• Robert P. Hausinger
Part of the Biochemistry of the Elements book series (BOTE, volume 12)


The element nickel was discovered by Cronstedt in 1751 (Cronstedt, 1770) and first purified as a metal by Berthier in the early 1800s (Berthier, 1820). Early German copper miners working with niccolite, a red-colored nickel arsenide that has the appearance of copper ore, are responsible for the name of this element. Not only were these workers unable to extract copper from the material, but the fumes derived from the reddish substance were toxic; hence, they called the ore kupfernickel, or Old Nick’s copper, after the name of an evil spirit referred to as “Old Nick.” Since the discovery of nickel, the evil spirit side of this element has received the most attention; for example, innumerable studies have characterized various aspects of nickel toxicity and carcinogenicity at a biochemical level. In addition to its many toxic effects, however, this metal recently has been shown to be required for certain metabolic processes. The following paragraphs will highlight key biological benchmarks in the history of nickel.


Sewage Sludge Nickel Sulfide Nickel Compound Nickel Salt Sulfur Dioxide Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggagg, M., and Schlegel, H. G., 1974. Studies on a gram-positive hydrogen bacterium, Nocardia opaca 1 b. III. Purification, stability and some properties of the soluble hydrogen dehydrogenase, Arch. Microbiol. 100: 25–39.CrossRefGoogle Scholar
  2. Babich, H., and Stotzky, G., 1983. Toxicity of nickel to microbes: Environmental aspects, Adv. Appl. Microbiol. 29: 195–265.PubMedCrossRefGoogle Scholar
  3. Bartha, R., and Ordal, E. J., 1965. Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains, J. Bacteriol. 89: 1015–1019.PubMedGoogle Scholar
  4. Basrur, P. K., and Gilman, J. P. W., 1967. Morphological and synthetic response of normal and tumor muscle cultures to nickel subsulfide, Cancer Res. 27: 1168–1177.PubMedGoogle Scholar
  5. Berthier, M., 1820. Ann. Chim. Phys. 2: 14–52.Google Scholar
  6. Bertrand, D., 1974. Le nickel, oligo-élément dynamique pour les micro-organismes fixateurs de l’azote de l’air, C. R. Acad. Sci. 278: 2231–2235.Google Scholar
  7. Bertrand, D., and De Wolf, A., 1967. Le nickel, oligoélément dynamique pour les végétaux supérieurs, C. R. Acad. Sci. 265: 1053–1055.Google Scholar
  8. Boyle, R. W., and Robinson, H. A., 1988. Nickel in the natural environment, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 1–29.Google Scholar
  9. Cammack, R., 1992. Catalysis by nickel in biological systems, in Bioinorganic Catalysis ( J. Reedijk, ed.), Marcel Dekker, New York, 189–225.Google Scholar
  10. Campbell, J. A., 1943. Lung tumours in mice and man, Br. Med. J. 1: 179–183.PubMedCrossRefGoogle Scholar
  11. Christie, N. T., and Katsifis, S. P., 1990. Nickel carcinogenesis, in Biological Effects of Heavy Metals ( E. C. Foulkes, ed.), CRC Press, Boca Raton, Florida, pp. 95–128.Google Scholar
  12. Coogan, T. P., Latta, D. M., Snow, E. T., and Costa, M., 1989. Toxicity and carcinogenicity of nickel compounds, CRC Crit. Rev. Toxicol. 19: 341–384.CrossRefGoogle Scholar
  13. Cronstedt, A. F., 1770. An Essay towards a System of Mineralogy, E. and C. Dilly, London. Diekert, G., Klee, B., and Thauer, R. K., 1980. Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum, Arch. Microbiol. 124: 103–106.Google Scholar
  14. Dixon, N. E., Gazzola, C., Blakeley, R. L., and Zerner, B., 1975. Jack bean urease (EC A metalloenzyme. A simple biological role for nickel?, J. Am. Chem. Soc. 97: 4131–4133.PubMedCrossRefGoogle Scholar
  15. Doll, R., 1958. Cancer of the lung and nose in nickel workers, Br. J. Ind. Med. 15: 217–223.PubMedGoogle Scholar
  16. Drake, H. L., Hu, S.-I., and Wood, H. G., 1980. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum, I Biol. Chem. 255: 7174–7180.Google Scholar
  17. Duke, J. M., 1980. Nickel in rocks and ores, in Nickel in the Environment (J. O. Nriagu, ed.),John Wiley and Sons, New York, pp. 27–50.Google Scholar
  18. Ellefson, W. L., Whitman, W. B., and Wolfe, R. S., 1982. Nickel-containing factor F430: Chromophore of the methylreductase of Methanobacterium, Proc. Natl. Acad. Sci. USA 79: 37073710.Google Scholar
  19. Gmelin, C. G., 1826. Expériences sur l’action de la baryte, de la strontiane, du chrôme, du molybdène, du tungstène, du tellure, de l’osmium, du platine, de l’iridium, du rhodium, du palladium, du nickel, du cobalt, de l’urane, du cérium, du fer et du manganèse sur l’organisme animale, Bull Sci. Med. 7:110–117.Google Scholar
  20. Haselhoff, E., 1893. Versuche uber die schadlicke wirkung von nickel-haltigen wasser auf pflanzen, Landwirtsch. Jahrb. 22: 1862–1868.Google Scholar
  21. Hausinger, R. P., 1987. Nickel utilization by microorganisms, Microbiol. Rev. 51:22–42. Herxheimer, K., 1912. Über die gewerblichen erkrankungen der haut, Dtsch. Med. Wochenschr. 38: 18–22.Google Scholar
  22. Howard-White, F. B., 1963. Nickel-An Historical Review, Longmans Canada, Toronto.Google Scholar
  23. Hutchinson, T. C., 1981. Nickel, in Effect of Heavy Metal Pollution on Plants ( N. W. Lepp, ed.), Applied Science Publishers, London, pp. 171–211.CrossRefGoogle Scholar
  24. Kolodziej, A. F., 1993. The chemistry of nickel-containing enzymes, Prog. Inorg. Chem. 41: 493597.Google Scholar
  25. Lancaster, J. R., Jr., 1988. The Bioinorganic Chemistry of Nickel, VCH Publishers, New York. McKendrick, J. G., and Snodgrass, S. W., 1891. On the physiological action of carbon monoxide on nickel, Br. Med. J. 1: 1215–1217.Google Scholar
  26. Mishra, D., and Kar, M., 1974. Nickel in plant growth and metabolism, Bot. Rev. 40:395–452. Mond, L., Langer, C., and Quincke, F., 1890. The action of carbon monoxide on nickel, J. Chem. Soc. 57: 749–753.Google Scholar
  27. National Research Council, 1975. Nickel, National Academy of Sciences, Washington, D.C. Nieboer, E., and Nriagu, J. 0., 1992. Nickel and Human Health: Current Perspectives, John Wiley and Sons, New York.Google Scholar
  28. Nielsen, F. H., and 011erich, D. A., 1974. Nickel: A new essential trace element, Fed. Proc. 33: 1767–1772.PubMedGoogle Scholar
  29. Nriagu, J. 0., 1980. Nickel in the Environment, John Wiley and Sons, New York.Google Scholar
  30. Nriagu, J. O., 1989. A global assessment of natural sources of atmospheric trace metals, Nature (London) 338: 47–49.CrossRefGoogle Scholar
  31. Nriagu, J. O., and Pacyna, J. M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature (London) 333: 134–139.CrossRefGoogle Scholar
  32. Sigel, H., and Sigel, A., 1988. Nickel and Its Role in Biology, Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York.Google Scholar
  33. Snow, E. T., 1992. Metal carcinogenesis: Mechanistic implications, Pharmacol. Ther. 53:31–65. Stuart, T. P. A., 1883. Nickel and cobalt: Their physiological action on the animal organism. Part I. Toxicology, J. Anat. Physiol. 17: 89–123.Google Scholar
  34. Stuart, T. P. A., 1884. Über den einfluss der nickel und der kobaltwerbindungen auf den thierischen organisms, Arch. Exp. Pathol. Pharmakol. 18: 151–173.CrossRefGoogle Scholar
  35. Sunderman, F. W., Jr., 1989. Mechanisms of nickel carcinogenesis, Scand. J. Work Environ. Health 15: 1–12.PubMedCrossRefGoogle Scholar
  36. Sunderman, F. W., Jr., Aitio, A., Berlin, A., Bishop, C., Buringh, E., Davis, W., Gounar, M.,Jacquignon, P. C., Mastromatteo, E., Rigaut, J. P., Rosenfeld, C., Saracci, R., and Sors, A., 1984. Nickel in the Human Environment, Oxford University Press, New York. Swift, J., 1977. The Big Nickel, Between the Lines, Kitchener, Ontario.Google Scholar
  37. Thauer, R. K., Diekert, G., and Schönheit, P., 1980. Biological role of nickel, Trends Biochem. Sci. 11: 304–306.CrossRefGoogle Scholar
  38. Walsh, C. T., and Orme-Johnson, W. H., 1987. Nickel enzymes, Biochemistry 26:4901–4906. Whitman, W. B., and Wolfe, R. S., 1980. Presence of nickel in the factor F430 from Methanobacterium bryantii, Biochem. Biophys. Res. Commun. 92: 1196–1201.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert P. Hausinger
    • 1
  1. 1.Departments of Microbiology and BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations