• Robert P. Hausinger
Part of the Biochemistry of the Elements book series (BOTE, volume 12)


Urease catalyzes the hydrolysis of urea to yield ammonia and carbamate, which spontaneously decomposes to form carbonic acid and a second molecule of ammonia [reviewed by Andrews et al. (1984, 1988), Blakeley and Zerner (1984), Mobley and Hausinger (1989), and Zerner (1991)]:
The substrate in this reaction, urea, is constantly released into the environment through biological actions. For example, all mammals excrete urea in urine as a detoxification product (Visek, 1972). To provide a sense of the scale for urea excretion, human urine contains 0.4–0.5 M urea (Griffith et al., 1976), resulting in an annual release of 10 kg of urea per adult (Visek, 1972). Urea is also formed by environmental catabolism of uric acid, the primary detoxification product excreted by birds, reptiles, and most terrestrial insects. Similarly, urea is a product of biodegradation of nitrogenous compounds including purines, arginine, agmatine, allantoin, and allantoic acid (Vogels and van der Drift, 1976). The urea generated by these reactions is rapidly degraded by ureases found in a wide range of bacteria, several fungi, a few invertebrates, and a variety of plants. The significance of urease in these various organisms is summarized below.


Urease Activity Jack Bean Ureaplasma Urealyticum Jack Bean Urease Klebsiella Aerogenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alagna, L., Hasnain, S. S., Piggott, B., and Williams, D. J., 1984. The nickel environment in jack bean urease, Biochem. J. 220: 591–595.Google Scholar
  2. Andrews, R. K., Blakeley, R. L., and Zerner, B., 1984. Urea and urease, in Advances in Inorganic Biochemistry, Vol. 6 ( G. L. Eichhorn and L. G. Marzilli, eds.), Elsevier Science Publishing, New York, pp. 245–283.Google Scholar
  3. Andrews, R. K., Blakeley, R. L., and Zerner, B., 1988. Urease-a Ni(II) metalloenzyme, in The Bioinorganic Chemistry of Nickel ( J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 141–165.Google Scholar
  4. Argall, M. E., Smith, G. D., Stamford, N. P. J., and Youens, B. N., 1992. Purification and properties of urease from the cyanobacterium Anabaena cylindrica, Biochem. Int. 27: 1027 1036.Google Scholar
  5. Austin, J. W., Doig, P., Stewart, M., and Trust, T. J., 1992. Structural comparison of urease and a GroEL analog from Helicobacter pylori, J. Bacterial. 174: 7470–7473.Google Scholar
  6. Bast, E., 1988. Nickel requirement for the formation of active urease in purple sulfur bacteria (Chromatiaceae), Arch. Microbiol. 150: 6–10.Google Scholar
  7. Benchemsi-Bekkari, N., and Pizelle, G., 1992. In vivo urease activity in Robinia pseudoacacia, Plant Physiol. Biochim. 30: 187–192.Google Scholar
  8. Benson, E. W., and Howe, H. B., Jr., 1978. Reversion and interallelic complementation at four urease loci in Neurospora crassa, Mol. Gen. Genet. 165: 277–288.PubMedGoogle Scholar
  9. Blakeley, R. L., and Zerner, B., 1984. Jack bean urease: The first nickel enzyme, J. Mol. Catal. 23: 263–292.Google Scholar
  10. Blakeley, R. L., Treston, A., Andrews, R. K., and Zerner, B., 1982. Nickel (II) promoted ethanolysis and hydrolysis of N-(2-pyridylmethyl)urea. A model for urease, J. Am. Chem. Soc. 104: 61 2614.Google Scholar
  11. Blakeley, R. L., Dixon, N. E., and Zerner, B., 1983. Jack bean urease. VII. Light scattering and nickel (II) spectrum. Thiolate–nickel(II) charge transfer peaks in the spectrum of the ßmercaptoethanol-urease complex, Biochim. Biophys. Acta 744: 219–229.Google Scholar
  12. Blanchard, A., 1990. Ureaplasma urealyticum urease genes; use of a UGA tryptophan codon, Mol. Microbial. 4: 669–676.Google Scholar
