Skip to main content

Hydrogenase

  • Chapter
Biochemistry of Nickel

Part of the book series: Biochemistry of the Elements ((BOTE,volume 12))

  • 217 Accesses

Abstract

Many microorganisms possess hydrogenase activity that catalyzes the reversible activation of hydrogen according to the following reaction:

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaGgecaWGib % WaaSbaaSqaaiaaikdaaeqaaOGaeyiLHSQaaGOmaiaadIeadaahaaWc % beqaaiabgUcaRaaakiabgUcaRiaaikdacaWGLbWaaWbaaSqabeaacq % GHsislaaaaaa!405F!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${H_2} \leftrightarrow 2{H^ + } + 2{e^ - }$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. W. W., 1990. The structure and mechanism of iron-hydrogenases, Biochim. Biophys. Acta 1020: 115–145.

    CAS  PubMed  Google Scholar 

  • Adams, M. W. W., Mortenson, L. E., and Chen, J.-S., 1981. Hydrogenase, Biochim. Biophys. Acta 594: 105–176.

    Google Scholar 

  • Adams, M. W. W., Jin, S.-L. C., Chen, J.-S., and Mortenson, L. E., 1986. The redox properties and activation of the F420-non-reactive hydrogenase of Methanobacterium formicicum, Biochim. Biophys. Acta 869: 37–47.

    CAS  Google Scholar 

  • Adams, M. W. W., Eccleston, E. C., and Howard, J. B., 1989. Iron—sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurii, Proc. Natl. Acad. Sci. USA 86: 4932–4936.

    Google Scholar 

  • Aggag, M., and Schlegel, H. G., 1974. Studies on a gram-positive hydrogen bacterium, Nocardia opaca 1 b. III. Purification, stability and some properties of the soluble hydrogen dehydrogenase, Arch. Microbiol. 100: 25–39.

    CAS  PubMed  Google Scholar 

  • Albracht, S. P. J., Graf, E.-G., and Thauer, R. K., 1982. The EPR properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum, FEBS Lett. 140: 311–313.

    CAS  PubMed  Google Scholar 

  • Albracht, S. P. J., Kalkman, M. L., and Slater, E. C., 1983. Magnetic interaction of nickel (IIl) and the iron-sulfur cluster in hydrogenase from Clostridium vinosum, Biochim. Biophys. Acta 724: 309–316.

    CAS  Google Scholar 

  • Albracht, S. P. J., van der Zwaan, J. W., and Fontijn, R. D., 1984. EPR spectrum at 4, 9, and 35 GHz of hydrogenase from Chromatium vinosum. Direct evidence for spin-spin interaction between Ni(III) and the iron-sulfur cluster, Biochim. Biophys. Acta 766: 245–258.

    CAS  Google Scholar 

  • Albracht, S. P. J., Kroger, A., van der Zwaan, J. W., Unden, G., Böcher, R., Mell, H., and Fontijn, R. D., 1986. Direct evidence for sulfur as a ligand to nickel in hydrogenase: An EPR study of the enzyme from Wolinella succinogenes enriched in 335, Biochim. Biophys. Acta 874: 116–127.

    CAS  Google Scholar 

  • Alex, L. A., Reeve, J. N., Orme-Johnson, W. H., and Walsh, C. T., 1990. Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum, Biochemistry 29: 7237–7244.

    CAS  PubMed  Google Scholar 

  • Almon, H., and Böger, P., 1984. Nickel dependent uptake hydrogenase activity in the blue-green alga Anabaena variabilis, Z. Naturforsch., C 39: 90–92.

    Google Scholar 

  • Arp, D. J., 1985. Rhizobium japonicum hydrogenase: Purification to homogeneity from soybean nodules, and molecular characterization, Arch. Biochem. Biophys. 237: 504–512.

    CAS  Google Scholar 

  • Asso, M., Guigliarelli, B., Yagi, T., and Bertrand, P., 1992. EPR and redox properties of Desulfovibrio vulgaris Miyazaki hydrogenase: Comparison with the Ni-Fe enzyme from Desulfovibrio gigas, Biochim. Biophys. Acta 1122: 50–56.

    CAS  PubMed  Google Scholar 

  • Bagyinka, C., Whitehead, J. P., and Maroney, M. J., 1993. An X-ray absorption spectroscopic study of nickel redox chemistry in hydrogenase, J. Am. Chem. Soc. 115: 3576–3585.

    CAS  Google Scholar 

  • Baidya, N., Olmstead, M., and Mascharak, P. K., 1991. Pentacoordinated nickel(II) complexes with thiolato ligation: Synthetic strategy, structures, and properties, Inorg. Chem. 30: 929937.

    Google Scholar 

  • Baidya, N., Noll, B. C., Olmstead, M. M., and Mascharak, P. K., 1992a. Nickel(II) complexes with the [NiN,Sey] chromophore in different coordination geometries: Search for a model of the active site of [NiFeSe] hydrogenases, Inorg. Chem. 31: 2999–3000.

    CAS  Google Scholar 

  • Baidya, N., Olmstead, M. M., Whitehead, J. P., Bagyinka, C., Maroney, M. J., and Mascharak, P. K., 1992b. X-ray absorption spectra of nickel complexes with N3S2 chromophores and spectroscopic studies on H- and CO binding at these nickel centers: Relevance to the reactivity of the nickel site(s) in [NiFe] hydrogenases, Inorg. Chem. 31: 3612–3619.

    CAS  Google Scholar 

  • Baidya, N., Olmstead, M. M., and Mascharak, P. K., 1993. A mononuclear nickel(1l) complex with [NiN3S2] chromophore that readily affords the Ni(I) and Ni(I1I) analogues: Probe into the redox behavior of the nickel site in [FeNi] hydrogenases, J. Am. Chem. Soc. 114: 96669668.

    Google Scholar 

  • Ballantine, S. P., and Boxer, D. H., 1986. Isolation and characterization of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli, Eur. J. Biochem. 156: 277–284.

    CAS  PubMed  Google Scholar 

  • Baron, S. F., Brown, D. P., and Ferry, J. G., 1987. Locations of the hydrogenases of Methanobacterium formicicum after subcellular fractionation of cell extract, J. Bacteriol. 169: 38233825.

    Google Scholar 

  • Baron, S. F., Williams, D. S., May, H. D., Patel, P. S., Aldrich, H. C., and Ferry, J. G., 1989. Immunogold localization of coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase in Methanobacterium formicicum, Arch. Microbiol. 151:307–313.

    Google Scholar 

  • Barraquio, W. L., and Knowles, R., 1989. Beneficial effects of nickel on Pseudomonas saccharophila under nitrogen-limited chemolithotrophic conditions, Appl. Environ. Microbiol. 55: 31973201.

    Google Scholar 

  • Bartha, R., and Ordal, E. J., 1965. Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains, J. Bacteriol. 89: 1015–1019.

    CAS  PubMed  Google Scholar 

  • Bastian, N. R., Wink, D. A., Wackett, L. P., Livingston, D. J., Jordan, L. M., Fox, J. Orme-Johnson, W. H., and Walsh, C. A., 1988. Hydrogenases of Methanobacterium thermoautotrophicum strain AH, in The Bioinorganic Chemistry of Nickel (J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 227–247.

    Google Scholar 

  • Berlier, Y. M., Fauque, G., Lespinat, P. A., and LeGall, J., 1982. Activation, reduction and role of proton-deuterium exchange reaction of the periplasmic hydrogenase from Desulfovibrio gigas in relation with the role of cytochrome c 3, FEBS Lett. 140: 185–188.

    CAS  PubMed  Google Scholar 

  • Böhm, R., Sauter, M., and Böck, A., 1990. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components, Mol. Microbiol. 4: 231–243.

    PubMed  Google Scholar 

  • Bonam, D., McKenna, M. C., Stephens, P. J., and Ludden, P. W., 1988. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: In vivo and in vitro activation by exogenous nickel, Proc. Natl. Acad. Sci. USA 85: 31–35.

    CAS  PubMed  Google Scholar 

  • Boursier, P., Hanus, F. J., Becker, M. M., Russell, S. A., and Evans, H. J., 1988. Selenium increases hydrogenase expression in autotrophically cultured Bradyrhizobium japonicum and is a constituent of the purified enzyme, J. Bacteriol. 170: 5594–5600.

    CAS  PubMed  Google Scholar 

  • Bryant, F. O., and Adams, M. W. W., 1989. Characterization of hydrogenase from the hyperther-

    Google Scholar 

  • mophilic archaebacterium, Pyrococcus furiosus, J. Biol. Chem. 264:5070–5079.

    Google Scholar 

  • Cammack, R., Patil, D., Aguirre, R., and Hatchikian, E. C., 1982. Redox properties of the ESRdetectable nickel in hydrogenase from Desulfovibrio gigas, FEBS Lett. 142: 289–292.

    CAS  Google Scholar 

  • Cammack, R., Fernandez, V. M., and Schneider, K., 1986. Activation and active-sites of nickelcontaining hydrogenases, Biochimie 68: 85–91.

    CAS  PubMed  Google Scholar 

  • Cammack, R., Patil, D. S., Hatchikian, E. C., and Fernandez, V. M., 1987. Nickel and iron-sulphur centres in Desulfovibrio gigas hydrogenase: ESR spectra, redox properties and interactions, Biochim. Biophys. Acta 912: 98–109.

    CAS  Google Scholar 

  • Cammack, R., Fernandez, V. M., and Schneider, K., 1988. Nickel in hydrogenases from sulfate-reducing, photosynthetic, and hydrogen-oxidizing bacteria, in The Bioinorganic Chemistry of Nickel ( J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 167–190.

    Google Scholar 

  • Cammack, R., Bagyinka, C., and Kovacs, K. L., 1989a. Spectroscopic characterization of the nickel and iron-sulphur clusters of hydrogenase from the purple photosynthetic bacterium Thiocapsa roseopersicina. 1. Electron spin resonance spectroscopy, Eur. J. Biochem. 182: 357–362.

    CAS  PubMed  Google Scholar 

  • Cammack, R., Kovacs, K. L., McCracken, J., and Peisach, J., 1989b. Spectroscopic characterization of the nickel and iron-sulphur clusters of hydrogenase from the purple photosynthetic bacterium Thiocapsa roseopersicina. 2. Electron spin-echo spectroscopy, Eur. J. Biochem. 182: 363–366.

    CAS  PubMed  Google Scholar 

  • Chapman, A., Cammack, R., Hatchikian, E. C., McCracken, J., and Peisach, J., 1988. A pulsed EPR study of redox-dependent hyperfine interactions for the nickel centre of Desulfovibrio gigas hydrogenase, FEBS Lett. 242: 134–138.

    CAS  PubMed  Google Scholar 

  • Chaudhuri, A., and Krasna, A. I., 1987. Isolation of genes required for hydrogenase synthesis in Escherichia coli, J. Gen. Microbiol. 133: 3289–3298.

    CAS  PubMed  Google Scholar 

  • Chen, J. C., and Mortenson, L. E., 1992. Identification of six open reading frames from a region of the Azotobacter vinelandü genome likely involved in dihydrogen metabolism, Biochim. Biophys. Acta 1131:199–202.

    Google Scholar 

  • Chen, Y.-P., and Yoch, D. C, 1987. Regulation of two nickel-requiring (inducible and constitutive) hydrogenases and their coupling to nitrogenase in Methylosinus trichosporium OB3b, J. Bacteriol. 169: 4778–4783.

    CAS  PubMed  Google Scholar 

  • Choquet, C. G., and Sprott, G. D., 1991. Metal chelate affinity chromatography for the purification of the F420-reducing (Ni,Fe) hydrogenase of Methanospirillum hungatei, J. Microbiol. Methods 13: 161–169.

    CAS  Google Scholar 

  • Colbeau, A., and Vignais, P. M., 1983. The membrane-bound hydrogenase of Rhodopseudomonas capsulatus is inducible and contains nickel, Biochim. Biophys. Acta 748: 128–138.

    CAS  Google Scholar 

  • Colbeau, A., Chabert, J., and Vignais, P. M., 1983. Purification, molecular properties and localization in the membrane of the hydrogenase of Rhodopseudomonas capsulata, Biochim. Biophys. Acta 748: 116–127.

    CAS  Google Scholar 

  • Colbeau, A., Richaud, P., Toussaint, B., Caballero, F. J., Elster, C., Delphin, C., Smith, R. L., Chabert, J., and Vignais, P. M., 1993. Organization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus. Sequence analysis and identification of two hyp regulatory mutants, Mol. Microbiol. 8: 15–29.

    CAS  PubMed  Google Scholar 

  • Colpas, G. J., Maroney, M. J., Bagyinka, C., Kumar, M., Willis, W. S., Suib, S. L., Baidya, N., and Mascharak, P. K., 1991. X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases, Inorg. Chem. 30: 920–928.

    CAS  Google Scholar 

  • Coremans, J. M. C. C., van der Zwaan, J. W., and Albracht, S. P. J., 1989. Redox behaviour of nickel in hydrogenase from Methanobacterium thermoautotrophicum (strain Marburg). Correlation between the nickel valence state and enzyme activity, Biochim. Biophys. Acta 997: 256–267.

    CAS  Google Scholar 

  • Coremans, J. M. C. C., van Garderen, C. J., and Albracht, S. P. J., 1992a. On the redox equilibrium between H2 and hydrogenase, Biochim. Biophys. Acta 1119: 148–156.

    CAS  PubMed  Google Scholar 

  • Coremans, J. M. C. C., van der Zwaan, J. W., and Albracht, S. P. J., 1992b. Distinct redox behaviour of prosthetic groups in ready and unready hydrogenase from Chromatium vinosum, Biochim. Biophys. Acta 1119:157–168.

    Google Scholar 

  • Czechowski, M. H., He, S. H., Nacro, M. DerVartanian, D. V., Peck, H. D., Jr., and LeGall, J., 1984. A cytoplasmic nickel-iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. n., a new species of sulfate reducing bacterium, Biochem. Biophys. Res. Commun. 125: 1025–1032.

    CAS  PubMed  Google Scholar 

  • Daday, A., and Smith, G. D., 1983. The effect of nickel on the hydrogen metabolism of the cyanobacterium Anabaena cylindrica, FEMS Microbiol. Lett. 20: 327–330.

    CAS  Google Scholar 

  • Daday, A., MacKerras, A. H., and Smith, G. D., 1985. The effect of nickel on hydrogen metabolism and nitrogen fixation in the cyanobacterium Anabaena cylindrica, J. Gen. Microbiol. 131: 231–238.

    CAS  Google Scholar 

  • Deckers, H. M., Wilson, F. R., and Voordouw, G., 1990. Cloning and sequencing of a [NiFe] hydrogenase operon from Desulfi vibrio vulgaris Miyazaki F, J. Gen. Microbiol. 136: 20212028.

    Google Scholar 

  • Deppenmeier, U., Blaut, M., Schmidt, B., and Gottschalk, G., 1992. Purification and properties of a F420-nonreactive, membrane-bound hydrogenase from Methanosarcina strain GöI, Arch. Microbiol. 157: 505–511.

    CAS  PubMed  Google Scholar 

  • Dernedde, J., Eitinger, M., and Friedrich, B., 1993. Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H 16, Arch. Microbiol. 159: 545–553.

    CAS  PubMed  Google Scholar 

  • Doyle, C. M., and Arp, D. J., 1988. Nickel affects expression of the nickel-containing hydrogenase of Alcaligenes tutus, J. Bacteriol. 170: 3891–3896.

    CAS  PubMed  Google Scholar 

  • Dross, F., Geisler, V., Lenger, R., Theis, F., Kraft, T., Fahrenholz, F., Kojro, E., Duchene, A., Tripier, D., Juvenal, K., and Kröger, A., 1992. The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes, Eur. J. Biochem. 206: 93–102.

    CAS  PubMed  Google Scholar 

  • Drutschmann, M., and Klemme, J.-H., 1985. Sulfide-repressed, membrane-bound hydrogenase in the thermophilic facultative phototroph, Chloroflexus aurantiacus, FEMS Microbiol. Lett. 28: 231–235.

    CAS  Google Scholar 

  • Du, L., Stejskal, F., and Tibelius, K. H., 1992. Characterization of two genes (hupD and hupE) required for hydrogenase activity in Azotobacter chroococcum, FEMS Microbiol. Lett. 96: 93–102.

    CAS  Google Scholar 

  • Eberz, G., and Friedrich, B., 1991. Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus, J. Bacterial. 173: 1845–1854.

    CAS  Google Scholar 

  • Eberz, G., Eitinger, T., and Friedrich, B., 1989. Genetic determinants of a nickel-specific transport system are part of the plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus, J. Bacterial. 171:1340–1345.

    Google Scholar 

  • Eidsness, M. K., Scott, R. A., Prickril, B. C., DerVartanian, D. V., LeGall, J., Moura, I., Moura, J. J. G., and Peck, H. D., Jr., 1989. Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus, Proc. Natl. Acad. Sci. USA 86: 147–151.

    CAS  PubMed  Google Scholar 

  • Eitinger, T., and Friedrich, B., 1991. Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus, J. Biol. Chem. 266: 32223227.

    Google Scholar 

  • Ewart, G. D., Reed, K. C., and Smith, G. D., 1990. Soluble hydrogenase of Anabaena cylindrica. Cloning and sequencing of a potential gene encoding the tritium exchange subunit, Eur. J. Biochem. 187: 215–223.

    CAS  PubMed  Google Scholar 

  • Fan, C., Teixeira, M., Moura, J., Moura, I., Huynh, B.-H., Le Gall, J., Peck, H. D., Jr., and Hoffman, B. M., 1991. Detection and characterization of exchangeable protons bound to the hydrogen-activation nickel site of Desulfovibrio gigas hydrogenase: A 1H and 2H Q-band ENDOR study, J. Am. Chem. Soc. 113: 20–24.

    CAS  Google Scholar 

  • Fauque, G., Teixeira, M., Moura, I., Lespinat, P. A., Xavier, A. V., DerVartanian, D. V., Peck, H. D., Jr., LeGall, J., and Moura, J. G., 1984. Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800), Eur. J. Biochem. 142: 2128.

    Google Scholar 

  • Fauque, G., Peck, H. D., Jr., Moura, J. J. G., Huynh, B. H., Berlier, Y., DerVartanian, D. V., Teixeira, M., Przybyla, A. E., Lespinat, P. A., Moura, I., and LeGall, J., 1988. Three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, FEMS Microbial. Rev. 54: 299–344.

    CAS  Google Scholar 

  • Fauque, G., Czechowski, M., Berlier, Y. M., Lespinat, P. A., LeGall, J., and Moura, J. J. G., 1992. Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium, Biochem. Biophys. Res. Commun. 184: 1256–1260.

    CAS  PubMed  Google Scholar 

  • Fernandez, V. M., Aguirre, R., and Hatchikian, E. C., 1984. Reductive activation and redox properties of hydrogenase from Desulfovibrio gigas, Biochim. Biophys. Acta 790: 1–7.

    CAS  Google Scholar 

  • Fernandez, V. M., Hatchikian, E. C., and Cammack, R., 1985. Properties and reactivation of two different deactivated forms of Desulfovibrio gigas hydrogenase, Biochim. Biophys. Acta 832: 69–79.

    CAS  Google Scholar 

  • Fernandez, V. M., Hatchikian, E. C., Patil, D. S., and Cammack, R., 1986. ESR-detectable nickel and iron-sulfur centres in relation to the reversible activation of Desulfovibrio gigas hydrogenase, Biochim. Biophys. Acta 883: 145–154.

    CAS  Google Scholar 

  • Fiebig, K., and Friedrich, B., 1989. Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro), Eur. J. Biochem. 184: 79–88.

    CAS  PubMed  Google Scholar 

  • Ford, C. M., Garg, N., Garg, R. P., Tibelius, K. H., Yates, M. G., Arp, D. J., and Seefeldt, L. C., 1990. The identification, characterization, sequencing and mutagenesis of the genes (hupSL) encoding the small and large subunits of the H2-uptake hydrogenase of Azotobacter chroococcum, Mol. Microbiol. 4: 999–1008.

    CAS  PubMed  Google Scholar 

  • Fox, J. A., Livingston, D. J., Orme-Johnson, W. H., and Walsh, C. T., 1987. 8-Hydroxy-5deazatlavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization, Biochemistry 26: 4219–4227.

    Google Scholar 

  • Fox, S., Wang, Y., Silver, A., and Miller, M., 1990. Viability of the [Ni°1(SR)4]- unit in classical coordination compounds and in the nickel-sulfur center of hydrogenases, J. Am. Chem. Soc. 112: 3218–3220.

    CAS  Google Scholar 

  • Friedrich, B., 1990. The plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus, FEMS Microbiol. Rev. 87: 425–430.

    CAS  Google Scholar 

  • Friedrich, B., Heine, E., Finck, A., and Friedrich, C. G., 1981. Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus, J. Bacteriol. 145: 1144–1149.

    CAS  PubMed  Google Scholar 

  • Friedrich, C. G., Schneider, K., and Friedrich, B., 1982. Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus, J. Bacteriol. 152: 42–48.

    CAS  PubMed  Google Scholar 

  • Friedrich, C. G., Suetin, S., and Lohmeyer, M., 1984. Nickel and iron incorporation into soluble hydrogenase of Alcaligenes eutrophus, Arch. Microbiol. 140: 206–211.

    CAS  Google Scholar 

  • Fu, C., and Maier, R. J., 1991. Identification of a locus within the hydrogenase gene cluster involved in intracellular nickel metabolism in Bradyrhizobium japonicum, Appl. Environ. Microbiol. 57: 3502–3510.

    CAS  PubMed  Google Scholar 

  • Fu, C., and Maier, R., 1992. Nickel-dependent reconstitution of hydrogenase apoprotein in Bradyrhizobium japonicum Hup` mutants and direct evidence for a nickel metabolism locus involved in nickel incorporation into the enzyme, Arch. Microbiol. 157: 493–498.

    CAS  PubMed  Google Scholar 

  • Fu, C., and Maier, R. J., 1993. A genetic region downstream of the hydrogenase structural genes of Bradyrhizobium japonicum that is required for nydrogenase processing, J. Bacteriol. 175: 295–298.

    CAS  PubMed  Google Scholar 

  • Gogotov, I. N., 1986. Hydrogenases of phototrophic microorganisms, Biochimie 68: 181–187.

    CAS  PubMed  Google Scholar 

  • Gollin, D. J., Mortenson, L. E., and Robson, R. L., 1992. Carboxyl-terminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii, FEBS Lett. 309: 371–375.

    CAS  PubMed  Google Scholar 

  • Graf, E.-G., and Thauer, R. K., 1981. Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme, FEBS Lett. 136: 165–169.

    CAS  Google Scholar 

  • Halboth, S., and Klein, A., 1992. Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types, Mol. Gen. Genet. 233: 217–224.

    CAS  Google Scholar 

  • Harker, A. R., Xu, L.-S., Hanus, F. J., and Evans, H. J., 1984. Some properties of the nickel-containing hydrogenase of chemolithotrophically grown Rhizobium japonicum, J. Bacteriol. 159: 850–856.

    CAS  PubMed  Google Scholar 

  • Hatchikian, E. C., Bruschi, M., and LeGall, J., 1978. Characterization of the periplasmic hy- drogenase from Desulfovibrio gigas, Biochem. Biophys. Res. Commun. 82: 451–461.

    CAS  PubMed  Google Scholar 

  • Hatchikian, C. E., Traore, A. S., Fernandez, V. M., and Cammack, R., 1990. Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans, Eur. J. Biochem. 187: 635–643.

    CAS  PubMed  Google Scholar 

  • He, S. H., Teixeira, M., LeGall, J., Patil, D. S., Moura, I., Moura, J. J. G., DerVartanian, D. V., Huynh, B. H., and Peck, H. D., Jr., 1989. EPR studies with “Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel, J. Biol. Chem. 264: 2678–2682.

    CAS  PubMed  Google Scholar 

  • Heiden, S., Hedderich, R., Setzke, E., and Thauer, R. K., 1993. Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri, Eur. J. Biochem. 213: 529–535.

    CAS  PubMed  Google Scholar 

  • Hidalgo, E., Leyva, A., and Ruiz-Argüeso, T., 1990. Nucleotide sequence of the hydrogenase structural genes from Rhizobium leguminosarum, Plant Mol. Biol. 15: 367–370.

    CAS  PubMed  Google Scholar 

  • Hidalgo, E., Palacios, J. M., Murillo, J., and Ruiz-Argüeso, T., 1992. Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum by. viciae, J. Bacteriol. 174: 4130–4139.

    CAS  PubMed  Google Scholar 

  • Hornhardt, S., Schneider, K., and Schlegel, H. G., 1986. Characterization of a native subunit of the NAD-linked hydrogenase isolated from a mutant Alcaligenes eutrophus H16, Biochimie 68: 15–24.

    CAS  PubMed  Google Scholar 

  • Hsu, J.-C., Beilstein, M. A., Whanger, P., and Evans, H. J., 1990. Investigation of the form of selenium in the hydrogenase from chemolithotrophically cultured Bradyrhizobium japonicum, Arch. Microbiol. 154: 215–220.

    CAS  Google Scholar 

  • Huynh, B. H., Patil, D. S., Moura, I., Teixeira, M., Moura, J. J. G., DerVartanian, D. V., Czechowski, M. H., Prickril, B. C., Peck, H. D., Jr., and LeGall, J., 1987. On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mössbauer and redox titration studies, J. Biol. Chem. 262: 795–800.

    CAS  PubMed  Google Scholar 

  • Jacobi, A., Rossman, R., and Böck, A., 1992. The hyp operon gene products are required for maturation of catalytically active hydrogenase isoenzymes in Escherichia coli, Arch. Microbiol. 158: 444–451.

    CAS  PubMed  Google Scholar 

  • Jin, S.-L. C., Blanchard, D. K., and Chen, J.-S., 1983. Two hydrogenases with distinct electron carrier specificity and subunit composition in Methanobacterium formicicum, Biochim. Biophys. Acta 748: 8–20.

    CAS  Google Scholar 

  • Johannssen, W., Gerberding, H., Rohde, M., Zaborosch, C., and Mayer, F., 1991. Structural aspects of the soluble NAD-dependent hydrogenase isolated from Alcaligenes eutrophus H 16 and from Nocardia opaca lb, Arch. Microbiol. 155: 303–308.

    Google Scholar 

  • Johnson, M. K., Zambrano, I. C., Czechowski, M. H., Peck, H. D., Jr., DerVartanian, D. V., and LeGall, J., 1985. Low temperature magnetic circular dichroism spectroscopy as a probe for the optical transitions of paramagnetic nickel in hydrogenase, Biochem. Biophys. Res. Commun. 128: 220–225.

    CAS  PubMed  Google Scholar 

  • Johnson, M. K., Zambrano, I. C., Czechowski, M. H., Peck, H. D., Jr., DerVartanian, D. V., and LeGall, J., 1986. Magnetic circular dichroism and electron paramagnetic resonance studies of nickel-containing hydrogenases, in Frontiers in Bioinorganic Chemistry ( A. V. Xavier, ed.), VCH Publishers, New York, pp. 36–44.

    Google Scholar 

  • Kemner, J. M., 1993. Characterization of Electron Transfer Activities Associated with Acetate Dependent Methanogenesis by Methanosarcina barkeri MS, Ph.D. thesis, Michigan State University.

    Google Scholar 

  • Kim, H., and Maier, R. J., 1990. Transcriptional regulation of hydrogenase synthesis by nickel in Bradyrhizobium japonicum, J. Biol. Chem. 265: 18729–18732.

    CAS  PubMed  Google Scholar 

  • Kim, H., Yu, C., and Maier, R. J., 1991. Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen, J. Bacteriol. 173: 3993–3999.

    CAS  PubMed  Google Scholar 

  • Klucas, R. V., Hanus, F. J., Russell, S. A., and Evans, H. J., 1983. Nickel: A micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves, Proc. Natl. Acad. Sci. USA 80: 2253–2257.

    CAS  PubMed  Google Scholar 

  • Knüttel, K., Schneider, K., Schlegel, H. G., and Müller, A., 1989. The membrane-bound hydrogenase from Paracoccus denitrificans. Purification and molecular characterization, Eur. J. Biochem. 179: 101–108.

    PubMed  Google Scholar 

  • Koch, H.-G., Kern, M., and Klemme, J.-H., 1992. Reinvestigation of regulation of biosynthesis and subunit composition of nickel-dependent Hup-hydrogenase of Rhodospirillum ruhrum, FEMS Microbiol. Lett. 91: 193–198.

    CAS  Google Scholar 

  • Kojima, N., Fox, J. A., Hausinger, R. P., Daniels, L., Orme-Johnson, W. H., and Walsh, C., 1983. Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum, Proc. Natl. Acad. Sci. USA 80: 378–382.

    CAS  PubMed  Google Scholar 

  • Kortlüke, C., and Friedrich, B., 1992. Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus H16, J. Bacteriol. 174: 6290–6293.

    PubMed  Google Scholar 

  • Kortlüke, C., Horstmann, K., Schwartz, E., Rohde, M., Binsack, R., and Friedrich, B., 1992. A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H 16, J. Bacteriol. 174: 6277–6289.

    PubMed  Google Scholar 

  • Kovacs, K. L., Seefeldt, L. C., Tigyi, G., Doyle, C. M., Mortenson, L. E., and Arp, D. J., 1989. Immunological relationships among hydrogenases, J. Bacteriol. 171: 430–435.

    CAS  PubMed  Google Scholar 

  • Kowal, A. T., Zambrano, I. C., Moura, I., Moura, J. J. G., LeGall, J., and Johnson, M. K., 1988. Electronic and magnetic properties of nickel-substituted rubredoxin: A variable-temperature magnetic circular dichroism study, Inorg. Chem. 27: 1162–1166.

    CAS  Google Scholar 

  • Krüger, H.-J., and Holm, R. H., 1987. Stabilization of nickel(III) in a classical N252 coordination environment containing anionic sulfur, Inorg. Chem. 26: 3645–3647.

    Google Scholar 

  • Krüger, H.-J., and Holm, R. H., 1990. Stabilization of trivalent nickel in tetragonal NiS4N2 and NiN6 environments: Synthesis, structures, redox potentials, and observations related to [NiFe]hydrogenases, J. Am. Chem. Soc. 112: 2955–2963.

    Google Scholar 

  • Krüger, H.-J., Huynh, B. H., Ljungdahl, P. 0., Xavier, A. V., DerVartanian, D. V., Moura, I., Peck, H. D., Jr., Teixeira, M., Moura, J. J. G., and LeGall, J., 1982. Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans, J. Biol. Chem. 257: 14620–14623.

    PubMed  Google Scholar 

  • Krüger, H.-J., Peng, G., and Holm, R. H., 1991. Low-potential nickel(III,II) complexes: New systems based on tetradentate amidate-thiolate ligands and the influence of ligand structure on potentials in relation to the nickel site in [NiFe]-hydrogenases, Inorg. Chem. 30: 734–742.

    Google Scholar 

  • Kumar, M., Day, R. 0., Colpas, G. J., and Maroney, M. J., 1989a. Ligand oxidation in a nickel thiolate complex, J. Am. Chem. Soc. 111:5974–5976.

    Google Scholar 

  • Kumar, M., Colpas, G. J., Day, R. 0., and Maroney, M. J., 1989b. Ligand oxidation in a nickel thiolate complex: A model for the deactivation of hydrogenase by 02, J. Am. Chem. Soc. 111: 8323–8325.

    CAS  Google Scholar 

  • Lalla-Maharajh, W. V., Hall, D. 0., Cammack, R., Rao, K. K., and LeGall, J., 1983. Purification and properties of the membrane-bound hydrogenase from Desulfovibrio desulfuricans, Biochem. J. 209: 445–454.

    CAS  Google Scholar 

  • Lancaster, J. R., Jr., 1980. Soluble and membrane-bound paramagnetic centers in Met hanobacterium bryantii, FEBS Leu. 115: 285–288.

    CAS  Google Scholar 

  • Lancaster, J. R., Jr., 1982. New biological paramagnetic center: Octahedrally coordinated nickel(III) in the methanogenic bacteria, Science 216: 1324–1325.

    CAS  PubMed  Google Scholar 

  • Lappin, A. G., Murray, C. K., and Margerum, D. W., 1978. Electron paramagnetic resonance studies of nickel(III)-oligopeptide complexes, Inorg. Chem. 17: 1630–1634.

    CAS  Google Scholar 

  • Leclerc, M., Colbeau, A., Cauvin, B., and Vignais, P., 1988. Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus, Mol. Gen. Genet. 214: 97–107.

    CAS  PubMed  Google Scholar 

  • Lee, M. H., Mulrooney, S. B., Renner, M. J., Markowitz, Y., and Hausinger, R. P., 1992. Klebsiella aerogenes urease gene cluster: Sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis, J. Bacteriol. 174: 4324–4330.

    CAS  Google Scholar 

  • LeGall, J., Ljungdahl, P. 0., Moura, I., Peck, H. D., Jr., Xavier, A. V., Moura, J. J. G., Teixeira, M., Huynh, B. H., and DerVartanian, D. V., 1982. The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas, Biochem. Biophys. Res. Commun. 106: 610–616.

    CAS  PubMed  Google Scholar 

  • Li, C., Peck, H. D., Jr., LeGall, J., and Przybyla, A. E., 1987. Cloning, characterization, and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFe]hydrogenase of Desulfovibrio gigas, DNA 6: 539–551.

    CAS  PubMed  Google Scholar 

  • Lindahl, P. A., Kojima, N., Hausinger, R. P., Fox, J. A., Teo, B. K., Walsh, C. T., and Orme-Johnson, W. H., 1984. Nickel and iron EXAFS of F420-reducing hydrogenase from Methanobacterium thermoautotrophicum, J. Am. Chem. Soc. 106: 3062–3064.

    CAS  Google Scholar 

  • Lissolo, T., Pulvin, S., and Thomas, D., 1984. Reactivation of the hydrogenase from Desulfovibrio gigas by hydrogen. Influence of redox potential, J. Biol. Chem. 259: 11725–11729.

    CAS  PubMed  Google Scholar 

  • Lissolo, T., Choi, E. S., LeGall, J., and Peck, H. D., Jr., 1986. The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough), Biochem. Biophys. Res. Commun. 139: 701–708.

    CAS  PubMed  Google Scholar 

  • Lutz, S., Jacobi, A., Schlensog, V., Böhm, R., Sawers, G., and Böck, A., 1991. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli, Mol. Microbiol. 5: 123–135.

    CAS  PubMed  Google Scholar 

  • Maier, T., Jacobi, A., Sauter, M., and Böck, A., 1993. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein, J. Bacteriol. 175: 630–635.

    CAS  PubMed  Google Scholar 

  • Maroney, M. J., Colpas, G. J., and Bagyinka, C., 1990. X-ray absorption spectroscopic structural investigation of the Ni site in reduced Thiocapsa roseopersicina hydrogenase, J. Am. Chem. Soc. 112: 7076–7068.

    Google Scholar 

  • Maroney, M. J., Colpas, G. J., Bagyinka, C., Baidya, N., and Mascharak, P. K., 1991. EXAFS investigations of the Ni site in Thiocapsa roseopersicina hydrogenase: Evidence for a novel Ni,Fe,S cluster, J. Am. Chem. Soc. 113: 3962–3972.

    CAS  Google Scholar 

  • Mege, R.-M., and Bourdillon, C., 1985. Nickel controls the reversible anaerobic activation/inactivation of the Desulfovibrio gigas hydrogenase by the redox potential, J. Biol. Chem. 260: 14701–14706.

    CAS  PubMed  Google Scholar 

  • Menon, N. K., Peck, H. D., Jr., LeGall, J., and Przybyla, A. E., 1987. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus, J. Bacteriol. 169: 5401–5407. [Erratum 170:4429.]

    Google Scholar 

  • Menon, A. L., Stults, L. W., Robson, R. L., and Mortenson, L. E., 1990a. Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii, Gene 96: 67–74.

    CAS  PubMed  Google Scholar 

  • Menon, N. K., Robbins, J., Peck, H. D., Jr., Chatelus, C. Y., Choi, E.-S., and Przybyla, A. E., 1990b. Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-a operon containing six open reading frames, J. Bacteriol. 172: 1969–1977.

    CAS  PubMed  Google Scholar 

  • Menon, N. K., Robbins, J., Wendt, J. C., Shanmugan, K. T., and Przybyla, A. E., 1991. Mutational analysis and characterization of the Escherichia coli hya operon which encodes [NiFe] hydrogenase 1, J. Bacteriol. 173: 4851–4861.

    CAS  PubMed  Google Scholar 

  • Menon, A. L., Mortenson, L. E., and Robson, R. L., 1992. Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii, J. Bacteriol. 174: 45494557.

    Google Scholar 

  • Moura, J. J. G., Moura, I., Huynh, B. H., Krüger, H.-J., Teixeira, M., DuVarney, R. C., Der Vartanian, D. V., Xavier, A. V., Peck, H. D., Jr., and LeGall, J., 1982. Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase, Biochem. Biophys. Res. Commun. 108: 1388–1393.

    CAS  PubMed  Google Scholar 

  • Moura, J. J. G., Teixeira, M., Moura, I., and LeGall, J., 1988. (Ni,Fe) hydrogenases from sulfate-reducing bacteria: Nickel catalytic and regulatory roles, in The Bioinorganic Chemistry of Nickel (J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 191–226.

    Google Scholar 

  • Mus-Veteau, I., Diaz, D., Gracia-Mora, J., Guigliarelli, B., Chottard, G., and Bruschi, M., 1991. Spectroscopic studies of the nickel-substituted Desulfovibrio vulgaris Hildenborough rubredoxin: Implication for the nickel site in hydrogenases, Biochim. Biophys. Acta 1060: 159165.

    Google Scholar 

  • Muth, E., Mörschel, E., and Klein, A., 1987. Purification and characterization of an 8-hydroxy5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae, Eur. J. Biochem. 169: 571–577.

    CAS  PubMed  Google Scholar 

  • Nakamura, Y., Someya, J.-I., and Suzuki, T., 1985. Nickel requirement of oxygen-resistant hydrogen bacterium, Xanthobacter autotrophicus strain Y38, Agric. Biol. Chem. 49: 1711–1718.

    CAS  Google Scholar 

  • Nelson, M. J. K., Brown, D. P., and Ferry, J. G., 1984. FAD requirement for the reduction of coenzyme F420 by hydrogenase from Methanobacterium formicicum, Biochem. Biophys. Res. Commun. 120: 775–781.

    CAS  PubMed  Google Scholar 

  • Nivière, V., Forget, N., Gayda, J. P., and Hatchikian, E. C., 1986. Characterization of the soluble hydrogenase from Desulfovibrio africanus, Biochem. Biophys. Res. Commun. 139: 658–665.

    PubMed  Google Scholar 

  • Nivière, V., Hatchikian, E., Cambillau, C., and Frey, M., 1987. Crystallization, preliminary X-ray study and crystal activity of the hydrogenase from Desulfovibrio gigas, J. Mol. Biol. 195: 969–971.

    PubMed  Google Scholar 

  • Odom, J. M., and Peck, H. D., Jr., 1984. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio, Annu. Rev. Microbiol. 38: 551–592.

    CAS  PubMed  Google Scholar 

  • Papen, H., Kentemich, T., Schmülling, T., and Bothe, H., 1986. Hydrogenase activities in cyanobacteria, Biochimie 68: 121–132.

    CAS  PubMed  Google Scholar 

  • Partridge, C. D. P., and Yates, M. G., 1982. Effect of chelating agents on hydrogenase in Azotobacter chroococcum. Evidence that nickel is required for hydrogenase synthesis, Biochem. J. 204: 339–344.

    CAS  PubMed  Google Scholar 

  • Pederson, D. M., Daday, A., and Smith, G. D., 1986. The use of nickel to probe the role of hydrogen metabolism in cyanobacteria] nitrogen fixation, Biochimie 68: 113–120.

    CAS  PubMed  Google Scholar 

  • Pedrosa, F. O., and Yates, M. G., 1983. Effect of chelating agents and nickel ions on hydrogenase activity in Azospirillum brasilense, A. lipoferum and Derxia gummosa, FEMS Microbiol. Lett. 17: 101–106.

    CAS  Google Scholar 

  • Pihl, T. D., and Maier, R. J., 1991. Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii, J. Bacteriol. 173: 1839–1844.

    CAS  PubMed  Google Scholar 

  • Pinkwart, M., Schneider, K., and Schlegel, H. G., 1983. Purification and properties of the membrane-bound hydrogenase from N2-fixing Alcaligenes latus, Biochim. Biophys. Acta 745: 267–278.

    CAS  PubMed  Google Scholar 

  • Przybyla, A. E., Robbins, J., Menon, N., and Peck, H. D., Jr., 1992. Structure/function relationships among the nickel-containing hydrogenases, FEMS Microbiol. Rev. 88: 109–136.

    CAS  Google Scholar 

  • Rai, L. C., and Raizada, M., 1986. Nickel induced stimulation of growth, heterocyst differentiation, 14CO2 uptake and nitrogenase activity in Nostoc muscorum, New Phytol. 104: 111–114.

    CAS  Google Scholar 

  • Reeve, J. N., Beckler, G. S., Cram, D. S., Hamilton, P. T., Brown, J. W., Krzycki, J. A., Kolodziej, A. F., Alex, L., Orme-Johnson, W. H., and Walsh, C. T., 1989. A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain AH encodes a polyferredoxin, Proc. Natl. Acad. Sci. USA 86: 3031–3035.

    CAS  PubMed  Google Scholar 

  • Rey, L., Hidalgo, E., Palacios, J., and Ruiz-Argüeso, T., 1992. Nucleotide sequence and organization of an H2-uptake gene cluster from Rhizobium leguminosarum by. viciae containing a rubredoxin-like gene and four additional open reading frames, J. Mol. Biol. 228: 998–1002.

    CAS  PubMed  Google Scholar 

  • Rey, L., Murillo, J., Hernando, Y., Hildalgo, E., Cabrera, E., Imperial, J., and Ruiz-Argüeso, T., 1993. Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosasum biovar viciae, Mol. Microbiol. 8: 471–481.

    CAS  PubMed  Google Scholar 

  • Rieder, R., Cammack, R., and Hall, D. 0., 1984. Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4), Eur. J. Biochem. 145: 637643.

    Google Scholar 

  • Rousset, M., Dermoun, Z., Hatchikian, C. E., and Bélaich, J.-P., 1990. Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic [NiFe]hydrogenase from Desulfovibrio fructosovorans, Gene 94: 95–101.

    CAS  PubMed  Google Scholar 

  • Saint-Martin, P., Lespinat, P. A., Fauque, G., Berlier, Y., LeGall, J., Moura, I., Teixeira, M., Xavier, A. V., and Moura, J. J. G., 1988. Hydrogen production and deuterium-proton exchange reactions catalyzed by Desulfovibrio nickel(II)-substituted rubredoxins, Proc. Natl. Acad. Sci. USA 85: 9378–9380.

    CAS  PubMed  Google Scholar 

  • Sauter, M., Böhm, R., and Bock, A., 1992. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli, Mol. Microbiol. 6: 1523–1532.

    CAS  PubMed  Google Scholar 

  • Sawers, R. G., and Boxer, D. H., 1986. Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12, Eur. J. Biochem. 156: 265–275.

    CAS  PubMed  Google Scholar 

  • Sawers, R. G., Ballantine, S. P., and Boxer, D. H., 1985. Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: Evidence for a third isozyme, J. Bacteriol. 164: 1324 1331.

    Google Scholar 

  • Sayavedra-Soto, L. A., and Arp, D. J., 1992. The hoxZ gene of Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase, J. Bacteriol. 174: 5295–5301.

    CAS  PubMed  Google Scholar 

  • Sayavedra-Soto, L. A., and Arp, D. J., 1993. In Azotobacter vinelandii hydrogenase, substitution of serine for the cysteine residues at positions 62, 65, 289, and 292 in the small (HoxK) subunit affects H2 oxidation, J. Bacteriol. 175: 3414–3421. [Erratum: 175:5744]

    Google Scholar 

  • Sayavedra-Soto, L. A., Powell, G. K., Evans, H. J., and Morris, R. 0., 1988. Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase, Proc. Natl. Acad. Sci. USA 85: 8395–8399.

    CAS  Google Scholar 

  • Schneider, K., and Piechulla, B., 1986. Isolation and immunological characterization of the four non-identical subunits of the soluble NAD-linked dehydrogenase from Alcaligenes eutrophus, Biochimie 68: 5–13.

    CAS  PubMed  Google Scholar 

  • Schneider, K., and Schlegel, H. G., 1976. Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16, Biochim. Biophys. Acta 452: 66–80.

    CAS  PubMed  Google Scholar 

  • Schneider, K., Patil, D. S., and Cammack, R., 1983. ESR properties of membrane-bound hydrogenases from aerobic hydrogen bacteria, Biochim. Biophys. Acta 748: 353–361.

    CAS  Google Scholar 

  • Schneider, K., Schlegel, H. G., and Jochim, K., 1984a. Effect of nickel on activity and subunit composition of purified hydrogenase of Nocardia opaca lb, Eur. J. Biochem. 138: 533–541.

    CAS  PubMed  Google Scholar 

  • Schneider, K., Cammack, R., and Schlegel, H. G., 1984b. Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca lb, Eur. J. Biochem. 142: 75–84.

    CAS  PubMed  Google Scholar 

  • Scott, R. A., Wallin, S. A., Czechowski, M., DerVartanian, D. V., LeGall, J., Peck, H. D., Jr., and Moura, I., 1984. X-ray absorption spectroscopy of nickel in the hydrogenase from Desulfovibrio gigas, J. Am. Chem. Soc. 106: 6864–6865.

    CAS  Google Scholar 

  • Seefeldt, L. C., and Arp, D. J., 1986. Purification to homogeneity of Azotobacter vinelandii hydrogenase: A nickel and iron containing «ß dimer, Biochimie 68: 25–34.

    CAS  PubMed  Google Scholar 

  • Seefeldt, L. C., and Arp, D. J., 1989. Oxygen effects on the nickel-and iron-containing hydrogenase from Azotobacter vinelandii, Biochemistry 28: 1588–1596.

    CAS  Google Scholar 

  • Seefeldt, L. C., McCollum, L. C., Doyle, C. M., and Arp, D. J., 1987. Immunological and molecular evidence for a membrane-bound, dimeric hydrogenase in Rhodopseudomonas capsulata, Biochim. Biophys. Acta 914: 299–303.

    Google Scholar 

  • Sellstedt, A., and Smith, G. D., 1990. Nickel is essential for active hydrogenase in free-living Frankia isolated from Casuarina, FEMS Microbiol. Lett. 70: 137–140.

    CAS  Google Scholar 

  • Serebryakova, L. T., Zorin, N. A., and Gogotov, I. N., 1990. Purification and properties of the hydrogenase of the green nonsulfur bacterium Chloroflexus aurantiacus, Biokhimiya 55: 372–380.

    CAS  Google Scholar 

  • Shah, N. J., and Clark, D. S., 1990. Partial purification and characterization of two hydrogenases from the extreme thermophile Methanococcus jannaschii, Appl. Environ. Microbiol. 56: 858863.

    Google Scholar 

  • Sherman, M. B., Orlova, E. V., Smirnova, E. A., Hovmöller, S., and Zorin, N. A., 1991. Three-dimensional structure of the nickel-containing hydrogenase from Thiocapsa roseopersicina, J. Bacteriol. 173: 2576–2580.

    CAS  PubMed  Google Scholar 

  • Soeder, C. J., and Engelmann, G., 1984. Nickel requirement in Chlorella emersonii, Arch. Microbiol. 137: 85–87.

    CAS  Google Scholar 

  • Sorgenfrei, O., Linder, D., Karas, M., and Klein, A., 1993. A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is posttranslationally processed by cleavage at a defined position, Fur. J. Biochem. 213: 1355–1358.

    CAS  Google Scholar 

  • Sprott, G. D., Shaw, K. M., and Beveridge, T. J., 1987. Properties of the particulate enzyme F420-reducing hydrogenase isolated from Methanospirillum hungatei, Can. J. Microbiol. 33: 896904.

    Google Scholar 

  • Stadtman, T. C., 1990. Selenium biochemistry, Annu. Rev. Biochem. 59: 111–127.

    CAS  PubMed  Google Scholar 

  • Steigerwald, V. J., Beckler, G. S., and Reeve, J. N., 1990. Conservation of hydrogenase and polyferredoxin structures in the hyperthermophile archaebacterium Methanothermus fervidus, J. Bacteriol. 172: 4715–4718.

    CAS  PubMed  Google Scholar 

  • Stoker, K., Oltmann, L. F., and Stouthamer, A. H., 1989. Randomly induced Escherichia coli K-12 Tn5 insertion mutants defective in hydrogenase activity, J. Bacteriol. 171: 831–836.

    CAS  PubMed  Google Scholar 

  • Stults, L. W., O’Hara, E. B., and Maier, R. J., 1984. Nickel is a component of hydrogenase in Rhizobium japonicum, J. Bacteriol. 159: 153–158.

    CAS  PubMed  Google Scholar 

  • Stults, L. W., Moshiri, F., and Maier, R. J., 1986a. Aerobic purification of hydrogenase from Rhizobium japonicum by affinity chromatography, J. Bacteriol. 166: 795–800.

    CAS  PubMed  Google Scholar 

  • Stults, L. W., Sray, W. A., and Maier, R. J., I986b. Regulation of hydrogenase biosynthesis by nickel in Bradyrhizobium japonicum, Arch. Microbiol. 146: 280–283.

    Google Scholar 

  • Szökefalvi-Nagy, Z., Bagyinka, C., Demeter, I., Kovacs, K. L., and Quynh, L. H., 1990. Location and quantitation of metal ions in enzymes combining polyacrylamide gel electrophoresis and particle-induced X-ray emission, Biol. Trace Elem. Res. 93–101.

    Google Scholar 

  • Tabillion, R., Weber, F., and Kaltwasser, H., 1980. Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria, Arch. Microbiol. 124: 131–136.

    CAS  Google Scholar 

  • Takakuwa, S., and Wall, J. D., 1981. Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel, FEMS Microbiol. Lett. 12: 359–363.

    CAS  Google Scholar 

  • Tan, S. L., Fox, J. A., Kojima, N., Walsh, C. T., and Orme-Johnson, W. H., 1984. Nickel coordination in deazaflavin and viologen-reducing hydrogenases from Methanobacterium thermoautotrophicum: Investigation by electron spin echo spectroscopy, J. Am. Chem. Soc. 106: 3064–3066.

    CAS  Google Scholar 

  • Teixeira, M., Moura, I., Xavier, A. V., DerVartanian, D. V., LeGall, J., Peck, H. D., Jr., Huynh, B. H., and Moura, J. J. G., 1983. Desulfovibrio gigas hydrogenase: Redox properties of the nickel and iron-sulfur centers, Eur. J. Biochem. 130: 481–484.

    CAS  Google Scholar 

  • Teixeira, M., Moura, I., Xavier, A. V., Huynh, B. H., DerVartanian, D. V., Peck, H. D., Jr., LeGall, J., and Moura, J. J. G., 1985. Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas, J. Biol. Chem. 260: 8942–8950.

    CAS  PubMed  Google Scholar 

  • Teixeira, M., Moura, I., Fauque, G., Czechowski, M., Berlier, Y., Lespinat, P. A., LeGall, J., Xavier, A. V., and Moura, J. J. G., 1986. Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens, Biochimie 68: 75–84.

    CAS  PubMed  Google Scholar 

  • Teixeira, M., Fauque, G., Moura, I., Lespinat, P. A., Berlier, Y., Prickril, B., Peck, H. D., Jr., Xavier, A. V., LeGall, J., and Moura, J. J. G., 1987. Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties, Eur. J. Biochem. 167: 47–58.

    CAS  PubMed  Google Scholar 

  • Teixeira, M., Moura, I., Xavier, A. V., Moura, J. J. G., LeGall, J., DerVartanian, D. V., Peck, H. D., Jr., and Huynh, B. H., 1989. Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mössbauer and EPR characterization of the metal centers, J. Biol. Chem. 264: 16435–16450.

    CAS  PubMed  Google Scholar 

  • Tibelius, K. H., Du, L., Tito, D., and Stejskal, F., 1993. The Azotobacter chroococcum hydrogenase gene cluster: Sequences and genetic analysis of four accessory genes, hupA, hupB, hupY and hupC, Gene 127: 53–61.

    CAS  PubMed  Google Scholar 

  • Tran-Betcke, A., Warnecke, U., Böcker, C., Zaborosch, C., and Friedrich, B., 1990. Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase ofAlcaligenes eutrophus H 16, J. Bacteriol. 172: 2920–2929.

    CAS  PubMed  Google Scholar 

  • Uffen, R. L., Colbeau, A., Richaud, P., and Vignais, P. M., 1990. Cloning and sequencing the genes encoding uptake-hydrogenase subunits of Rhodocyclus gelatinosus, Mol. Gen. Genet. 221: 49–58.

    CAS  PubMed  Google Scholar 

  • Unden, G., Böcher, R., Knecht, J., and Kröger, A., 1982. Hydrogenase from Vibrio succinogenes, a nickel protein, FEBS Lett. 145: 230–234.

    CAS  PubMed  Google Scholar 

  • van Baalen, C., and O’Donnell, R., 1978. Isolation of a nickel-dependent blue-green alga, J. Gen. Microbiol. 105: 351–353.

    Google Scholar 

  • van der Zwaan, J. W., Albracht, S. P. J., Fontijn, R. D., and Slater, E. C., 1985. Monovalent nickel in hydrogenase from Chromatium vinosum, FEBS Lett. 179: 271–277.

    PubMed  Google Scholar 

  • van der Zwaan, J. W., Albracht, S. P. J., Fontijn, R. D., and Mul, P., 1987. On the anomalous temperature behaviour of the EPR signal of monovalent nickel in hydrogenase, Eur. J. Biochem. 169: 377–384.

    PubMed  Google Scholar 

  • van der Zwaan, J. W., Coremans, J. M. C. C., Bouwens, E. C. M., and Albracht, S. P. J., 1990. Effect of 1702 and “CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum, Biochim. Biophys. Acta 1041: 101–110.

    PubMed  Google Scholar 

  • van Heerikhuizen, H., Albracht, S. P. J., Slater, E. C., and Rheenen, P. S., 1981. Purification and some properties of the soluble hydrogenase from Chromatium vinosum, Biochim. Biophys. Acta 657: 26–39.

    PubMed  Google Scholar 

  • Voordouw, G., and Brenner, S., 1985. Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough), Eur. J. Biochem. 148: 515–520.

    CAS  PubMed  Google Scholar 

  • Voordouw, G., Menon, N. K., LeGall, J., Choi, E.-S., Peck, H. D., Jr., and Przybyla, A. E., 1989. Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus, J. Bacteriol. 171: 2894 2899.

    Google Scholar 

  • Wackett, L. P., Hartwieg, E. A., King, J. A., Orme-Johnson, W. H., and Walsh, C. T., 1987. Electron microscopy of nickel-containing methanogenic enzymes: Methyl reductase and F420-reducing hydrogenase, J. Bacteriol. 169: 718–727.

    CAS  PubMed  Google Scholar 

  • Wang, C.-P., Franco, R., Moura, J. J. G., Moura, I., and Day, E. P., 1992. The nickel site in active Desulfovibrio baculatus [NiFeSe] hydrogenase is diamagnetic. Multifield saturation magnetization measurement of the spin state of Ni(II), J. Biol. Chem. 267: 7378–7380.

    CAS  PubMed  Google Scholar 

  • Waugh, R., and Boxer, D. H., 1986. Pleiotropic hydrogenase mutants of Escherichia coli K12: Growth in the presence of nickel can restore hydrogenase activity, Biochimie 68: 157–166.

    CAS  PubMed  Google Scholar 

  • Whitehead, J. P., Colpas, G. J., Bagyinka, C., and Maroney, M. J., 1991. X-ray absorption spectroscopic study of the reductive activation of Thiocapsa roseopersicina hydrogenase, J. Am. Chem. Soc. 113: 6288–6289.

    CAS  Google Scholar 

  • Wu, L. F., 1992. Putative nickel-binding sites of microbial proteins, Res. Microbiol. 143: 347351.

    Google Scholar 

  • Wu, L.-F., and Mandrand, M. A., 1993. Microbial hydrogenases: Primary structure, classification, signatures and phylogeny, FEMS Microbiol. Rev. 104: 243–270.

    CAS  Google Scholar 

  • Wu, L. F., and Mandrand-Berthelot, M.-A., 1986. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity, Biochimie 68: 167–179.

    CAS  PubMed  Google Scholar 

  • Wu, L.-F., Mandrand-Berthelot, M.-A., Waugh, R., Edmonds, C. J., Holt, S. E., and Boxer, D. H., 1989. Nickel deficiency gives rise to the defective phenotype of hydC and fnr mutants in Escherichia coli, Mol. Microbiol. 3: 1709–1718.

    CAS  Google Scholar 

  • Wu, L.-F., Navarro, C., and Mandrand-Berthelot, M.-A., 1991. The hydC region contains a multicistronic operon (nik) involved in nickel transport in Escherichia coli, Gene 107: 37–42.

    CAS  Google Scholar 

  • Xiankong, Z., Tabita, F. R., and van Baalen, C., 1984. Nickel control of hydrogen production and uptake in Anabaena spp. strains CA and 1F, J. Gen. Microbiol. 130: 1815–1818.

    Google Scholar 

  • Xu, H.-W., and Wall, J. D., 1991. Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus, J. Bacteriol. 173: 2401–2405.

    CAS  Google Scholar 

  • Yamazaki, S., 1982. A selenium-containing hydrogenase from Methanococcus vannielii, J. Biol. Chem. 257: 7926–7929.

    CAS  Google Scholar 

  • Zaborosch, C., Schneider, K., Schlegel, H. G., and Kratzin, H., 1989. Comparison of the NH2terminal amino acid sequences of the four non-identical subunits of the NAD-linked hydrogenases from Nocardia opaca lb and Alcaligenes eutrophus H16, Eur. J. Biochem. 181: 175180.

    Google Scholar 

  • Zimmer, M., Schulte, G., Luo, X.-L., and Crabtree, R. H., 1991. Functional modeling of Ni,Fe hydrogenases: A nickel complex in an N,O,S environment, Angew. Chem. Int. Ed. Engl. 30: 193–194.

    Google Scholar 

  • Zinoni, F., Beier, A., Pecher, A., Wirth, R., and Back, A., 1984. Regulation of the synthesis of hydrogenase (formate hydrogen-lyase) of E. coli, Arch. Microbiol. 139: 299–304.

    CAS  Google Scholar 

  • Zirngibl, C., van Dongen, W., Schwörer, B., von Bünau, R., Richter, M., Klein, A., and Thauer, R. K., 1992. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea, Eur. J. Biochem. 208: 511–520.

    CAS  PubMed  Google Scholar 

  • Zorin, N. A., 1986. Redox properties and active center of phototrophic bacterial hydrogenases, Biochimie 68: 97–101.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hausinger, R.P. (1993). Hydrogenase. In: Biochemistry of Nickel. Biochemistry of the Elements, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9435-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9435-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9437-3

  • Online ISBN: 978-1-4757-9435-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics