Biochemistry pp 237-271 | Cite as

Carbohydrate Metabolism

  • J. Stenesh


We begin our study of metabolism with carbohydrates because of their central role in the generation, use, and storage of metabolic energy. Additionally, carbohydrates are of major importance in metabolism because their degradations and interconversions provide the carbon skeletons for the biosynthesis of most other metabolites, from small coenzymes to large structural molecules. After a look at some general aspects of carbohydrate metabolism, we will discuss specific metabolic pathways.


Pentose Phosphate Pathway Pyruvate Kinase Glycogen Synthesis Citric Acid Cycle Glycogen Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  1. Beylot, M., Soloviev, M. V., David, F., Landau, B. R., and Brunengraber, H., Tracing hepatic gluconeogenesis relative to citric acid cycle activity in vitro and in vivo, J. Biol. Chem. 270: 1509–1514 (1995).PubMedCrossRefGoogle Scholar
  2. DiDonato, L., Des Rosiers, C., Montgomery, J. A., David, F., Garneau, M., and Brunengraber, H., Rates of gluconeogenesis and citric acid cycle in perfused livers, assessed from the mass spectrometric assay of the carbon-13-labeling pattern of glutamate, J. Biol. Chem. 268: 4170–4180 (1993).Google Scholar
  3. Hanson, R. W., and Patel, Y. M., Phosphoenolpyruvate carboxykinase (GTP): The gene and the enzyme, Adv. Enzymol. Relat. Areas Mol. Biol. 69: 203–28I (1994).PubMedGoogle Scholar
  4. Hardie, D. G., Biochemical Messengers, Chapman & Hall, London (1991).CrossRefGoogle Scholar
  5. Kyriakis, J. M., and Avruch, J., Sounding the alarm: Protein kinase cascades activated by stress and inflammation, J. Biol. Chem. 271: 24313–24316 (1996).PubMedCrossRefGoogle Scholar
  6. Lebioda, L., and Stec, B., Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor, Nature (London) 333: 683–686 (1988).CrossRefGoogle Scholar
  7. Leschine, S. B., Cellulose degradation in anaerobic environments, Annu. Rev. Microbiol. 49: 399–426 (1995).PubMedCrossRefGoogle Scholar
  8. Lienhard, G. E., Slot, J. W., and Mueckler, M. M., How cells absorb glucose, Sci. Am. 266 (1): 86–91 (1992).PubMedCrossRefGoogle Scholar
  9. Pilkis, S. J., E1-Maghrabi, M. R., and Claus, T. H., Hormonal regulation of hepatic gluconeogenesis and glycolysis, Annu. Rev. Biochem. 57: 755–784 (1988).PubMedCrossRefGoogle Scholar
  10. Pilkis, S. J., Claus, T. H., Kurland, I. J., and Lange, A. J., 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: A metabolic signaling enzyme, Annu. Rev. Biochem. 64: 799–835 (1995).PubMedCrossRefGoogle Scholar
  11. Smythe, C., and Cohen, P., The discovery of glycogenin and the priming mechanism for glycogen biosynthesis, Eur. J. Biochem. 200: 625–631 (1991).PubMedCrossRefGoogle Scholar
  12. Strader, C. D., Fong, T. M., Tota, M. R., and Underwood, D., Structure and function of G protein-coupled receptors, Annu. Rev. Biochem. 63: 101–132 (1994).PubMedCrossRefGoogle Scholar
  13. Taylor, S. S., Buechler, J. A., and Yonemoto, W., cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes, Annu. Rev. Biochem. 59: 971–1005 (1990).PubMedCrossRefGoogle Scholar
  14. Wood, T., The Pentose Phosphate Pathway, Academic Press, Orlando (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. Stenesh
    • 1
  1. 1.Western Michigan UniversityKalamazooUSA

Personalised recommendations