  13. Blattler, D. P., Contaxis, C. C., and Reithel, F. J., 1967. Dissociation of urease by glycol and glycerol, Nature (London) 216: 274–275.Google Scholar
  14. Booth, J. L., and Vishniac, H. S., 1987. Urease testing and yeast taxonomy, Can. J. Microbiol. 33: 396–404.PubMedGoogle Scholar
  15. Braude, A. I., and Siemienski, J., 1960. Role of bacterial urease in experimental pyelonephritis, J. Bacteriol. 80: 171–179.PubMedGoogle Scholar
  16. Breitenbach, J. M., and Hausinger, R. P., 1988. Proteus mirabilis urease: Partial purification and inhibition by boric acid and boronic acids, Biochem. J. 250: 917–920.Google Scholar
  17. Bremner, J. M., and Mulvaney, R. L., 1978. Urease activity in soils, in Soil Enzymes ( R. G. Burns, ed.), Academic Press, New York, pp. 146–196.Google Scholar
  18. Buchanan, R. M., Mashuta, M. S., Oberhausen, K. J., Richardson, J. F., Li, Q., and Hendrickson, D. N., 1989. Active site model of urease: Synthesis, structure, and magnetic properties of a binuclear Ni(II) complex containing a polyimidazole ligand, J. Am. Chem. Soc. 111:4497-4498.Google Scholar
  19. Christians, S., and Kaltwasser, H., 1986. Nickel-content of urease from Bacillus pasteurii, Arch. Microbiol. 145: 51–55.PubMedGoogle Scholar
  20. Christians, S., Jose, J., Schäfer, U., and Kaltwasser, H., 1991. Purification and subunit determination of the nickel-dependent Staphylococcus xylosus urease, FEMS Microbiol. Lett. 80: 271–276.Google Scholar
  21. Clark, P. A., and Wilcox, D. E., 1989. Magnetic properties of the nickel enzymes urease, nickel-substituted carboxypeptidase A, and nickel-substituted carbonic anhydrase, Inorg. Chem. 28: 1326–1333.Google Scholar
  22. Clark, P. A., Wilcox, D. E., and Scott, R. A., 1990. X-ray absorption spectroscopic evidence for binding of the competitive inhibitor 2-mercaptoethanol to the nickel sites of jack bean urease. A new Ni-Ni interaction in the inhibited enzyme, J. Am. Chem. Soc. 29: 579–581.Google Scholar
  23. Clayton, C. L., Pallen, M. J., Kleanthous, H., Wren, B. W., and Tabaqchali, S., 1990. Nucleotide sequence of two genes from Helicobacter pylori encoding for urease subunits, Nucleic Acids Res. 18: 362.PubMedGoogle Scholar
  24. Collins, C. M., and Falkow, S., 1988. Genetic analysis of an Escherichia coli urease locus: Evidence of DNA rearrangement, J. Bacteriol. 170: 1041–1045.PubMedGoogle Scholar
  25. Collins, C. M., and Gutman, D. M., 1992. Insertional inactivation of an Escherichia coli urease gene by IS3411, J. Bacteriol. 174: 883–888.PubMedGoogle Scholar
  26. Contaxis, C. C., and Reithel, F. J., 1971. Studies on protein multimers. II. A study of the mechanism of urease dissociation in 1,2-propanediol: Comparative studies with ethylene glycol and glycerol, J. Biol. Chem. 246: 677–685.PubMedGoogle Scholar
  27. Creaser, E. H., and Porter, R. L., 1985. The purification of urease from Aspergillus nidulans, Int. J. Biochem. 17: 1339–1341.PubMedGoogle Scholar
  28. Curtis, N. J., Dixon, N. E., and Sargeson, A. M., 1983. Synthesis, linkage isomerism, and ligand reactivity of (urea)pentaamminerhodium(III) complexes, J. Am. Chem. Soc. 105: 5347–5353.Google Scholar
  29. Cussac, V., Ferrero, R. I., and Labigne, A., 1992. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions, J. Bacteriol. 174: 2466–2473.PubMedGoogle Scholar
  30. Dalton, D. A., Evans, H. J., and Hanus, F. J., 1985. Stimulation by nickel of soil microbial urease activity and urease and hydrogenase activities in soybeans grown in low-nickel soil, Plant Soil 88: 245–258.Google Scholar
  31. Dalton, D. A., Russell, S. A., and Evans, H. J., 1988. Nickel as a micronutrient for plants, BioFactors 1:11–16.Google Scholar
  32. Day, E. P. Peterson, J., Sendova, M., Todd, M. J., and Hausinger, R. P., 1993. Saturation magnetization of ureases from Klebsiella aerogenes and jack bean: No evidence for exchange coupling between the two active site nickel ions in the native enzyme, Inorg. Chem. 32:634638.Google Scholar
  33. Dixon, N. E., Gazzola, C., Watters, J. J., Blakeley, R. L., and Zemer, B., 1975a. Inhibition of jack bean urease (EC by acetohydroxamic acid and by phosphoramidate. An equivalent weight for urease, J. Am. Chem. Soc. 97: 4130–4131.PubMedGoogle Scholar
  34. Dixon, N. E., Gazzola, C., Blakeley, R. L., and Zerner, B., 1975b. Jack bean urease (EC A metalloenzyme. A simple biological role for nickel?, J. Am. Chem. Soc. 97: 4131–4133.PubMedGoogle Scholar
  35. Dixon, N. E., Blakeley, R. L., and Zerner, B., 1980a. Jack bean urease (EC I. A simple dry ashing procedure for the microdetermination of trace metals in proteins. The nickel content of urease, Can. J. Biochem. 58: 469–473.Google Scholar
  36. Dixon, N. E., Gazzola, C., Asher, C. J., Lee, D. S. W., Blakeley, R. L., and Zerner, B., 1980b. Jack bean urease (EC II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans, Can. J. Biochem. 58: 474–480.Google Scholar
  37. Dixon, N. E., Blakeley, R. L., and Zemer, B., 1980c. Jack bean urease (EC III. The involvement of active-site nickel ion in inhibition by ß-mercaptoethanol, phosphoramidate, and fluoride, Can. J. Biochem. 58: 481–488.PubMedGoogle Scholar
  38. Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blakeley, R. L., and Zerner, B., 1980d. Jack bean urease (EC IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors, Can. J. Biochem. 58: 1323–1334.PubMedGoogle Scholar
  39. Dixon, N. E., Riddles, P. W., Gazzola, C., Blakeley, R. L., and Zerner, B., 1980e. Jack bean urease (EC V. On the mechanism of action of urease on urea, formamide, acetamide, N-methylurea, and related compounds, Can. J. Biochem. 58: 1335–1344.PubMedGoogle Scholar
  40. Dunn, B. E., Campbell, G. P., Perez-Perez, G., and Blaser, M. J., 1990. Purification and characterization of urease from Helicobacter pylori, J. Biol. Chem. 265: 9464–9469.PubMedGoogle Scholar
  41. Eaton, K. A., Brooks, C. L., Morgan, D. R., and Krakowka, S., 1991. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets, Infect. Immun. 59: 2470–2475.PubMedGoogle Scholar
  42. Eskew, D. L., Welch, R. M., and Cary, E. E., 1983. Nickel: An essential micronutrient for legumes and possibly all higher plants, Science 222: 621–623.PubMedGoogle Scholar
  43. Eskew, D. L., Welch, R. M., and Norvell, W. A., 1984. Nickel in higher plants. Further evidence for an essential role, Plant Physiol. 76: 691–693.PubMedGoogle Scholar
  44. Evans, D. J., Jr., Evans, D. G., Kirkpatrick, S. S., and Graham, D. Y., 1991. Characterization of the Helicobacter pylori urease and purification of its subunits, Microb. Pathogenesis 10: 1526.Google Scholar
  45. Finnegan, M. G., Kowal, A., Werth, M. T., Clark, P. A., Wilcox, D. E., and Johnson, M. K., 1991. Variable-temperature magnetic circular dichroism spectroscopy as a probe of the electronic and magnetic properties of nickel in jack bean urease, J. Am. Chem. Soc. 113: 4030–4032.Google Scholar
  46. Fishbein, W. N., Nagarajan, K., and Scurzi, W., 1973. Urease catalysis and structure. IX. The half-unit and hemipolymers of jack bean urease, J. Biol. Chem. 248: 7870–7877.PubMedGoogle Scholar
  47. Fishbein, W. N., Engler, W. F., Griffin, J. L., Scurzi, W., and Bahr, G. F., 1977. Electron microscopy of negatively stained jack bean urease at three levels of quaternary structure, and comparison with hydrodynamic studies, Eur. J. Biochem. 73: 185–190.PubMedGoogle Scholar
  48. Gerlach, G.-F., Clegg, S., and Nichols, W. A., 1988. Characterization of the genes encoding urease activity of Klebsiella pneumoniae, FEMS Microbiol. Lett. 50: 131–135.Google Scholar
  49. Goodwin, C. S., Armstrong, J. A., and Marshall, B. J., 1986. Campylobacter pyloridis, gastritis, and peptic ulceration, J. Clin. Pathol. 38: 353–365.Google Scholar
  50. Gordon, W. R., Schwemmer, S. S., and Hillman, W. S., 1978. Nickel and the metabolism of urea by Lemna paucicostata Hegelm. 6746, Planta 140: 265–268.Google Scholar
  51. Granick, S., 1937. Urease distribution in plants, Plant Physiol. 12: 471–486.PubMedGoogle Scholar
  52. Griffith, D. P., Musher, D. M., and Hin, C., 1976. Urease: The primary cause of infection-induced urinary stones, Invest. Urol. 13: 346–350.PubMedGoogle Scholar
  53. Hasnain, S. S., and Piggott, B., 1983. An EXAFS study of jack bean urease, a nickel metalloenzyme, Biochem. Biophys. Res. Commun. 112: 279–283.PubMedGoogle Scholar
  54. Hausinger, R. P., 1986. Purification of a nickel-containing urease from the rumen anaerobe Selenomonas ruminantium, J. Biol. Chem. 261: 7866–7870.PubMedGoogle Scholar
  55. Hawtin, P. R., Delves, H. T., and Newell, D. G., 1991. The demonstration of nickel in the urease of Helicobacter pylori by atomic absorption spectroscopy, FEMS Microbiol. Lett. 77: 51–54.Google Scholar
  56. Hazell, S. L., and Lee, A., 1986. Campylobacter pyloridis, urease, hydrogen ion back diffusion, and gastric ulcers, Lancet ii: 15–1 7.Google Scholar
  57. Holland, M. A., and Polacco, J. A., 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants, Plant Physiol. 98: 942–948.PubMedGoogle Scholar
  58. Holland, M. A., Griffin, J. D., Meyer-Bothling, L. E., and Polacco, J. C., 1987. Developmental genetics of the soybean urease isozymes, Dev. Genet. 8: 375–387.Google Scholar
  59. Hu, L.-T., and Mobley, H. L. T., 1990. Purification and N-terminal analysis of urease from Helicobacter pylori, Infect. Immun. 58: 992–998.PubMedGoogle Scholar
  60. Huntington, G. B., 1986. Uptake and transport of nonprotein nitrogen by the ruminant gut, Fed. Proc. 45: 377–383.Google Scholar
  61. Jabri, E., Lee, M. H., Hausinger, R. P., and Karplus, P. A., 1992. Preliminary crystallographic studies of urease from jack bean and from Klebsiella aerogenes, J. Mol. Biol. 227: 934–937.PubMedGoogle Scholar
  62. Jones, B. D., and Mobley, H. L. T., 1989. Proteus mirabilis urease: Nucleotide sequence determination and comparison with jack bean urease, J. Bacteriol. 171: 6414–6422.Google Scholar
  63. Jose, J., Christians, S., Rosenstein, R., Götz, F., and Kaltwasser, H., 1991. Cloning and expression of various staphylococcal genes encoding urease in Staphylococcus carnosus, FEMS Microbiol. Lett. 80: 277–282.Google Scholar
  64. Kakimoto, S., Sumino, Y., Akiyama, S -I, and Nakao, Y., 1989. Purification and characterization of acid urease from Lactobacillus reuteri, Agric. Biol. Chem. 53: 1119–1125.Google Scholar
  65. Kakimoto, S., Sumino, Y., Kawahara, K., Yamazaki, E., and Nakatsui, I., 1990. Purification and characterization of acid urease from Lactobacillus fermentum, Appl. Microbiol. Biotechnol. 32: 538–543.PubMedGoogle Scholar
  66. Kinghorn, J. R., and Fluri, R., 1984. Genetic studies of purine breakdown in the fission yeast Schizosaccharomyces pombe, Curr. Genet. 8: 99–105.Google Scholar
  67. Krueger, R. W., Holland, M. A., Chisholm, D., and Polacco, J. C., 1987. Recovery of a soybean urease genomic clone by sequential library screening with two synthetic oligodeoxynucleotides, Gene 54: 41–50.PubMedGoogle Scholar
  68. Labigne, A., Cussac, V., and Courcoux, P., 1991. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity, J. Bacteriol. 173: 1920–1931.PubMedGoogle Scholar
  69. Larson, A. D., and Kallio, R. E., 1954. Purification and properties of bacterial urease, J. Bacteriol. 68: 67–73.PubMedGoogle Scholar
  70. Lee, M. H., Mulrooney, S. B., and Hausinger, R. P., 1990. Purification, characterization, and in vivo reconstitution of Klebsiella aerogenes urease apoenzyme, J. Bacteriol. 172: 4427–4431.PubMedGoogle Scholar
  71. Lee, M. H., Mulrooney, S. B., Renner, M. J., Markowicz, Y., and Hausinger, R. P., 1992. Klebsiella aerogenes urease gene cluster: Sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis, J. Bacteriol. 174: 4324–4330.Google Scholar
  72. Lee, M. H., Pankratz, H. S., Wang, S., Scott, R. A., Finnegan, M. G., Johnson, M. K., Ippolito, J. A., Christianson, D. W., and Hausinger, R. A., 1993. Purification and characterization of Klebsiella aerogenes UreE protein: A nickel-binding protein that functions in urease metallocenter assembly, Protein Sci. 2: 1042–1052.PubMedGoogle Scholar
  73. Loyola-Vargas, V., Roman, M. E., Quiroz, J., Oropeza, C., Robert, M. L., and Scorer, K. N., 1988. Nitrogen metabolism in Canavalia ensiformis DC. I. Arginase and urease ontogeny, J. Plant Physiol. 132: 284–288.Google Scholar
  74. Lutz, S., Jacobi, A., Schlensog, V., Böhm, R., Sawers, G., and Böck, A., 1991. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli, Mol. Microbiol 5: 123–135.PubMedGoogle Scholar
  75. Mackay, E. M., and Pateman, J. A., 1980. Nickel requirement of a urease-deficient mutant in Aspergillus nidulans, J. Gen. Microbiol. 116: 249–251.PubMedGoogle Scholar
  76. Mackay, E. M., and Pateman, J. A., 1982. The regulation of urease activity in Aspergillus nidulans, Biochem. Genet. 20: 763–776.PubMedGoogle Scholar
  77. Mackerras, A. H., and Smith, G. D., 1986. Urease activity of the cyanobacterium Anabaena cylindrica, J. Gen. Microbiol. 132: 2749–2752.Google Scholar
  78. Maier, T., Jacobi, A., Sauter, M., and Böck, A., 1993. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein, J. Bacteriol. 175: 630–635.PubMedGoogle Scholar
  79. Martin, P. R., and Hausinger, R. P., 1992. Site-directed mutagenesis of the active site cysteine in Klebsiella aerogenes urease, J. Biol. Chem. 267: 20024–20027.PubMedGoogle Scholar
  80. Maslak, P., Sczepanske, J. J., and Parvez, M., 1991. Complexation through nitrogen in copperGoogle Scholar
  81. and nickel complexes of substituted ureas, J. Am. Chem. Soc. 113:1062–1063.Google Scholar
  82. McCoy, D. D., Cetin, A., and Hausinger, R. P., 1992. Characterization of urease from Sporosarcina ureae, Arch. Microbiol. 157: 411–416.PubMedGoogle Scholar
  83. McDonald, J. A., Vorhaben, J. E., and Campbell, J. W., 1980. Invertebrate urease: Purification and properties of the enzyme from a land snail, Otala lactea, Comp. Biochem. Physiol. 66B: 223–231.Google Scholar
  84. Mégraud, F., Neman-Simha, V., and Brügmann, D., 1992. Further evidence of the toxic effect of ammonia produced by Helicobacter pylori urease on human epithelial cells, Infect. Immun. 60: 1858–1863.PubMedGoogle Scholar
  85. Meyer-Bothling, L. E., and Polacco, J. C., 1987. Mutational analysis of the embryo-specific urease locus of soybean, Mol. Gen. Genet. 209: 439–444.PubMedGoogle Scholar
  86. Meyer-Bothling, L. E., Polacco, J. C., and Cianzio, S. R., 1987. Pleiotropic soybean mutants defective in both urease isozymes, Mol. Gen. Genet. 209: 432–438.PubMedGoogle Scholar
  87. Mobley, H. L. T., and Hausinger, R. P., 1989. Microbial ureases: Significance, regulation, and molecular characterization, Microbiol. Rev. 53: 85–108.PubMedGoogle Scholar
  88. Mobley, H. L. T., and Warren, J. W., 1987. Urease-positive bacteriuria and obstruction of longterm urinary catheters, J. Clin. Microbiol. 25: 2216–2217.PubMedGoogle Scholar
  89. Mörsdorf, G., and Kaltwasser, H., 1990. Cloning of the genes encoding urease from Proteus vulgaris and sequencing of the structural genes, FEMS Microbiol. Lett. 66: 67–74.Google Scholar
  90. Mulrooney, S. B., and Hausinger, R. P., 1990. Sequence of the Klebsiella aerogenes urease genes and evidence for accessory proteins facilitating nickel incorporation, J. Bacteriol. 172: 58375843.Google Scholar
  91. Mulrooney, S. B., Lynch, M. J., Mobley, H. L. T., and Hausinger, R. P., 1988. Purification, characterization, and genetic organization of recombinant Providencia stuartii urease expressed in Escherichia coli, J. Bacteriol. 170: 2202–2207.PubMedGoogle Scholar
  92. Mulrooney, S. B., Pankratz, H. S., and Hausinger, R. P., 1989. Regulation of gene expression and cellular localization of cloned Klebsiella aerogenes (K. pneumoniae) urease, J. Gen. Microbiol. 135: 1769–1776.PubMedGoogle Scholar
  93. Nakano, H., Takenishi, S., and Watanabe, Y., 1984. Purification and properties of urease from Brevibacterium ammoniagenes, Agric. Biol. Chem. 48: 1495–1502.Google Scholar
  94. Norris, R., and Brocklehurst, K., 1976. A convenient method of preparation of high-activity urease from Canavalia ensiformis by covalent chromatography and an investigation of its thiol groups with 2,2’-dipyridyl disulfide as a thiol titrant and reactivity probe, Biochem. J. 159: 245–257.PubMedGoogle Scholar
  95. Oliveira, L., and Antia, N. J., 1984. Evidence of nickel ion requirement for autotrophic growth of a marine diatom with urea serving as nitrogen source, Br. Phycol. J. 19: 125–134.Google Scholar
  96. Park, I.-S., and Hausinger, R. P., 1993a. Diethylpyrocarbonate reactivity of Klebsiella aerogenes urease: Effect of pH and active site ligands on rate of enzyme inactivation, J. Prot. Chem. 12: 51–56.Google Scholar
  97. Park, I.-S., and Hausinger, R. P., 1993b. Site-directed mutagenesis of Klebsiella aerogenes urease: Identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis, Protein Sci. 2: 1034–1041.PubMedGoogle Scholar
  98. Pechman, K. J., Lewis, B. J., and Woese, C. R., 1976. Phylogenetic status of Sporosarcina urease, Int. J. Syst. Bacteriol. 26: 305–310.Google Scholar
  99. Pérez-Pérez, G. I., Olivares, A. Z., Cover, T. L., and Blaser, M. J., 1992. Characteristics of Helicobacter pylori variants selected for urease deficiency, Infect. Immun. 60: 3658–3663.PubMedGoogle Scholar
  100. Pérezurria, E., Estrella, M., and Vicente, C., 1986. Function of nickel in the urease activity of the lichen Evernia prunastri, Plant Sci. 43: 37–43.Google Scholar
  101. Polacco, J. C., 1977. Is nickel a universal component of plant ureases?, Plant Sci. Lett. 10: 249255.Google Scholar
  102. Polacco, J. C., and Havir, E. A., 1979. Comparisons of soybean urease isolated from seed and tissue culture, J. Biol. Chem. 254: 1707–1715.PubMedGoogle Scholar
  103. Polacco, J. C., Krueger, R. W., and Winkler, R. G., 1985. Structure and possible ureide degrading function of the ubiquitous urease of soybean, Plant Physiol. 79: 794–800.PubMedGoogle Scholar
  104. Polacco, J. C., Judd, A. K., Dybing, J. K., and Cianzio, S. R., 1989. A new mutant class of soybean lacks urease in leaves but not in leaf-derived callus or in roots, Mol. Gen. Genet. 217: 257–262.Google Scholar
  105. Precious, B. L., Thirkell, D., and Russell, W. C., 1987. Preliminary characterization of the urease and a 96 kDa surface-expressed polypeptide of Ureaplasma urealyticum, J. Gen. Microbiol. 133: 2659–2670.PubMedGoogle Scholar
  106. Price, N. M., and Morel, F. M. M., 1991. Colimitation of phytoplankton growth by nickel and nitrogen, Limnol. Oceanogr. 36: 1071–1077.Google Scholar
  107. Rando, D., Steglitz, U., Mörsdorf, G., and Kaltwasser, H., 1990. Nickel availability and urease expression in Proteus mirabilis, Arch. Microbiol. 154: 428–432.PubMedGoogle Scholar
  108. Rees, T. A., V., and Bekheet, I. A., 1982. The role of nickel in urea assimilation by algae, Planta 156: 385–387.Google Scholar
  109. Riddles, P. W., Whan, V., Blakeley, R. L., and Zemer, B., 1991. Cloning and sequencing of a jack bean urease-encoding cDNA, Gene 108: 265–267.PubMedGoogle Scholar
  110. Sabbaj, J., Sutter, V. L., and Finegold, S. M., 1970. Urease and deaminase activities of fecal bacteria in hepatic coma, Antimicrob. Agents Chemother. 1970: 181–185.Google Scholar
  111. Sakaguchi, K., Mitsui, K., Kobashi, K., and Hase, J., 1983. Photo-oxidation of jack bean urease in the presence of methylene blue, J. Biochem. 93: 681–686.PubMedGoogle Scholar
  112. Sakaguchi, K., Mitsui, K., Nakai, N., and Kobashi, K., 1984. Amino acid sequence around a cysteine residue in the active center of jack bean urease, J. Biochem. 96: 73–79.PubMedGoogle Scholar
  113. Salata, C. A., Youinou, M.-T., and Burrows, C. J., 1989. (Template)2 synthesis of a dinucleatingGoogle Scholar
  114. macrocyclic ligand and crystal structure of its dicopper(II) imidazolate complex, J. Am. Chem. Soc. 111:9278–9279.Google Scholar
  115. Salata, C. A., Youinou, M.-T., and Burrows, C. J., 1991. Preparation and structural characterization of dicopper(II) and dinickel(II) imidazolate-bridged macrocyclic Schiff base complexes, Inorg. Chem. 30: 3454–3461.Google Scholar
  116. Samtoy, B., and DeBreukelaer, M. M., 1980. Ammonia encephalopathy secondary to urinary tract infection with Proteus mirabilis, Pediatrics 65: 294–297.PubMedGoogle Scholar
  117. Saraste, M., Sibbald, P. T., and Wittinghofer, A., 1990. The P-loop: A common motif in ATP-and GTP-binding proteins, Trends Biochem. Sci. 15: 430–434.PubMedGoogle Scholar
  118. Schneider, J., and Kaltwasser, H., 1984. Urease from Arthrobacter oxydans, a nickel-containing enzyme, Arch. Microbiol. 139: 355–360.Google Scholar
  119. Segal, E. D., Shon, J., and Tompkins, L. S., 1992. Characterization of Helicobacter pylori urease mutants, Infect. Immun. 60: 1883–1889.PubMedGoogle Scholar
  120. Singh, S., 1990. Regulation of urease activity in the cyanobacterium Anabaena doliolum, FEMS Microbiol. Lett. 67: 79–84.Google Scholar
  121. Singh, S., 1991. Role of nickel and N-starvation in the regulation of urea metabolism in the cyanobacterium Anacystis nidulans, J. Gen. Appl. Microbiol. 37: 325–330.Google Scholar
  122. Smoot, D. T., Mobley, H. L. T., Chippendale, G. R., Lewison, J. F., and Resau, J. H., 1990. Helicobacter pylori urease activity is toxic to human gastric epithelial cells, Infect. Immun. 58: 1992–1994.Google Scholar
  123. Spears, J. W., and Hatfield, E. E., 1978. Nickel for ruminants. I. Influence of dietary nickel on ruminai urease activity, J. Anim. Sci. 47: 1345–1350.PubMedGoogle Scholar
  124. Spears, J. W., Smith, C. J., and Hatfield, E. E., 1977. Rumen bacterial urease requirement for nickel, J. Dairy Sci. 7: 1073–1076.Google Scholar
  125. Stebbins, N., Holland, M. A., Cianzio, S. R., and Polacco, J. C., 1991. Genetic tests of the roles of the embryonic ureases of soybean, Plant Physiol. 97: 1004–1010.PubMedGoogle Scholar
  126. Sumner, J. B., 1926. The isolation and crystallization of the enzyme urease, J. Biol. Chem. 69: 435–441.Google Scholar
  127. Sumner, J. B., and Somers, G. F., 1953. Chemistry and Methods of Enzymes, Academic Press, New York, p. 156.Google Scholar
  128. Takishima, K., Mamiya, G., and Hata, M., 1983. Amino acid sequence of a peptide containing an essential cysteine residue of jack bean urease, in Frontiers in Biochemical and Biophysical Studies of Proteins and Membranes ( T.-Y. Liu, S. Sakakibara, A. N. Schechter, K. Yagi, H. Yajima, and K. T. Yasunobu, eds.), Elsevier, New York, pp. 193–201.Google Scholar
  129. Takishima, K., Suga, T., and Mamiya, G., 1988. The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues, Eur. J. Biochem. 175: 151–165.PubMedGoogle Scholar
  130. Thirkell, D., Myles, A. D., Precious, B. L., Frost, J. S., Woodall, J. C., Burdon, M. G., and Russell, W. C., 1989. The urease of Ureaplasma urealyticum, J. Gen. Microbiol. 135: 315–323.PubMedGoogle Scholar
  131. Thompson, J. F., 1980. Arginine synthesis, proline synthesis and related processes, in The Biochemistry of Plants, A Comprehensive Treatise, Vol. 5 ( P. K. Stumpf and E. E. Conn, eds.), Academic Press, New York, pp. 375–402.Google Scholar
  132. Todd, M. J., and Hausinger, R. P., 1987. Purification and characterization of the nickel-containing multicomponent urease from Klebsiella aerogenes, J. Biol. Chem. 262: 5963–5967.PubMedGoogle Scholar
  133. Todd, M. J., and Hausinger, R. P., 1989. Competitive inhibitors of Klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site, J. Biol. Chem. 264: 15835–15842.PubMedGoogle Scholar
  134. Todd, M. J., and Hausinger, R. P., 1991a. Reactivity of the essential thiol of Klebsiella aerogenes Google Scholar
  135. urease. Effect of pH and ligands on thiol modification, J. Biol. Chem. 266: 10260–10267.Google Scholar
  136. Todd, M. J., and Hausinger, R. P., 1991b. Identification of the essential cysteine residue in Klebsiella aerogenes urease, J. Biol. Chem. 266: 24327–24331.PubMedGoogle Scholar
  137. Visek, W. J., 1972. Effects of urea hydrolysis on cell life-span and metabolism, Fed. Proc. 31: 1178–1191.PubMedGoogle Scholar
  138. Vogels, G., and van der Drift, C., 1976. Degradation of purines and pyrimidines by microorganisms, Bacteriol. Rev. 40: 403–468.PubMedGoogle Scholar
  139. Walker, C. D., Graham, R. D., Madison, J. T., Cary, E. E., and Welch, R. M., 1985. Effects of Ni deficiency on some nitrogen metabolites in cowpeas (Vigna unguiculata L. Walp), Plant Physiol. 79: 474–479.PubMedGoogle Scholar
  140. Walz, S. E., Wray, S. K., Hull, S. l., and Hull, R. E., 1988. Multiple proteins encoded within the urease gene complex of Proteus mirabilis, J. Bacterial. 170: 1027–1033.Google Scholar
  141. Wang, S., Lee, M. H., Hausinger, R. P., Clark, P. A., Wilcox, D. E., and Scott, R. A., 1993. Structure of the dinuclear active site of urease. X-ray absorption spectroscopic study of native and 2-mercaptoethanol-inhibited bacterial and plant enzymes, Inorg. Chem. (in press).Google Scholar
  142. Waugh, R., and Boxer, D. H., 1986. Pleiotropic hydrogenase mutants of Escherichia cull K-12: Growth in the presence of nickel can restore hydrogenase activity, Biochimie 68: 157–166.PubMedGoogle Scholar
  143. Winkler, R. G., Polacco, J. C., Eskew, D. L., and Welch, R. M., 1983. Nickel is not required for apourease synthesis in soybean seeds, Plant Physiol. 72: 262–263.PubMedGoogle Scholar
  144. Winkler, R. G., Blevins, D. G., Polacco, J. C., and Randall, D. D., 1987. Ureide catabolism of soybeans. II. Pathway of catabolism in intact leaf tissue, Plant Physiol. 83: 585–591.PubMedGoogle Scholar
  145. Wu, L.-F., 1992. Putative nickel-binding sites of microbial proteins, Res. Microbial. 143: 347–351.Google Scholar
  146. Yamazaki, E., Kurasawa, T., Kakimoto, S., Sumino, Y., and Nakatsui, I., 1990. Characteristics of acid urease from Streptococcus mitior, Agric. Biol. Chem. 54: 2433–2435.Google Scholar
  147. Zawada, J. W., and Sutcliffe, J. F., 1981. A possible role for urease as a storage protein in Aspergillu.s tamarii, Ann. Bot. 48: 797–810.Google Scholar
  148. Zerner, B., 1991. Recent advances in the chemistry of an old enzyme, Bioorg. Chem. 19: 116–131.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert P. Hausinger
    • 1
  1. 1.Departments of Microbiology and BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations