Skip to main content

Methyl Coenzyme M Reductase

  • Chapter
Biochemistry of Nickel

Part of the book series: Biochemistry of the Elements ((BOTE,volume 12))

Abstract

The biogenesis of methane is carried out by a group of strictly anaerobic archaea (formerly termed archaebacteria), referred to as methanogens, that obtain energy from one-or two-carbon substrates according to the following reactions [reviewed by Daniels et al. (1984), Ferry (1992), Jones et al. (1987), and Thauer (1990)]:

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadI % eacqGHRaWkcaWGdbGaam4tamaaBaaaleaacaaIYaaabeaakiabgkzi % UkaadoeacaWGibWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaaGOmai % aadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbaaaa!4396!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$4H + C{O_2} \to C{H_4} + 2{H_2}O$$
(6-1)
EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadI % eacaWGdbGaam4taiaad+eacaWGibGaeyOKH4Qaam4qaiaadIeadaWg % aaWcbaGaaGinaaqabaGccqGHRaWkcaaIZaGaam4qaiaad+eadaWgaa % WcbaGaaGOmaaqabaGccqGHRaWkcaaIYaGaamisamaaBaaaleaacaaI % Yaaabeaakiaad+eaaaa!4791!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$4HCOOH \to C{H_4} + 3C{O_2} + 2{H_2}O$$
(6-2)
EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaado % eacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaam4taiaadIeacqGHsgIR % caaIZaGaam4qaiaadIeadaWgaaWcbaGaaGinaaqabaGccqGHRaWkca % WGdbGaam4tamaaBaaaleaacaaIYaaabeaakiabgUcaRiaaikdacaWG % ibWaaSbaaSqaaiaaikdaaeqaaOGaam4taaaa!47B0!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$4C{H_3}OH \to 3C{H_4} + C{O_2} + 2{H_2}O$$
(6-3)
EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaado % eacaWGibWaaSbaaSqaaiaaiodaaeqaaOGaamOtaiaadIeadaqhaaWc % baGaaG4maaqaaiabgUcaRaaakiabgUcaRiaadIeadaWgaaWcbaGaaG % OmaaqabaGccaWGpbGaeyOKH4QaaG4maiaadoeacaWGibWaaSbaaSqa % aiaaisdaaeqaaOGaey4kaSIaam4qaiaad+eadaWgaaWcbaGaaGOmaa % qabaGccqGHRaWkcaaI0aGaamOtaiaadIeadaqhaaWcbaGaaGinaaqa % aiabgUcaRaaaaaa!4DD6!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$4C{H_3}NH_3^ + + {H_2}O \to 3C{H_4} + C{O_2} + 4NH_4^ + $$
(6-4)
EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaado % eacaWGpbGaey4kaSIaaGOmaiaadIeadaWgaaWcbaGaaGOmaaqabaGc % caWGpbGaeyOKH4Qaam4qaiaadIeadaWgaaWcbaGaaGinaaqabaGccq % GHRaWkcaaIZaGaam4qaiaad+eadaWgaaWcbaGaaGOmaaqabaaaaa!4519!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$4CO + 2{H_2}O \to C{H_4} + 3C{O_2}$$
(6-5)
EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaadI % eadaWgaaWcbaGaaG4maaqabaGccaWGdbGaam4taiaad+eacaWGibGa % eyOKH4Qaam4qaiaadIeadaWgaaWcbaGaaGinaaqabaGccqGHRaWkca % WGdbGaam4tamaaBaaaleaacaaIYaaabeaaaaa!4396!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$C{H_3}COOH \to C{H_4} + C{O_2}$$
(6-6)

Using distinct pathways, these substrates and other substrates are all converted to a common methylated intermediate that is subsequently converted to methane. Each pathway involves a series of novel coenzymes. The structures and functions of these singular compounds have been reviewed (DiMarco et al.,1990; Rouvière and Wolfe, 1988), and only an overview is presented here. Carbon dioxide is reduced to the formyl level with the participation of a furan-containing compound, termed methanofuran. The formyl group is transferred to a special pterin, named tetrahydromethanopterin, where it is converted to the methenyl derivative and sequentially reduced to the meth­ylene and methyl levels. Reduction of the methenyltetrahydromethanopterin requires an unusual 5-deazaflavin, denoted coenzyme F420 as the electron donor. The methyl group is subsequently transferred to 2-mercaptoethanesulfonate (coenzyme M, HS-CoM) to form 2-(methylthio)ethanesulfonate (methyl coenzyme M, methyl-S-CoM), which is the direct precursor of methane. The ultimate source of electrons in each of these reactions is hydrogen, requiring the participation of nickel-containing hydrogenases (discussed in Chapter 4). Formate metabolism requires the action of formate dehydrogenase (containing an atypical molybdopterin cofactor) and a nickel-containing hydrogenase; the combined action of these enzymes results in the release of carbon dioxide and hydrogen gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, Y., Krzycki, J. A., and Floss, H. G., 1991. Steric course of reduction of ethyl coenzyme M to ethane catalyzed by methyl coenzyme M reductase from Methanosarcina barkeri, J. Am. Chem. Soc. 113: 4700–4701.

    CAS  Google Scholar 

  • Albracht, S. P. J., Ankel-Fuchs, D., van der Zwaan, J. W., Fontijn, R. D., and Thauer, R. K., 1986. A new EPR signal of nickel in Methanobacterium thermoautotrophicum, Biochim. Biophys. Acta 870: 50–57.

    CAS  Google Scholar 

  • Albracht, S. P. J., Ankel-Fuchs, D., Böcher, R., Ellermann, J., Moll, J., van der Zwaan, J. W., and Thauer, R. K., 1988. Five new EPR signals assigned to nickel in methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum, strain Marburg, Biochim. Biophys. Acta 955: 86–102.

    CAS  Google Scholar 

  • Aldrich, H. C., Beimborn, D. B., Bokranz, M., and Schönheit, P., 1987. Immunocytochemical localization of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum, Arch. Microbiol. 147: 190–194.

    CAS  Google Scholar 

  • Allmansberger, R., Bokranz, M., Kröckel, L., Schallenberg, J., and Klein, A., 1989. Conserved gene structures and expression signal in methanogenic archaebacteria, Can. J. Microbiol. 35: 52–57.

    PubMed  CAS  Google Scholar 

  • Ankel-Fuchs, D., and Thauer, R. K., 1986. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin, Eur. J. Biochem. 156: 171–177.

    PubMed  CAS  Google Scholar 

  • Ankel-Fuchs, D., Jaenchen, R., Gebhardt, N. A., and Thauer, R. K., 1984. Functional relationship between protein-bound and free factor F430 in Methanobacterium, Arch. Microbiol. 137: 332–337.

    Google Scholar 

  • Ankel-Fuchs, D., Huster, R., Mörschel, E., Albracht, S. P. J., and Thauer, R. K., 1986. Structure and function of methyl-coenzyme M reductase and of factor F430 in methanogenic bacteria, Syst. Appl. Microbiol. 7: 383–387.

    CAS  Google Scholar 

  • Ankel-Fuchs, D., Böcher, R., Thauer, R. K., Noll, K. M., and Wolfe, R. S., 1987. 7-Mercaptoheptanoylthreonine phosphate functions as component B in ATP-independent methane formation from methyl-CoM with reduced cobalamin as electron donor, FEBS Lett. 213:123127.

    Google Scholar 

  • Berkessel, A., 1991. Methyl-coenzyme M reductase: Model studies on pentadentate nickel complexes and a hypothetical mechanism, Bioorgan. Chem. 19: 101–115.

    CAS  Google Scholar 

  • Bobik, T. A., Olson, K. D., Noll, K. M., and Wolfe, R. S., 1987. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium, Biochem. Biophys. Res. Commun. 149: 455–460.

    PubMed  CAS  Google Scholar 

  • Bokranz, M., and Klein, A., 1987. Nucleotide sequence of the methyl coenzyme M reductase gene cluster from Methanosarcina barkeri, Nucleic Acids Res. 15: 4350–4351.

    PubMed  CAS  Google Scholar 

  • Bokranz, M., Bäumner, G., Allmansberger, R., Ankel-Fuchs, D., and Klein, A., 1988. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum, J. Bacteriol. 170: 568–577.

    PubMed  CAS  Google Scholar 

  • Bonacker, L. G., Bauder, S., and Thauer, R. K., 1992. Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera, Eur. J. Biochem. 206: 87–92.

    PubMed  CAS  Google Scholar 

  • Brandis, A., Thauer, R. K., and Stetter, K. 0., 1981. Relatedness of strains AH and Marburg of Methanobacterium thermoautotrophicum, Zentralbl. Bakteriol. Parasitenkd. Jnfektionskr. Hyg. Abt. I Orig. Reihe C 2: 311–317.

    CAS  Google Scholar 

  • Brenner, M. C., Ma, L., Johnson, M. K., and Scott, R. A., 1992. Spectroscopic characterization of the alternate form of S-methylcoenzyme M reductase from Methanobacterium thermoautotrophicum, Biochim. Biophys. Acta 1120: 160–166.

    PubMed  CAS  Google Scholar 

  • Cheeseman, M. R., Ankel-Fuchs, D., Thauer, R. K., and Thompson, J., 1989. The magnetic properties of the nickel cofactor F430 in the enzyme methyl-coenzyme M reductase of Methanobacterium thermoautotrophicum, Biochem. J. 260: 613–616.

    Google Scholar 

  • Cram, D. S., Sherf, B. A., Libby, R. T., Mattaliano, R. J., Ramachandran, K. L., and Reeve, J. N., 1987. Structure and expression of the genes, mcrBDCGA, which encode the subunits of component C of methyl coenzyme M reductase in Methanococcus vannielli, Proc. Natl. Acad. Sci. USA 84: 3992–3996.

    PubMed  CAS  Google Scholar 

  • Daniels, L., Sparling, R., and Sprott, G. D., 1984. The bioenergetics of methanogenesis, Biochim. Biophys. Acta 768: 113–163.

    PubMed  CAS  Google Scholar 

  • Deppenmeier, U., Blaut, M., Mahlmann, A., and Gottschalk, G., 1990. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria, Proc. Natl. Acad. Sci. USA 87: 9449–9453.

    PubMed  CAS  Google Scholar 

  • Diakun, G. P., Piggott, B., Tinton, H. J., Ankel-Fuchs, D., and Thauer, R. K., 1985. An extendedX-ray-absorption-fine-structure (e.x.a.f.$) study of coenzyme F430 from Methanobacterium thermoautotrophicum, Biochem. J. 232: 281–284.

    PubMed  CAS  Google Scholar 

  • Diekert, G., Gilles, H.-H., Jaenchen, R., and Thauer, R. K., 1980a. Incorporation of 8 succinate per mol nickel into factors F430 by Methanobacterium thermoautotrophicum, Arch. Microbiol. 128: 256–262.

    PubMed  CAS  Google Scholar 

  • Diekert, G., Jaenchen, R., and Thauer, R. K., 1980b. Biosynthetic evidence for a nickel tetrapyrrolic structure of factor F430 from Methanobacterium thermoautotrophicum, FEBS Lett. 119: 1 18120.

    Google Scholar 

  • Diekert, G., Klee, B., and Thauer, R. K., 1980c. Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum, Arch. Microbiol. 124: 103–106.

    PubMed  CAS  Google Scholar 

  • Diekert, G., Weber, B., and Thauer, R. K., 1980d. Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum, Arch. Microbiol. 127: 273–278.

    CAS  Google Scholar 

  • Diekert, G., Konheiser, U., Piechulla, K., and Thauer, R. K., 1981. Nickel requirement and factor F430 content of methanogenic bacteria, J. Bacteriol. 148: 459–464.

    PubMed  CAS  Google Scholar 

  • DiMarco, A. A., Bobik, T. A., and Wolfe, R. S., 1990. Unusual coenzymes of methanogenesis, Annu. Rev. Biochem. 59: 355–394.

    PubMed  CAS  Google Scholar 

  • Eidsness, M. K., Sullivan, R. J., Schwartz, J. R., Hartzell, P. L., Wolfe, R. S., Flank, A.-M., Cramer, S. P., and Scott, R. A., 1986. Structural diversity of F430 from Methanobacterium thermoautotrophicum. A nickel X-ray absorption spectroscopic study, J. Am. Chem. Soc. 108: 3120–3121.

    CAS  Google Scholar 

  • Ellefson, W. L., and Wolfe, R. S., 1980. Role of component C in the methylreductase system of Methanobacterium, J. Biol. Chem. 255: 8388–8389.

    PubMed  CAS  Google Scholar 

  • Ellefson, W. L., and Wolfe, R. S., 1981. Component C of the methylreductase system of Methanobacterium, J. Biol. Chem. 256: 4259–4262.

    PubMed  CAS  Google Scholar 

  • Ellefson, W. L., Whitman, W. B., and Wolfe, R. S., 1981. Nickel-containing factor F430: Chromophore of the methylreductase of Methanobacterium, Proc. Natl. Acad. Sei. USA 79: 37073710.

    Google Scholar 

  • Ellermann, J., Kobelt, A., Pfaltz, A., and Thauer, R. K., 1987. On the role of N-7-mercaptoheptanoylO-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane, FEBS Lett. 220: 358–362.

    PubMed  CAS  Google Scholar 

  • Ellermann, J., Hedderich, R., Böcher, R., and Thauer, R. K., 1988. The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg), Eur. J. Biochem. 172: 669–677.

    PubMed  CAS  Google Scholar 

  • Ellermann, J., Rospert, S., Thauer, R. K., Bokranz, M., Klein, A., Voges, M., and Berkessel, A., 1989. Methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum (strain Marburg). Purity, activity, and inhibitors, Eur. J. Biochem. 184: 63–68.

    PubMed  CAS  Google Scholar 

  • Eschenmoser, A., 1986. Chemistry of corphinoids, Ann. N. Y. Acad. Sci. 471: 108–129.

    CAS  Google Scholar 

  • Färber, G., Keller, W., Kratky, C., Jaun, B., Pfaltz, A., Spinner, C., Kobelt, A., and Eschenmoser, A., 1991. Coenzyme F430 from methanogenic bacteria: Complete assignment of configuration based on an X-ray analysis of 12,13-diepi-F430 pentamethylester and on NMR spectroscopy, Helv. Chim. Acta 74: 697–716.

    Google Scholar 

  • Fässler, A., Pfaltz, A., Müller, P. M., Farooq, S., Kratky, C., Kräutler, B., and Eschenmoser, A., 1982. Herstellung und eigenschafter einiger hydrocorphinoider nickel(II)-komplexe, Helv. Chico. Acta 65: 812–827.

    Google Scholar 

  • Fässler, A., Pfaltz, A., Kräutler, B., and Eschenmoser, A., 1984. Chemistry of corphinoids: Synthesis of a nickel(II) complex containing the chromophore system of coenzyme F430, J. Chem. Soc., Chem. Commun. 1984: 1365–1367.

    Google Scholar 

  • Fässler, A., Kobelt, A., Pfaltz, A., Eschenmoser, A., Bladon, C., Battersby, A. R., and Thauer, R. K., 1985. Zur Kenntnis des Faktors F430 aus methanogenen bakterien: Absolute konfiguration, Heiv. Chim. Acta 68: 2287–2298.

    Google Scholar 

  • Ferry, J. G., 1992. Biochemistry of methanogenesis, Crit. Rev. Biochem. Mol. Biol. 27: 473–503.

    PubMed  CAS  Google Scholar 

  • Friedmann, H. C., Klein, A., and Thauer, R. K., 1990. Structure and function of the nickel porphinoid, coenzyme F430, and of its enzyme, methyl coenzyme M reductase, FEMS Microbiol. Rev. 87: 339–348.

    CAS  Google Scholar 

  • Furenlid, L. R., Renner, M. W., and Fajer, J., 1990a. EXAFS studies of nickel(II) and nickel(I) factor 430 M. Conformational flexibility of the F430 skeleton, J. Am. Chem. Soc. 112: 89878989.

    Google Scholar 

  • Furenlid, L. R., Renner, M. W., Smith, K. M., and Fajer, J., 1990b. Structural consequences of nickel versus macrocycle reductions in F430 models: EXAFS studies of a Ni(I) anion and Ni(II) r anion radicals, J. Am. Chem. Soc. 112: 1634–1635.

    CAS  Google Scholar 

  • Furenlid, L. R., Renner, M. W., Szalda, D. J., and Fujita, E., 1991. EXAFS studies of Ni“, Ni’, and Ni’-CO tetraazamacrocycles and the crystal structure of (5,7,7,12,14,14-hexamethyl1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(I) perchlorate, J. Am. Chem. Soc. 113: 883892.

    Google Scholar 

  • Gilles, H., and Thauer, R. K., 1983. Uroporphyrinogen III, an intermediate in the biosynthesis of the nickel-containing factor F430 in Methanobacterium thermoautotrophicum, Eur. J. Biochem. 135: 109–112.

    PubMed  CAS  Google Scholar 

  • Gunsalus, R. P., and Wolfe, R. S., 1978. Chromophoric factors F342 and F430 of Methanobacterium thermoautotrophicum, FEMS Microbiol. Lett. 3: 191–193.

    CAS  Google Scholar 

  • Gunsalus, R. P., and Wolfe, R. S., 1980. Methylcoenzyme M reductase from Methanobacterium thermoautotrophicum. Resolution and properties of the components, J. Biol. Chem. 255: 1891–1895.

    PubMed  CAS  Google Scholar 

  • Gunsalus, R. P., Romesser, J. A., and Wolfe, R. S., 1978. Preparation of coenzyme M analogoues and their activity in the methyl conenzyme M reductase system of Methanobacterium thermoautotrophicum, Biochemistry 17: 2374–2377.

    PubMed  CAS  Google Scholar 

  • Hamilton, C. L., Scott, R. A., and Johnson, M. K., 1989. The magnetic and electronic properties of Methanobacterium thermoautotrophicum (strain OH) methyl coenzyme M reductase and its nickel tetrapyrrole cofactor F430. A low temperature magnetic circular dichroism study, J. Biol. Chem. 264: 11605–11613.

    PubMed  CAS  Google Scholar 

  • Hamilton, C. L., Ma, L., Renner, M. W., and Scott, R. A., 1991. Ni(II) and Ni(I) forms of pentaalkylamide derivatives of cofactor F430 of Methanobacterium thermoautotrophicum, Biochim. Biophys. Acta 1074: 312–319.

    PubMed  CAS  Google Scholar 

  • Hartzell, P. L., and Wolfe, R. S., 1986a. Requirement of the nickel tetrapyrrole F430 for in vitro methanogenesis: Reconstitution of methylreductase component C from its dissociated subunits, Proc. Natl. Acad. Sci. USA 83: 6726–6730.

    PubMed  CAS  Google Scholar 

  • Hartzell, P. L., and Wolfe, R. S., 1986b. Comparative studies of component C from the methylreductase system of different methanogens, Syst. Appl. Microbiol. 7: 376–382.

    CAS  Google Scholar 

  • Hartzell, P. L., Donnelly, M. I., and Wolfe, R. S., 1987. Incorporation of coenzyme M into component C of methylcoenzyme M methylreductase during in vitro methanogenesis, J. Biol. Chem. 262: 5581–5586.

    PubMed  CAS  Google Scholar 

  • Hartzell, P. L., Escalante-Semerena, J. C., Bobik, T. A., and Wolfe, R. S., 1988. A simplified methylcoenzyme M methylreductase assay with artificial electron donors and different preparations of component C from Methanobacterium thermoautotrophicum OH, J. Bacteriol. 170: 2711–2715.

    PubMed  CAS  Google Scholar 

  • Hausinger, R. P., Orme-Johnson, W. H., and Walsh, C., 1984. Nickel tetrapyrrole cofactor F430: Comparison of the forms bound to methyl coenzyme M reductase and protein free in cells of Methanobacterium thermoautotrophicum, Biochemistry 23: 801–804.

    CAS  Google Scholar 

  • Hedderich, R., and Thauer, R. K., 1988. Methanobacterium thermoautotrophicum contains a soluble enzyme system that specifically catalyzes the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate with H2i FEBS Lett. 234:223227.

    Google Scholar 

  • Hedderich, R., Berkessel, A., and Thauer, R. K., 1990. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg), Eur. J. Biochem. 193: 255–261.

    PubMed  CAS  Google Scholar 

  • Helveston, M. C., and Castro, C. E., 1992. Nickel(I) octaethylisobacteriochlorin anion. An exceptional nucleophile. Reduction and coupling of alkyl halides by anionic and radical processes. A model for factor F-430, J. Am. Chem. Soc. 114: 8490–8496.

    Google Scholar 

  • Huster, R., Gilles, H.-H., and Thauer, R. K., 1985. Is coenzyme M bound to factor F430 in methanogenic bacteria? Experiments with Met hanobrevibacter ruminantium, Eur. J. Biochem. 148: 107–111.

    PubMed  CAS  Google Scholar 

  • Jablonski, P. E., and Ferry, J. G., 1991. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila, J. Bacteriol. 173: 2481 2487.

    Google Scholar 

  • Jaenchen, R., Diekert, G., and Thauer, R. K., 1981. Incorporation of methionine-derived methyl groups into factor F430 by Methanobacterium thermoautotrophicum, FEBS Lett. 130: 133136.

    Google Scholar 

  • Jaun, B., 1990. Coenzyme F430 from methanogenic bacteria: Oxidation of F430 pentamethyl ester to the nickel(III) form, Hely. Chim. Acta 73: 2209–2217.

    CAS  Google Scholar 

  • Jaun, B., and Pfaltz, A., 1986. Coenzyme F430 from methanogenic bacteria: Reversible one-electron reduction of F430 pentamethyl ester to the nickel(I) form, J. Chem. Soc., Chem. Commun. 1986: 1327–1329.

    Google Scholar 

  • Jaun, B., and Pfaltz, A., 1988. Coenzyme F430 from methanogenic bacteria: Methane formation by reductive carbon-sulphur bond cleavage of methyl sulfonium ions catalyzed by F430 pentamethyl ester, J. Chem. Soc., Chem. Commun. 1988: 293–294.

    Google Scholar 

  • Jetten, M. S., Pierik, A. J., and Hagen, W. R., 1991. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii, Eur. J. Biochem. 202: 1291–1297.

    PubMed  CAS  Google Scholar 

  • Jones, W. J., Nagle, D. P., Jr., and Whitman, W. B., 1987. Methanogens and the diversity of archaebacteria, Microbiol. Rev. 51: 135–177.

    PubMed  CAS  Google Scholar 

  • Keltjens, J. T., Whitman, W. B., Caerteling, C. G., van Kooten, A. M., Wolfe, R. S., and Vogels, G. D., 1982. Presence of coenzyme M derivatives in the prosthetic group (coenzyme MF43o) of methylcoenzyme M reductase from Methanobacterium thermoautotrophicum, Biochem. Biophys. Res. Commun. 108: 495–503.

    Google Scholar 

  • Keltjens, J. T., Caerteling, A. M., van Kooten, A. M., van Dijk, H. F., and Vogels, G. D., 1983a. Chromophoric derivatives of coenzyme MF430, a proposed coenzyme of methanogenesis in Methanobacterium thermoautotrophicum, Arch. Biochem. Biophys. 223: 235–253.

    PubMed  CAS  Google Scholar 

  • Keltjens, J. T., Caerteling, C. G., van Kooten, A. M., van Dijk, H. F., and Vogels, G. D., 1983b. 6,7-Dimethyl-8-ribityl-5,6,7,8-tetrahydrolumazine, a proposed constituent of coenzyme M F430 from methanogenic bacteria, Biochim. Biophys. Acta 743: 351–358.

    Google Scholar 

  • Keltjens, J. T., Hermans, J. M. H., Rijsdijk, G. J. F. A., van der Drift, C., and Vogels, G. D., 1988. Interconversion of F430 derivatives of methanogenic bacteria, Antonie van Leeuwenhoek 54: 207–220.

    PubMed  CAS  Google Scholar 

  • Klein, A., Allmansberger, R., Bokranz, M., Knaub, S., Müller, B., and Muth, E., 1988. Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria, Mol. Gen. Genet. 213: 409–420.

    PubMed  CAS  Google Scholar 

  • Kratky, C., Fässler, A., Pfaltz, A., Kräutler, B., Jaun, B., and Eschenmoser, A., 1984. Chemistry of corphinoids: Structural properties of corphinoid nickel(II) complexes related to coenzyme F430, J. Chem. Soc., Chem. Commun. 1984: 1368–1371.

    Google Scholar 

  • Kratky, C., Waditschatka, R., Angst, C., Johansen, J. E., Plaquevent, J. C., Schreiber, J., and Eschenmoser, A., 1985. Die sattelkonformation der hydroporphinoiden nickel(II)-komplexe: Struktur, ursprung und stereochemische consequenzen, Hely. Chim. Acta 68: 1312–1337.

    CAS  Google Scholar 

  • Krone, U. E., Laufer, K., Thauer, R. K., and Hogenkamp, H. P. C., 1989. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C, hydrocarbons in methanogenic bacteria, Biochemistry 28: 10061–10065.

    PubMed  CAS  Google Scholar 

  • Krzycki, J. A., and Prince, R. C., 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase, and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate, Biochim. Biophys. Acta 1015: 53–60.

    CAS  Google Scholar 

  • Lin, S.-K., and Jaun, B., 1991. Coenzyme F430 from methanogenic bacteria: Detection of a paramagnetic methylnickel(II) derivative of the pentamethyl ester by 2H-NMR spectroscopy, Hely. Chim. Acta 74: 1725–1735.

    CAS  Google Scholar 

  • Lin, S.-K., and Jaun, B., 1992. Coenzyme F430 from methanogenic bacteria: Mechanistic studies on the reductive cleavage of sulfonium ions catalyzed by F430 pentamethyl ester, Hely. Chim. Acta 75: 1478–1490.

    CAS  Google Scholar 

  • Livingston, D. A., Pfaltz, A., Schreiber, J., Eschenmoser, A., Ankel-Fuchs, D., Moll, J., and Thauer, R. K., 1984. Zur kenntnis des faktors F430 aus methanogenen bakterien: Struktur des proteinfreien faktors, Hely. Chim. Acta 67: 334–351.

    CAS  Google Scholar 

  • Mayer, F., Rohde, M., Salzmann, M., Jussofie, A., and Gottschalk, G., 1988. The methanoreductosome: A high-molecular-weight enzyme complex in the methanogenic bacterium strain Göl that contains components of the methylreductase system, J. Bacteriol. 170: 1438–1444.

    PubMed  CAS  Google Scholar 

  • Moura, I., Moura, J. J. G., Santos, H., Xavier, A. V., Burch, G., Peck, H. D., Jr., and LeGall, J., 1983. Proteins containing the factor F430 from Methanosarcina barkeri and Methanobacterium thermoautotrophicum: Isolation and properties, Biochim. Biophys. Acta 742: 84–90.

    CAS  Google Scholar 

  • Mucha, H., Keller, E., Weber, H., Lingens, F., and Trosch, W., 1985. Sirohydrochlorin, a precursor of factor F430 biosynthesis in Methanobacterium thermoautotrophicum, FEBS Lett. 190: 169173.

    Google Scholar 

  • Nagle, D. P., Jr., and Wolfe, R. S., 1983. Component A of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum: Resolution into four components, Proc. Natl. Acad. Sci. USA 80: 2151–2155.

    PubMed  CAS  Google Scholar 

  • Noll, K. M., and Wolfe, R. S., 1986. Component C of the methylcoenzyme M methylreductase system contains bound 7-mercaptoheptanoylthreonine phosphate (HS-HTP), Biochem. Biophys. Res. Commun. 139: 889–895.

    PubMed  CAS  Google Scholar 

  • Noll, K. M., and Wolfe, R. S., 1987. The role of 7-mercaptoheptanoylthreonine phosphate in the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum, Biochem. Biophys. Res. Commun. 145: 204–210.

    PubMed  CAS  Google Scholar 

  • Olson, K. D., Won, H., Wolfe, R. S., Hare, D., and Summers, M. F., 1990. Stereochemical studies of coenzyme F430 based on 2D NOESY back-calculations, J. Am. Chem. Soc. 112: 58845886.

    Google Scholar 

  • Olson, K. D., McMahon, C. W., and Wolfe, R. S., 1991. Photoactivation of the 2-(methylthio)ethanesulfonic acid reductase from Methanobacterium, Proc. Natl. Acad. Sci. USA 88: 4099–4103.

    PubMed  CAS  Google Scholar 

  • Olson, K. D., Chmurkowska-Cichowlas, L., McMahon, C. W., and Wolfe, R. S., 1992. Structural modifications and kinetic studies of the substrates involved in the final step of methane formation in Methanobacterium thermoautotrophicum, J. Bacteriol. 174: 1007–1012.

    PubMed  CAS  Google Scholar 

  • Ossmer, R., Mund, T., Hartzell, P. L., Konheiser, U., Kohring, G. W., Klein, A., Wolfe, R. S., Gottschalk, G., and Mayer, F., 1986. Immunocytochemical localization of component C of the methylreductase system in Methanococcus voltae and Methanobacterium thermoautotrophicum, Proc. Natl. Acad. Sci. USA 83: 5789–5792.

    PubMed  CAS  Google Scholar 

  • Pfaltz, A., 1988. Structure and properties of coenzyme F430, in The Bioinorganic Chemistry of Nickel ( J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 275–298.

    Google Scholar 

  • Pfaltz, A., Jaun, B., Fässler, A., Eschenmoser, A., Jaenchen, R., Gilles, H. H., Diekert, G., and Thauer, R. K., 1982. Zur kenntnis des faktors F430 aus methanogenen bakterien: Struktur des porphinoiden ligand-systems, Heiv. Chim. Acta 65: 828–865.

    CAS  Google Scholar 

  • Pfaltz, A., Livingston, D. A., Jaun, B., Diekert, G., Thauer, R. K., and Eschenmoser, A., 1985. Zur kenntnis des faktors F430 aus methanogenen bakterien: Über die natur der isolierungsartefakte von F430, ein beitrag zur chemie von F430 und zur konformationellen stereochemie der ligandperipherie von hydroporphinoiden nickel(II)-komplexen, Heiv. Chim. Acta 68: 1338–1358.

    CAS  Google Scholar 

  • Pfaltz, A., Kobelt, A., Huster, R., and Thauer, R. K., 1987. Biosynthesis of coenzyme F430 in methanogenic bacteria. Identification of 15,173-seco-F430–173-acid as an intermediate, Fur. J. Biochem. 170: 459–467.

    CAS  Google Scholar 

  • Renner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H.-K., Simpson, D. J., Smith, K. M., and Fajer, J., 1991. Models of factor 430. Structural and spectroscopic studies of Ni(11) and Ni(I) hydroporphyrins, J. Am. Chem. Soc. 113: 6891–6898.

    CAS  Google Scholar 

  • Rospert, S., Linder, D., Ellermann, J., and Thauer, R. K., 1990. Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and OH, Fur. J. Biochem. 194: 871–877.

    CAS  Google Scholar 

  • Rospert, S., Böcher, R., Albracht, S. P. J., and Thauer, R. K., 1991. Methyl-coenzyme M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum, FEBS Len. 291: 371–375.

    CAS  Google Scholar 

  • Rospert, S., Voges, M., Berkessel, A., Albracht, S. P. J., and Thauer, R. K., 1992. Substrateanalogue-induced changes in the nickel-EPR spectrum of active methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum, Eur. J. Biochem. 210: 101–107.

    PubMed  CAS  Google Scholar 

  • Rouvière, P. E., and Wolfe, R. S., 1987. Use of subunits of the methylreductase protein for taxonomy of methanogenic bacteria, Arch. Microbiol. 148: 253–259.

    Google Scholar 

  • Rouvière, P. E., and Wolfe, R. S., 1988. Novel biochemistry of methanogenesis, J. Biol. Chem. 263: 7913–7916.

    PubMed  Google Scholar 

  • Rouvière, P. E., Bobik, T. A., and Wolfe, R. S., 1988. Reductive activation of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum OH, J. Bacteriol. 170: 3946–3952.

    PubMed  Google Scholar 

  • Schönheit, P., Moll, J., and Thauer, R. K., 1979. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum, Arch. Microbiol. 123: 105–107.

    PubMed  Google Scholar 

  • Scott, R. A., Hartzell, P. L., Wolfe, R. S., LeGall, J., and Cramer, S. P., 1986. Nickel X-ray absorption spectroscopy of Methanobacterium thermoautotrophicum S-methyl coenzyme-M reductase, in Frontiers of Bioinorganic Chemistry ( A. V. Xavier, ed.), VCH Publishers, New York, pp. 20–26.

    Google Scholar 

  • Shelnutt, J. A., 1987. Axial ligation-induced structural changes in nickel hydrocorphinoids related to coenzyme F430 detected by Raman difference spectroscopy, J. Am. Chem. Soc. 109: 41694173.

    Google Scholar 

  • Sherf, B. A., and Reeve, J. N., 1990. Identification of the mcrD gene product and its association with component C of methyl coenzyme M reductase in Methanococcus vannielii, J. Bacteriol. 172: 1828–1833.

    PubMed  CAS  Google Scholar 

  • Shiemke, A. K., Eirich, L. D., and Loehr, T. M., 1983. Resonance Raman spectroscopic characterization of the nickel cofactor, F430, from methanogenic bacteria, Biochim. Biophys. Acta 748: 143–147.

    CAS  Google Scholar 

  • Shiemke, A. K., Hamilton, C. L., and Scott, R. A., 1988a. Structural heterogeneity and purification of protein-free F430 from the cytoplasm of Methanobacterium thermoautrophicum, J. Biol. Chem. 263: 5611–5616.

    PubMed  CAS  Google Scholar 

  • Shiemke, A. K., Scott, R. A., and Shelnutt, J. A., 1988b. Resonance Raman spectroscopic investigation of axial coordination in M. thermoautotrophicum methyl reductase and its nickel tetrapyrrole cofactor F430, J. Am. Chem. Soc. 110: 1645–1646.

    CAS  Google Scholar 

  • Shiemke, A. K., Kaplan, W. A., Hamilton, C. L., Shelnutt, J. A., and Scott, R. A., 1989a. Structural and spectroscopic characterization of exogeneous ligand binding to isolated factor F430 and its conformational isomers, J. Biol. Chem. 264: 7276–7284.

    PubMed  CAS  Google Scholar 

  • Shiemke, A. K., Shelnutt, J. A., and Scott, R. A., 1989b. Coordination chemistry of F430. Axial ligation equilibrium between square-planar and bis-aquo species in aqueous solution, J. Biol. Chem. 264: 11236–11245.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., 1990. Energy metabolism of methanogenic bacteria, Biochim. Biophys. Acta 1018: 256–259.

    Google Scholar 

  • Wackett, L. P., Hartwieg, E. A., King, J. A., Orme-Johnson, W. H., and Walsh, C. T., 1987a. Electron microscopy of nickel-containing methanogenic enzymes: Methyl reductase and F420-reducing hydrogenase, J. Bacteriol. 169: 718–727.

    PubMed  CAS  Google Scholar 

  • Wackett, L. P., Honek, J. F., Begley, T. P., Wallace, V., Orme-Johnson, W. H., and Walsh, C. T., 1987b. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase, Biochemistry 26: 6012–6018.

    PubMed  CAS  Google Scholar 

  • Wackett, L. P., Honek, J. F., Begley, T. P., Shames, S. L., Niederhoffer, E. C., Hausinger, R. P., Orme-Johnson, W. H., and Walsh, C. T., 1988. Methyl-S-coenzyme-M reductase: A nickel-dependent enzyme catalyzing the terminal redox step in methane biogenesis, in The Bioinorganic Chemistry of Nickel (J. R. Lancaster, Jr.), VCH Publishers, New York, pp. 249–274.

    Google Scholar 

  • Weil, C. F., Cram, D. S., Sherf, B. A., and Reeve, J. N., 1988. Structure and comparative analysis of the genes encoding component C of methyl coenzyme M reductase in the extremely thermophilic archaebacterium Methanothermus fervidus, J. Bacteriol. 170: 4718–4726.

    PubMed  CAS  Google Scholar 

  • Weil, C. F., Sherf, B. A., and Reeve, J. N., 1989. A comparison of the methyl reductase genes and gene products, Can. J. Microbiol. 35: 101–108.

    PubMed  CAS  Google Scholar 

  • Whitman, W. B., and Wolfe, R. S., 1980. Presence of nickel in the factor F430 from Methanobacterium bryantii, Biochem. Biophys. Res. Commun. 92: 1196–1201.

    PubMed  CAS  Google Scholar 

  • Whitman, W. B., and Wolfe, R. S., 1985. Activation of the methylreductase system from Methanobacterium bryantii by corrins, J. Bacteriol. 164: 165–172.

    PubMed  CAS  Google Scholar 

  • Won, H., Olson, K. D., Wolfe, R. S., and Summers, M. F., 1990. Two-dimensional NMR studies of native coenzyme F430, J. Am. Chem. Soc. 112: 2178–2184.

    CAS  Google Scholar 

  • Won, H., Olson, K. D., Hare, D. R., Wolfe, R. S., Kratky, C., and Summers, M. F., 1992. Structural modelling of small molecules by NMR: Solution-state structure of 12, l3-diepimeric coenzyme F430 and comparison with the X-ray structure of the pentamethyl ester derivative, J. Am. Chem. Soc. 114: 6880–6892.

    CAS  Google Scholar 

  • Zimmer, M., and Crabtree, R. H., 1990. Bending of the reduced porphyrin of factor F430 can accommodate a trigonal-bipyramidal geometry at nickel: A conformational analysis of this nickel-containing tetrapyrrole, in relation to archaebacterial methanogenesis, J Am. Chem. Soc. 112: 1062–1066.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hausinger, R.P. (1993). Methyl Coenzyme M Reductase. In: Biochemistry of Nickel. Biochemistry of the Elements, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9435-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9435-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9437-3

  • Online ISBN: 978-1-4757-9435-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics