Skip to main content

Urease

  • Chapter

Part of the book series: Biochemistry of the Elements ((BOTE,volume 12))

Abstract

Urease catalyzes the hydrolysis of urea to yield ammonia and carbamate, which spontaneously decomposes to form carbonic acid and a second molecule of ammonia [reviewed by Andrews et al. (1984, 1988), Blakeley and Zerner (1984), Mobley and Hausinger (1989), and Zerner (1991)]:

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGib % WaaSbaaSqaaiaaikdaaeqaaOGaamOtaiabgkHiTiaadoeacaWGpbWa % aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamisamaaBaaaleaacaaIYa % aabeaakiaad+eacqGHsgIRcaWGibGaamOtamaaBaaaleaacaaIZaaa % beaakiabgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGobGaey % OeI0Iaam4qaiaad+eacaWGpbGaamisaaqaaiaadIeadaWgaaWcbaGa % aGOmaaqabaGccaWGobGaeyOeI0Iaam4qaiaad+eacaWGpbGaamisai % abgUcaRiaadIeadaWgaaWcbaGaaGOmaaqabaGccaWGpbGaeyOKH4Qa % am4qaiaadIeadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWGibWaaS % baaSqaaiaaikdaaeqaaOGaam4qaiaad+eadaWgaaWcbaGaaG4maaqa % baaaaaa!5F68!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\begin{gathered} {H_2}N - C{O_2} + {H_2}O \to H{N_3} + {H_2}N - COOH \hfill \\ {H_2}N - COOH + {H_2}O \to C{H_3} + {H_2}C{O_3} \hfill \\ \end{gathered}$$

The substrate in this reaction, urea, is constantly released into the environment through biological actions. For example, all mammals excrete urea in urine as a detoxification product (Visek, 1972). To provide a sense of the scale for urea excretion, human urine contains 0.4–0.5 M urea (Griffith et al., 1976), resulting in an annual release of 10 kg of urea per adult (Visek, 1972). Urea is also formed by environmental catabolism of uric acid, the primary detoxification product excreted by birds, reptiles, and most terrestrial insects. Similarly, urea is a product of biodegradation of nitrogenous compounds including purines, arginine, agmatine, allantoin, and allantoic acid (Vogels and van der Drift, 1976). The urea generated by these reactions is rapidly degraded by ureases found in a wide range of bacteria, several fungi, a few invertebrates, and a variety of plants. The significance of urease in these various organisms is summarized below.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alagna, L., Hasnain, S. S., Piggott, B., and Williams, D. J., 1984. The nickel environment in jack bean urease, Biochem. J. 220: 591–595.

    Google Scholar 

  • Andrews, R. K., Blakeley, R. L., and Zerner, B., 1984. Urea and urease, in Advances in Inorganic Biochemistry, Vol. 6 ( G. L. Eichhorn and L. G. Marzilli, eds.), Elsevier Science Publishing, New York, pp. 245–283.

    Google Scholar 

  • Andrews, R. K., Blakeley, R. L., and Zerner, B., 1988. Urease-a Ni(II) metalloenzyme, in The Bioinorganic Chemistry of Nickel ( J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 141–165.

    Google Scholar 

  • Argall, M. E., Smith, G. D., Stamford, N. P. J., and Youens, B. N., 1992. Purification and properties of urease from the cyanobacterium Anabaena cylindrica, Biochem. Int. 27: 1027 1036.

    Google Scholar 

  • Austin, J. W., Doig, P., Stewart, M., and Trust, T. J., 1992. Structural comparison of urease and a GroEL analog from Helicobacter pylori, J. Bacterial. 174: 7470–7473.

    Google Scholar 

  • Bast, E., 1988. Nickel requirement for the formation of active urease in purple sulfur bacteria (Chromatiaceae), Arch. Microbiol. 150: 6–10.

    CAS  Google Scholar 

  • Benchemsi-Bekkari, N., and Pizelle, G., 1992. In vivo urease activity in Robinia pseudoacacia, Plant Physiol. Biochim. 30: 187–192.

    CAS  Google Scholar 

  • Benson, E. W., and Howe, H. B., Jr., 1978. Reversion and interallelic complementation at four urease loci in Neurospora crassa, Mol. Gen. Genet. 165: 277–288.

    PubMed  CAS  Google Scholar 

  • Blakeley, R. L., and Zerner, B., 1984. Jack bean urease: The first nickel enzyme, J. Mol. Catal. 23: 263–292.

    CAS  Google Scholar 

  • Blakeley, R. L., Treston, A., Andrews, R. K., and Zerner, B., 1982. Nickel (II) promoted ethanolysis and hydrolysis of N-(2-pyridylmethyl)urea. A model for urease, J. Am. Chem. Soc. 104: 61 2614.

    Google Scholar 

  • Blakeley, R. L., Dixon, N. E., and Zerner, B., 1983. Jack bean urease. VII. Light scattering and nickel (II) spectrum. Thiolate–nickel(II) charge transfer peaks in the spectrum of the ßmercaptoethanol-urease complex, Biochim. Biophys. Acta 744: 219–229.

    CAS  Google Scholar 

  • Blanchard, A., 1990. Ureaplasma urealyticum urease genes; use of a UGA tryptophan codon, Mol. Microbial. 4: 669–676.

    CAS  Google Scholar 

  • Blattler, D. P., Contaxis, C. C., and Reithel, F. J., 1967. Dissociation of urease by glycol and glycerol, Nature (London) 216: 274–275.

    CAS  Google Scholar 

  • Booth, J. L., and Vishniac, H. S., 1987. Urease testing and yeast taxonomy, Can. J. Microbiol. 33: 396–404.

    PubMed  CAS  Google Scholar 

  • Braude, A. I., and Siemienski, J., 1960. Role of bacterial urease in experimental pyelonephritis, J. Bacteriol. 80: 171–179.

    PubMed  CAS  Google Scholar 

  • Breitenbach, J. M., and Hausinger, R. P., 1988. Proteus mirabilis urease: Partial purification and inhibition by boric acid and boronic acids, Biochem. J. 250: 917–920.

    CAS  Google Scholar 

  • Bremner, J. M., and Mulvaney, R. L., 1978. Urease activity in soils, in Soil Enzymes ( R. G. Burns, ed.), Academic Press, New York, pp. 146–196.

    Google Scholar 

  • Buchanan, R. M., Mashuta, M. S., Oberhausen, K. J., Richardson, J. F., Li, Q., and Hendrickson, D. N., 1989. Active site model of urease: Synthesis, structure, and magnetic properties of a binuclear Ni(II) complex containing a polyimidazole ligand, J. Am. Chem. Soc. 111:4497-4498.

    Google Scholar 

  • Christians, S., and Kaltwasser, H., 1986. Nickel-content of urease from Bacillus pasteurii, Arch. Microbiol. 145: 51–55.

    PubMed  CAS  Google Scholar 

  • Christians, S., Jose, J., Schäfer, U., and Kaltwasser, H., 1991. Purification and subunit determination of the nickel-dependent Staphylococcus xylosus urease, FEMS Microbiol. Lett. 80: 271–276.

    CAS  Google Scholar 

  • Clark, P. A., and Wilcox, D. E., 1989. Magnetic properties of the nickel enzymes urease, nickel-substituted carboxypeptidase A, and nickel-substituted carbonic anhydrase, Inorg. Chem. 28: 1326–1333.

    CAS  Google Scholar 

  • Clark, P. A., Wilcox, D. E., and Scott, R. A., 1990. X-ray absorption spectroscopic evidence for binding of the competitive inhibitor 2-mercaptoethanol to the nickel sites of jack bean urease. A new Ni-Ni interaction in the inhibited enzyme, J. Am. Chem. Soc. 29: 579–581.

    Google Scholar 

  • Clayton, C. L., Pallen, M. J., Kleanthous, H., Wren, B. W., and Tabaqchali, S., 1990. Nucleotide sequence of two genes from Helicobacter pylori encoding for urease subunits, Nucleic Acids Res. 18: 362.

    PubMed  CAS  Google Scholar 

  • Collins, C. M., and Falkow, S., 1988. Genetic analysis of an Escherichia coli urease locus: Evidence of DNA rearrangement, J. Bacteriol. 170: 1041–1045.

    PubMed  CAS  Google Scholar 

  • Collins, C. M., and Gutman, D. M., 1992. Insertional inactivation of an Escherichia coli urease gene by IS3411, J. Bacteriol. 174: 883–888.

    PubMed  CAS  Google Scholar 

  • Contaxis, C. C., and Reithel, F. J., 1971. Studies on protein multimers. II. A study of the mechanism of urease dissociation in 1,2-propanediol: Comparative studies with ethylene glycol and glycerol, J. Biol. Chem. 246: 677–685.

    PubMed  CAS  Google Scholar 

  • Creaser, E. H., and Porter, R. L., 1985. The purification of urease from Aspergillus nidulans, Int. J. Biochem. 17: 1339–1341.

    PubMed  CAS  Google Scholar 

  • Curtis, N. J., Dixon, N. E., and Sargeson, A. M., 1983. Synthesis, linkage isomerism, and ligand reactivity of (urea)pentaamminerhodium(III) complexes, J. Am. Chem. Soc. 105: 5347–5353.

    CAS  Google Scholar 

  • Cussac, V., Ferrero, R. I., and Labigne, A., 1992. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions, J. Bacteriol. 174: 2466–2473.

    PubMed  CAS  Google Scholar 

  • Dalton, D. A., Evans, H. J., and Hanus, F. J., 1985. Stimulation by nickel of soil microbial urease activity and urease and hydrogenase activities in soybeans grown in low-nickel soil, Plant Soil 88: 245–258.

    Google Scholar 

  • Dalton, D. A., Russell, S. A., and Evans, H. J., 1988. Nickel as a micronutrient for plants, BioFactors 1:11–16.

    Google Scholar 

  • Day, E. P. Peterson, J., Sendova, M., Todd, M. J., and Hausinger, R. P., 1993. Saturation magnetization of ureases from Klebsiella aerogenes and jack bean: No evidence for exchange coupling between the two active site nickel ions in the native enzyme, Inorg. Chem. 32:634638.

    Google Scholar 

  • Dixon, N. E., Gazzola, C., Watters, J. J., Blakeley, R. L., and Zemer, B., 1975a. Inhibition of jack bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. An equivalent weight for urease, J. Am. Chem. Soc. 97: 4130–4131.

    PubMed  CAS  Google Scholar 

  • Dixon, N. E., Gazzola, C., Blakeley, R. L., and Zerner, B., 1975b. Jack bean urease (EC 3.5.1.5.). A metalloenzyme. A simple biological role for nickel?, J. Am. Chem. Soc. 97: 4131–4133.

    PubMed  CAS  Google Scholar 

  • Dixon, N. E., Blakeley, R. L., and Zerner, B., 1980a. Jack bean urease (EC 3.5.1.5). I. A simple dry ashing procedure for the microdetermination of trace metals in proteins. The nickel content of urease, Can. J. Biochem. 58: 469–473.

    Google Scholar 

  • Dixon, N. E., Gazzola, C., Asher, C. J., Lee, D. S. W., Blakeley, R. L., and Zerner, B., 1980b. Jack bean urease (EC 3.5.1.5). II. The relationship between nickel, enzymatic activity, and the “abnormal” ultraviolet spectrum. The nickel content of jack beans, Can. J. Biochem. 58: 474–480.

    Google Scholar 

  • Dixon, N. E., Blakeley, R. L., and Zemer, B., 1980c. Jack bean urease (EC 3.5.1.5). III. The involvement of active-site nickel ion in inhibition by ß-mercaptoethanol, phosphoramidate, and fluoride, Can. J. Biochem. 58: 481–488.

    PubMed  CAS  Google Scholar 

  • Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blakeley, R. L., and Zerner, B., 1980d. Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors, Can. J. Biochem. 58: 1323–1334.

    PubMed  CAS  Google Scholar 

  • Dixon, N. E., Riddles, P. W., Gazzola, C., Blakeley, R. L., and Zerner, B., 1980e. Jack bean urease (EC 3.5.1.5). V. On the mechanism of action of urease on urea, formamide, acetamide, N-methylurea, and related compounds, Can. J. Biochem. 58: 1335–1344.

    PubMed  CAS  Google Scholar 

  • Dunn, B. E., Campbell, G. P., Perez-Perez, G., and Blaser, M. J., 1990. Purification and characterization of urease from Helicobacter pylori, J. Biol. Chem. 265: 9464–9469.

    PubMed  CAS  Google Scholar 

  • Eaton, K. A., Brooks, C. L., Morgan, D. R., and Krakowka, S., 1991. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets, Infect. Immun. 59: 2470–2475.

    PubMed  CAS  Google Scholar 

  • Eskew, D. L., Welch, R. M., and Cary, E. E., 1983. Nickel: An essential micronutrient for legumes and possibly all higher plants, Science 222: 621–623.

    PubMed  CAS  Google Scholar 

  • Eskew, D. L., Welch, R. M., and Norvell, W. A., 1984. Nickel in higher plants. Further evidence for an essential role, Plant Physiol. 76: 691–693.

    PubMed  CAS  Google Scholar 

  • Evans, D. J., Jr., Evans, D. G., Kirkpatrick, S. S., and Graham, D. Y., 1991. Characterization of the Helicobacter pylori urease and purification of its subunits, Microb. Pathogenesis 10: 1526.

    Google Scholar 

  • Finnegan, M. G., Kowal, A., Werth, M. T., Clark, P. A., Wilcox, D. E., and Johnson, M. K., 1991. Variable-temperature magnetic circular dichroism spectroscopy as a probe of the electronic and magnetic properties of nickel in jack bean urease, J. Am. Chem. Soc. 113: 4030–4032.

    CAS  Google Scholar 

  • Fishbein, W. N., Nagarajan, K., and Scurzi, W., 1973. Urease catalysis and structure. IX. The half-unit and hemipolymers of jack bean urease, J. Biol. Chem. 248: 7870–7877.

    PubMed  CAS  Google Scholar 

  • Fishbein, W. N., Engler, W. F., Griffin, J. L., Scurzi, W., and Bahr, G. F., 1977. Electron microscopy of negatively stained jack bean urease at three levels of quaternary structure, and comparison with hydrodynamic studies, Eur. J. Biochem. 73: 185–190.

    PubMed  CAS  Google Scholar 

  • Gerlach, G.-F., Clegg, S., and Nichols, W. A., 1988. Characterization of the genes encoding urease activity of Klebsiella pneumoniae, FEMS Microbiol. Lett. 50: 131–135.

    CAS  Google Scholar 

  • Goodwin, C. S., Armstrong, J. A., and Marshall, B. J., 1986. Campylobacter pyloridis, gastritis, and peptic ulceration, J. Clin. Pathol. 38: 353–365.

    Google Scholar 

  • Gordon, W. R., Schwemmer, S. S., and Hillman, W. S., 1978. Nickel and the metabolism of urea by Lemna paucicostata Hegelm. 6746, Planta 140: 265–268.

    CAS  Google Scholar 

  • Granick, S., 1937. Urease distribution in plants, Plant Physiol. 12: 471–486.

    PubMed  CAS  Google Scholar 

  • Griffith, D. P., Musher, D. M., and Hin, C., 1976. Urease: The primary cause of infection-induced urinary stones, Invest. Urol. 13: 346–350.

    PubMed  CAS  Google Scholar 

  • Hasnain, S. S., and Piggott, B., 1983. An EXAFS study of jack bean urease, a nickel metalloenzyme, Biochem. Biophys. Res. Commun. 112: 279–283.

    PubMed  CAS  Google Scholar 

  • Hausinger, R. P., 1986. Purification of a nickel-containing urease from the rumen anaerobe Selenomonas ruminantium, J. Biol. Chem. 261: 7866–7870.

    PubMed  CAS  Google Scholar 

  • Hawtin, P. R., Delves, H. T., and Newell, D. G., 1991. The demonstration of nickel in the urease of Helicobacter pylori by atomic absorption spectroscopy, FEMS Microbiol. Lett. 77: 51–54.

    CAS  Google Scholar 

  • Hazell, S. L., and Lee, A., 1986. Campylobacter pyloridis, urease, hydrogen ion back diffusion, and gastric ulcers, Lancet ii: 15–1 7.

    Google Scholar 

  • Holland, M. A., and Polacco, J. A., 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants, Plant Physiol. 98: 942–948.

    PubMed  CAS  Google Scholar 

  • Holland, M. A., Griffin, J. D., Meyer-Bothling, L. E., and Polacco, J. C., 1987. Developmental genetics of the soybean urease isozymes, Dev. Genet. 8: 375–387.

    CAS  Google Scholar 

  • Hu, L.-T., and Mobley, H. L. T., 1990. Purification and N-terminal analysis of urease from Helicobacter pylori, Infect. Immun. 58: 992–998.

    PubMed  CAS  Google Scholar 

  • Huntington, G. B., 1986. Uptake and transport of nonprotein nitrogen by the ruminant gut, Fed. Proc. 45: 377–383.

    Google Scholar 

  • Jabri, E., Lee, M. H., Hausinger, R. P., and Karplus, P. A., 1992. Preliminary crystallographic studies of urease from jack bean and from Klebsiella aerogenes, J. Mol. Biol. 227: 934–937.

    PubMed  CAS  Google Scholar 

  • Jones, B. D., and Mobley, H. L. T., 1989. Proteus mirabilis urease: Nucleotide sequence determination and comparison with jack bean urease, J. Bacteriol. 171: 6414–6422.

    CAS  Google Scholar 

  • Jose, J., Christians, S., Rosenstein, R., Götz, F., and Kaltwasser, H., 1991. Cloning and expression of various staphylococcal genes encoding urease in Staphylococcus carnosus, FEMS Microbiol. Lett. 80: 277–282.

    CAS  Google Scholar 

  • Kakimoto, S., Sumino, Y., Akiyama, S -I, and Nakao, Y., 1989. Purification and characterization of acid urease from Lactobacillus reuteri, Agric. Biol. Chem. 53: 1119–1125.

    CAS  Google Scholar 

  • Kakimoto, S., Sumino, Y., Kawahara, K., Yamazaki, E., and Nakatsui, I., 1990. Purification and characterization of acid urease from Lactobacillus fermentum, Appl. Microbiol. Biotechnol. 32: 538–543.

    PubMed  CAS  Google Scholar 

  • Kinghorn, J. R., and Fluri, R., 1984. Genetic studies of purine breakdown in the fission yeast Schizosaccharomyces pombe, Curr. Genet. 8: 99–105.

    CAS  Google Scholar 

  • Krueger, R. W., Holland, M. A., Chisholm, D., and Polacco, J. C., 1987. Recovery of a soybean urease genomic clone by sequential library screening with two synthetic oligodeoxynucleotides, Gene 54: 41–50.

    PubMed  CAS  Google Scholar 

  • Labigne, A., Cussac, V., and Courcoux, P., 1991. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity, J. Bacteriol. 173: 1920–1931.

    PubMed  CAS  Google Scholar 

  • Larson, A. D., and Kallio, R. E., 1954. Purification and properties of bacterial urease, J. Bacteriol. 68: 67–73.

    PubMed  CAS  Google Scholar 

  • Lee, M. H., Mulrooney, S. B., and Hausinger, R. P., 1990. Purification, characterization, and in vivo reconstitution of Klebsiella aerogenes urease apoenzyme, J. Bacteriol. 172: 4427–4431.

    PubMed  CAS  Google Scholar 

  • Lee, M. H., Mulrooney, S. B., Renner, M. J., Markowicz, Y., and Hausinger, R. P., 1992. Klebsiella aerogenes urease gene cluster: Sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis, J. Bacteriol. 174: 4324–4330.

    CAS  Google Scholar 

  • Lee, M. H., Pankratz, H. S., Wang, S., Scott, R. A., Finnegan, M. G., Johnson, M. K., Ippolito, J. A., Christianson, D. W., and Hausinger, R. A., 1993. Purification and characterization of Klebsiella aerogenes UreE protein: A nickel-binding protein that functions in urease metallocenter assembly, Protein Sci. 2: 1042–1052.

    PubMed  CAS  Google Scholar 

  • Loyola-Vargas, V., Roman, M. E., Quiroz, J., Oropeza, C., Robert, M. L., and Scorer, K. N., 1988. Nitrogen metabolism in Canavalia ensiformis DC. I. Arginase and urease ontogeny, J. Plant Physiol. 132: 284–288.

    CAS  Google Scholar 

  • Lutz, S., Jacobi, A., Schlensog, V., Böhm, R., Sawers, G., and Böck, A., 1991. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli, Mol. Microbiol 5: 123–135.

    PubMed  CAS  Google Scholar 

  • Mackay, E. M., and Pateman, J. A., 1980. Nickel requirement of a urease-deficient mutant in Aspergillus nidulans, J. Gen. Microbiol. 116: 249–251.

    PubMed  CAS  Google Scholar 

  • Mackay, E. M., and Pateman, J. A., 1982. The regulation of urease activity in Aspergillus nidulans, Biochem. Genet. 20: 763–776.

    PubMed  CAS  Google Scholar 

  • Mackerras, A. H., and Smith, G. D., 1986. Urease activity of the cyanobacterium Anabaena cylindrica, J. Gen. Microbiol. 132: 2749–2752.

    CAS  Google Scholar 

  • Maier, T., Jacobi, A., Sauter, M., and Böck, A., 1993. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein, J. Bacteriol. 175: 630–635.

    PubMed  CAS  Google Scholar 

  • Martin, P. R., and Hausinger, R. P., 1992. Site-directed mutagenesis of the active site cysteine in Klebsiella aerogenes urease, J. Biol. Chem. 267: 20024–20027.

    PubMed  CAS  Google Scholar 

  • Maslak, P., Sczepanske, J. J., and Parvez, M., 1991. Complexation through nitrogen in copper

    Google Scholar 

  • and nickel complexes of substituted ureas, J. Am. Chem. Soc. 113:1062–1063.

    Google Scholar 

  • McCoy, D. D., Cetin, A., and Hausinger, R. P., 1992. Characterization of urease from Sporosarcina ureae, Arch. Microbiol. 157: 411–416.

    PubMed  CAS  Google Scholar 

  • McDonald, J. A., Vorhaben, J. E., and Campbell, J. W., 1980. Invertebrate urease: Purification and properties of the enzyme from a land snail, Otala lactea, Comp. Biochem. Physiol. 66B: 223–231.

    Google Scholar 

  • Mégraud, F., Neman-Simha, V., and Brügmann, D., 1992. Further evidence of the toxic effect of ammonia produced by Helicobacter pylori urease on human epithelial cells, Infect. Immun. 60: 1858–1863.

    PubMed  Google Scholar 

  • Meyer-Bothling, L. E., and Polacco, J. C., 1987. Mutational analysis of the embryo-specific urease locus of soybean, Mol. Gen. Genet. 209: 439–444.

    PubMed  CAS  Google Scholar 

  • Meyer-Bothling, L. E., Polacco, J. C., and Cianzio, S. R., 1987. Pleiotropic soybean mutants defective in both urease isozymes, Mol. Gen. Genet. 209: 432–438.

    PubMed  CAS  Google Scholar 

  • Mobley, H. L. T., and Hausinger, R. P., 1989. Microbial ureases: Significance, regulation, and molecular characterization, Microbiol. Rev. 53: 85–108.

    PubMed  CAS  Google Scholar 

  • Mobley, H. L. T., and Warren, J. W., 1987. Urease-positive bacteriuria and obstruction of longterm urinary catheters, J. Clin. Microbiol. 25: 2216–2217.

    PubMed  CAS  Google Scholar 

  • Mörsdorf, G., and Kaltwasser, H., 1990. Cloning of the genes encoding urease from Proteus vulgaris and sequencing of the structural genes, FEMS Microbiol. Lett. 66: 67–74.

    Google Scholar 

  • Mulrooney, S. B., and Hausinger, R. P., 1990. Sequence of the Klebsiella aerogenes urease genes and evidence for accessory proteins facilitating nickel incorporation, J. Bacteriol. 172: 58375843.

    Google Scholar 

  • Mulrooney, S. B., Lynch, M. J., Mobley, H. L. T., and Hausinger, R. P., 1988. Purification, characterization, and genetic organization of recombinant Providencia stuartii urease expressed in Escherichia coli, J. Bacteriol. 170: 2202–2207.

    PubMed  CAS  Google Scholar 

  • Mulrooney, S. B., Pankratz, H. S., and Hausinger, R. P., 1989. Regulation of gene expression and cellular localization of cloned Klebsiella aerogenes (K. pneumoniae) urease, J. Gen. Microbiol. 135: 1769–1776.

    PubMed  CAS  Google Scholar 

  • Nakano, H., Takenishi, S., and Watanabe, Y., 1984. Purification and properties of urease from Brevibacterium ammoniagenes, Agric. Biol. Chem. 48: 1495–1502.

    CAS  Google Scholar 

  • Norris, R., and Brocklehurst, K., 1976. A convenient method of preparation of high-activity urease from Canavalia ensiformis by covalent chromatography and an investigation of its thiol groups with 2,2’-dipyridyl disulfide as a thiol titrant and reactivity probe, Biochem. J. 159: 245–257.

    PubMed  CAS  Google Scholar 

  • Oliveira, L., and Antia, N. J., 1984. Evidence of nickel ion requirement for autotrophic growth of a marine diatom with urea serving as nitrogen source, Br. Phycol. J. 19: 125–134.

    Google Scholar 

  • Park, I.-S., and Hausinger, R. P., 1993a. Diethylpyrocarbonate reactivity of Klebsiella aerogenes urease: Effect of pH and active site ligands on rate of enzyme inactivation, J. Prot. Chem. 12: 51–56.

    CAS  Google Scholar 

  • Park, I.-S., and Hausinger, R. P., 1993b. Site-directed mutagenesis of Klebsiella aerogenes urease: Identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis, Protein Sci. 2: 1034–1041.

    PubMed  CAS  Google Scholar 

  • Pechman, K. J., Lewis, B. J., and Woese, C. R., 1976. Phylogenetic status of Sporosarcina urease, Int. J. Syst. Bacteriol. 26: 305–310.

    Google Scholar 

  • Pérez-Pérez, G. I., Olivares, A. Z., Cover, T. L., and Blaser, M. J., 1992. Characteristics of Helicobacter pylori variants selected for urease deficiency, Infect. Immun. 60: 3658–3663.

    PubMed  Google Scholar 

  • Pérezurria, E., Estrella, M., and Vicente, C., 1986. Function of nickel in the urease activity of the lichen Evernia prunastri, Plant Sci. 43: 37–43.

    Google Scholar 

  • Polacco, J. C., 1977. Is nickel a universal component of plant ureases?, Plant Sci. Lett. 10: 249255.

    Google Scholar 

  • Polacco, J. C., and Havir, E. A., 1979. Comparisons of soybean urease isolated from seed and tissue culture, J. Biol. Chem. 254: 1707–1715.

    PubMed  CAS  Google Scholar 

  • Polacco, J. C., Krueger, R. W., and Winkler, R. G., 1985. Structure and possible ureide degrading function of the ubiquitous urease of soybean, Plant Physiol. 79: 794–800.

    PubMed  CAS  Google Scholar 

  • Polacco, J. C., Judd, A. K., Dybing, J. K., and Cianzio, S. R., 1989. A new mutant class of soybean lacks urease in leaves but not in leaf-derived callus or in roots, Mol. Gen. Genet. 217: 257–262.

    CAS  Google Scholar 

  • Precious, B. L., Thirkell, D., and Russell, W. C., 1987. Preliminary characterization of the urease and a 96 kDa surface-expressed polypeptide of Ureaplasma urealyticum, J. Gen. Microbiol. 133: 2659–2670.

    PubMed  CAS  Google Scholar 

  • Price, N. M., and Morel, F. M. M., 1991. Colimitation of phytoplankton growth by nickel and nitrogen, Limnol. Oceanogr. 36: 1071–1077.

    CAS  Google Scholar 

  • Rando, D., Steglitz, U., Mörsdorf, G., and Kaltwasser, H., 1990. Nickel availability and urease expression in Proteus mirabilis, Arch. Microbiol. 154: 428–432.

    PubMed  CAS  Google Scholar 

  • Rees, T. A., V., and Bekheet, I. A., 1982. The role of nickel in urea assimilation by algae, Planta 156: 385–387.

    CAS  Google Scholar 

  • Riddles, P. W., Whan, V., Blakeley, R. L., and Zemer, B., 1991. Cloning and sequencing of a jack bean urease-encoding cDNA, Gene 108: 265–267.

    PubMed  CAS  Google Scholar 

  • Sabbaj, J., Sutter, V. L., and Finegold, S. M., 1970. Urease and deaminase activities of fecal bacteria in hepatic coma, Antimicrob. Agents Chemother. 1970: 181–185.

    Google Scholar 

  • Sakaguchi, K., Mitsui, K., Kobashi, K., and Hase, J., 1983. Photo-oxidation of jack bean urease in the presence of methylene blue, J. Biochem. 93: 681–686.

    PubMed  CAS  Google Scholar 

  • Sakaguchi, K., Mitsui, K., Nakai, N., and Kobashi, K., 1984. Amino acid sequence around a cysteine residue in the active center of jack bean urease, J. Biochem. 96: 73–79.

    PubMed  CAS  Google Scholar 

  • Salata, C. A., Youinou, M.-T., and Burrows, C. J., 1989. (Template)2 synthesis of a dinucleating

    Google Scholar 

  • macrocyclic ligand and crystal structure of its dicopper(II) imidazolate complex, J. Am. Chem. Soc. 111:9278–9279.

    Google Scholar 

  • Salata, C. A., Youinou, M.-T., and Burrows, C. J., 1991. Preparation and structural characterization of dicopper(II) and dinickel(II) imidazolate-bridged macrocyclic Schiff base complexes, Inorg. Chem. 30: 3454–3461.

    CAS  Google Scholar 

  • Samtoy, B., and DeBreukelaer, M. M., 1980. Ammonia encephalopathy secondary to urinary tract infection with Proteus mirabilis, Pediatrics 65: 294–297.

    PubMed  CAS  Google Scholar 

  • Saraste, M., Sibbald, P. T., and Wittinghofer, A., 1990. The P-loop: A common motif in ATP-and GTP-binding proteins, Trends Biochem. Sci. 15: 430–434.

    PubMed  Google Scholar 

  • Schneider, J., and Kaltwasser, H., 1984. Urease from Arthrobacter oxydans, a nickel-containing enzyme, Arch. Microbiol. 139: 355–360.

    CAS  Google Scholar 

  • Segal, E. D., Shon, J., and Tompkins, L. S., 1992. Characterization of Helicobacter pylori urease mutants, Infect. Immun. 60: 1883–1889.

    PubMed  CAS  Google Scholar 

  • Singh, S., 1990. Regulation of urease activity in the cyanobacterium Anabaena doliolum, FEMS Microbiol. Lett. 67: 79–84.

    CAS  Google Scholar 

  • Singh, S., 1991. Role of nickel and N-starvation in the regulation of urea metabolism in the cyanobacterium Anacystis nidulans, J. Gen. Appl. Microbiol. 37: 325–330.

    CAS  Google Scholar 

  • Smoot, D. T., Mobley, H. L. T., Chippendale, G. R., Lewison, J. F., and Resau, J. H., 1990. Helicobacter pylori urease activity is toxic to human gastric epithelial cells, Infect. Immun. 58: 1992–1994.

    CAS  Google Scholar 

  • Spears, J. W., and Hatfield, E. E., 1978. Nickel for ruminants. I. Influence of dietary nickel on ruminai urease activity, J. Anim. Sci. 47: 1345–1350.

    PubMed  CAS  Google Scholar 

  • Spears, J. W., Smith, C. J., and Hatfield, E. E., 1977. Rumen bacterial urease requirement for nickel, J. Dairy Sci. 7: 1073–1076.

    Google Scholar 

  • Stebbins, N., Holland, M. A., Cianzio, S. R., and Polacco, J. C., 1991. Genetic tests of the roles of the embryonic ureases of soybean, Plant Physiol. 97: 1004–1010.

    PubMed  CAS  Google Scholar 

  • Sumner, J. B., 1926. The isolation and crystallization of the enzyme urease, J. Biol. Chem. 69: 435–441.

    CAS  Google Scholar 

  • Sumner, J. B., and Somers, G. F., 1953. Chemistry and Methods of Enzymes, Academic Press, New York, p. 156.

    Google Scholar 

  • Takishima, K., Mamiya, G., and Hata, M., 1983. Amino acid sequence of a peptide containing an essential cysteine residue of jack bean urease, in Frontiers in Biochemical and Biophysical Studies of Proteins and Membranes ( T.-Y. Liu, S. Sakakibara, A. N. Schechter, K. Yagi, H. Yajima, and K. T. Yasunobu, eds.), Elsevier, New York, pp. 193–201.

    Google Scholar 

  • Takishima, K., Suga, T., and Mamiya, G., 1988. The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues, Eur. J. Biochem. 175: 151–165.

    PubMed  CAS  Google Scholar 

  • Thirkell, D., Myles, A. D., Precious, B. L., Frost, J. S., Woodall, J. C., Burdon, M. G., and Russell, W. C., 1989. The urease of Ureaplasma urealyticum, J. Gen. Microbiol. 135: 315–323.

    PubMed  CAS  Google Scholar 

  • Thompson, J. F., 1980. Arginine synthesis, proline synthesis and related processes, in The Biochemistry of Plants, A Comprehensive Treatise, Vol. 5 ( P. K. Stumpf and E. E. Conn, eds.), Academic Press, New York, pp. 375–402.

    Google Scholar 

  • Todd, M. J., and Hausinger, R. P., 1987. Purification and characterization of the nickel-containing multicomponent urease from Klebsiella aerogenes, J. Biol. Chem. 262: 5963–5967.

    PubMed  CAS  Google Scholar 

  • Todd, M. J., and Hausinger, R. P., 1989. Competitive inhibitors of Klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site, J. Biol. Chem. 264: 15835–15842.

    PubMed  CAS  Google Scholar 

  • Todd, M. J., and Hausinger, R. P., 1991a. Reactivity of the essential thiol of Klebsiella aerogenes

    Google Scholar 

  • urease. Effect of pH and ligands on thiol modification, J. Biol. Chem. 266: 10260–10267.

    Google Scholar 

  • Todd, M. J., and Hausinger, R. P., 1991b. Identification of the essential cysteine residue in Klebsiella aerogenes urease, J. Biol. Chem. 266: 24327–24331.

    PubMed  CAS  Google Scholar 

  • Visek, W. J., 1972. Effects of urea hydrolysis on cell life-span and metabolism, Fed. Proc. 31: 1178–1191.

    PubMed  CAS  Google Scholar 

  • Vogels, G., and van der Drift, C., 1976. Degradation of purines and pyrimidines by microorganisms, Bacteriol. Rev. 40: 403–468.

    PubMed  CAS  Google Scholar 

  • Walker, C. D., Graham, R. D., Madison, J. T., Cary, E. E., and Welch, R. M., 1985. Effects of Ni deficiency on some nitrogen metabolites in cowpeas (Vigna unguiculata L. Walp), Plant Physiol. 79: 474–479.

    PubMed  CAS  Google Scholar 

  • Walz, S. E., Wray, S. K., Hull, S. l., and Hull, R. E., 1988. Multiple proteins encoded within the urease gene complex of Proteus mirabilis, J. Bacterial. 170: 1027–1033.

    CAS  Google Scholar 

  • Wang, S., Lee, M. H., Hausinger, R. P., Clark, P. A., Wilcox, D. E., and Scott, R. A., 1993. Structure of the dinuclear active site of urease. X-ray absorption spectroscopic study of native and 2-mercaptoethanol-inhibited bacterial and plant enzymes, Inorg. Chem. (in press).

    Google Scholar 

  • Waugh, R., and Boxer, D. H., 1986. Pleiotropic hydrogenase mutants of Escherichia cull K-12: Growth in the presence of nickel can restore hydrogenase activity, Biochimie 68: 157–166.

    PubMed  CAS  Google Scholar 

  • Winkler, R. G., Polacco, J. C., Eskew, D. L., and Welch, R. M., 1983. Nickel is not required for apourease synthesis in soybean seeds, Plant Physiol. 72: 262–263.

    PubMed  CAS  Google Scholar 

  • Winkler, R. G., Blevins, D. G., Polacco, J. C., and Randall, D. D., 1987. Ureide catabolism of soybeans. II. Pathway of catabolism in intact leaf tissue, Plant Physiol. 83: 585–591.

    PubMed  CAS  Google Scholar 

  • Wu, L.-F., 1992. Putative nickel-binding sites of microbial proteins, Res. Microbial. 143: 347–351.

    CAS  Google Scholar 

  • Yamazaki, E., Kurasawa, T., Kakimoto, S., Sumino, Y., and Nakatsui, I., 1990. Characteristics of acid urease from Streptococcus mitior, Agric. Biol. Chem. 54: 2433–2435.

    CAS  Google Scholar 

  • Zawada, J. W., and Sutcliffe, J. F., 1981. A possible role for urease as a storage protein in Aspergillu.s tamarii, Ann. Bot. 48: 797–810.

    CAS  Google Scholar 

  • Zerner, B., 1991. Recent advances in the chemistry of an old enzyme, Bioorg. Chem. 19: 116–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hausinger, R.P. (1993). Urease. In: Biochemistry of Nickel. Biochemistry of the Elements, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9435-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9435-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9437-3

  • Online ISBN: 978-1-4757-9435-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics