry of the Elements, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9438-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9438-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9440-3

  • Online ISBN: 978-1-4757-9438-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics