Biochemistry pp 477-502 | Cite as

Translation—The Synthesis of Protein

  • J. Stenesh


In protein biosynthesis, or translation, a sequence of mRNA codons directs the polymerization of amino acids into a polypeptide chain. The process is appropriately called translation, since it involves a transfer of genetic information by means of two different “languages” using nucleotides and amino acids.


Polypeptide Chain Initiation Codon Amino Acid Activation Peptide Bond Formation Initiator tRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  1. Arnstein, H. R. V., and Cox, R. A., Protein Biosynthesis, IRL Press, Oxford (1992).Google Scholar
  2. Austen, B. M., and Westwood, O. M. R., Protein Targeting and Secretion, IRL Press, Oxford (1991).Google Scholar
  3. Dunn, W. A., Jr., Autophagy and related mechanisms of lysosome-me-diated protein degradation, Trends Cell Biol. 4: 139–143 (1994).PubMedCrossRefGoogle Scholar
  4. Gesteland, R. F., and Atkins, J. F., Recoding: Dynamic programming of translation, Annu. Rev. Biochem. 65: 741–768 (1996).PubMedCrossRefGoogle Scholar
  5. Graves, D. J., Martin, B. L., and Wang, J. H., Co-and Posttranslation-al Modification of Proteins: Chemical Principles and Biological Effects, Oxford University Press, New York (1994).Google Scholar
  6. Hartl, F U., Molecular chaperones in cellular protein folding, Nature (London) 381: 571–580 (1996).CrossRefGoogle Scholar
  7. Hill, W. E. (ed.), The Ribosome: Structure, Function, and Evolution, American Society for Microbiology, Washington (1990).Google Scholar
  8. Holtzman, E., Intracellular targeting and sorting, BioScience 42: 608–620 (1992).Google Scholar
  9. Jacobson, A., and Peitz, S. W., Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells, Annu. Rev. Biochem. 65: 693–739 (1996).PubMedCrossRefGoogle Scholar
  10. Kawashima, T., Colot-ninas, C. B., Wulff, M., Cusack, S., and Leberman, R., The stucture of the Escherichia coli EF-Tu.EF-Ts complex at 2.5A resolution, Nature (London) 379: 511–518 (1996).CrossRefGoogle Scholar
  11. Lieberman, K. R., and Dahlberg, A. E., Ribosome-catalyzed peptide bond formation, Prog. Nucleic Acid Res. Mol. Biol. 50: 1–23 (1995).PubMedCrossRefGoogle Scholar
  12. Rapoport, T. A., Jungnickel, B., and Kutay, U., Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes, Annu. Rev. Biochem. 65: 271–303 (1996).PubMedCrossRefGoogle Scholar
  13. Sandoval, I. V., and Bakke, O., Targeting of membrane proteins to en- dosomes and lysosomes, Trends Cell Biol. 4: 292–297 (1994).PubMedCrossRefGoogle Scholar
  14. Scheffner, M., Nuber, U., and Huibregtse, J. M., Protein ubiquitination involving an El-E2–E3 enzyme ubiquitin thioester cascade, Nature (London) 373: 81–83 (1995).CrossRefGoogle Scholar
  15. Tate, W. P., Poole, E. S., and Mannering, S., Hidden infidelities in the translational stop signal, Prog. Nucleic Acid Res. Mol. Biol. 52: 293–335 (1996).PubMedCrossRefGoogle Scholar
  16. Varshaysky, A., The N-end rule pathway of protein degradation, Genes to Cells 2: 13–28 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. Stenesh
    • 1
  1. 1.Western Michigan UniversityKalamazooUSA

Personalised recommendations