Quantitative Trait Loci

Mapping Genes for Complex Traits
  • Lon R. Cardon
Part of the Perspectives on Individual Differences book series (PIDF)

Abstract

The preceding chapters demonstrate the utility of behavior genetic methodology and the twin/family study design for determining etiological components of traits of medical and behavioral importance. Knowledge of the relative influence of genetic and environmental determinants, their developmental patterns, their different manifestations in males and females, and their commonality across traits is essential for accurate characterization of most traits of interest and for development of effective strategies for screening and intervention.

Keywords

Quantitative Trait Locus Reading Disability Marker Constraint Discrete Trait Human Essential Hypertension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos, C. I., Dawson, D. V., and Elston, R. C. (1990). The probabilistic determination of identity-bydescent sharing for pairs of relatives from pedigrees. American Journal of Human Genetics, 47, 842–853.PubMedGoogle Scholar
  2. Anderson, N. B., McNeilly, M., and Myers, H. (1992). Toward understanding race difference in autonomic reactivity: A proposed contextual model. In J. R. Turner, A. Sherwood, and K. C. Light (Eds.), Individual differences in cardiovascular response to stress (pp. 125–145 ). New York: Plenum Press.Google Scholar
  3. Blackwelder, W. C., and Elston, R. C. (1985). A comparison of sib-pair linkage tests for disease susceptibility loci. Genetic Epidemiology, 2, 85–97.PubMedCrossRefGoogle Scholar
  4. Bodmer, W. F., Bailey, C. J., Bodmer, J., Bussey, H. J. R., Ellis, A., Gorman, P., Lucibello, F. C., Murday, V. A., Rider, S. H., and Scambler, P. (1987). Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature, 328, 614–616.PubMedCrossRefGoogle Scholar
  5. Cannon-Albright, L. A., Goldgar, D. E., Meyer, L. J., Lewis, C. M., Anderson, D. E., Fountain, J. W., Hegi, M. E., Wiseman, R. W., Petty, E. M., and Bale, A. (1992). Assignment of a locus for familial melanoma, MLM, to chromosome 9p130p22. Science, 258, 1148–1152.PubMedCrossRefGoogle Scholar
  6. Cardon, L. R., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F., and DeFries, J. C. (1995). Quantitative trait locus on chromosome 6 predisposing to reading disability. Science, 266, 276–279.CrossRefGoogle Scholar
  7. Cardon, L. R., and Fulker, D. W. (1994). The power of interval mapping of quantitative trait loci using selected sib pairs. American Journal of Human Genetics, 55, 825–833.PubMedGoogle Scholar
  8. Carey, G., and Williamson, J. (1991). Linkage analysis of quantitative traits: Increased power by using selected samples. American Journal of Human Genetics, 49, 786–796.PubMedGoogle Scholar
  9. DeFries, J. C., and Fulker, D. W. (1985). Multiple regression analysis of twin data. Behavior Genetics, 15, 467–473.PubMedCrossRefGoogle Scholar
  10. DeFries, J. C., and Fulker, D. W. (1988). Multiple regression analysis of twin data: Etiology of deviant scores versus individual differences. Acta Geneticae Medicae et Gemellalogiae, 37, 205–216.Google Scholar
  11. DeFries, J. C., Fulker, D. W., and LaBuda (1987). Evidence for a genetic aetiology in reading disability of twins. Nature, 329, 537–539.PubMedCrossRefGoogle Scholar
  12. Emi, M., Hata, A., Robertson, M., Iverius, P. H., Hegele, R., Lalouel, J. M. (1990). Lipoprotein lipase deficiency resulting from a nonsense mutation in exon 3 of the lipoprotein lipase gene. American Journal of Human Genetics, 47, 107–111.PubMedGoogle Scholar
  13. Falconer, D. S. (1990). Introduction to quantitative genetics, 3rd ed. New York: Longman Group. Fulker, D. W., and Cardon, L. R. (1994). A sib pair approach to interval mapping of quantitative trait loci. American Journal of Human Genetics, 54, 1092–1103.Google Scholar
  14. Fulker, D. W., Cardon, L. R., DeFries, J. C., Kimberling, W. J., Pennington, B. F., and Smith, S. D. (1991). Multiple regression analysis of sib-pair data on reading to detect quantitative trait loci. Reading and Writing: An Interdisciplinary Journal, 3, 299–313.CrossRefGoogle Scholar
  15. Fulker, D. W., Cherny, S. S., and Cardon, L. R. (1995). Multipoint interval mapping of quantitative trait loci using sib pairs (submitted).Google Scholar
  16. Gelderman, H. (1975). Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theoretical Applied Genetics, 46, 319–330.CrossRefGoogle Scholar
  17. Gillis Light, J., and DeFries, J. C. (1994). Comorbidity of reading and mathematics disabilities: Genetic and environmental etiologies. Journal of Learning Disabilities (in press).Google Scholar
  18. Goldgar, D. E. (1990). Multipoint analysis of human quantitative genetic variation. American Jour-nal of Human Genetics, 47, 957–967.Google Scholar
  19. Haseman, J. K., and Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus. Behavior Genetics, 2, 3–19.PubMedCrossRefGoogle Scholar
  20. Hill, W. G. (1974). Estimation of linkage disequilibrium in randomly mating populations. Heredity, 33, 229–239.PubMedCrossRefGoogle Scholar
  21. Innis, M. A., Gelfand, D. H., Sninskey, J. J., and White, T. J. (1990). PCR protocols: A guide to methods and applications. New York: Academic Press.Google Scholar
  22. Jeunemaitre, X., Lifton, R. P., Hunt, S. C., Williams, R. R., and Lalouel, J.-M. (1992). Absence of linkage between the angiotensin-converting enzyme and human essential hypertension. Nature and Genetics, 1, 72–75.CrossRefGoogle Scholar
  23. Lifton, R. P., Hunt, S. C., Williams, R. R., Pouyssegur, J., and Lalouel, J.-M. (1991). Exclusion of the Na+-H+ antiporter as a candidate gene in human essential hypertension. Hypertension, 17, 8–14.CrossRefGoogle Scholar
  24. Mather, K., and Jinks, J. L. (1971). Biometrical genetics. London: Chapman and Hall.Google Scholar
  25. Neale, M. C., and Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  26. NIH/CEPH Collaborative Mapping Group. (1992). A comprehensive genetic linkage map of the human genome. Science, 258, 67–86.CrossRefGoogle Scholar
  27. Nishina, P. M., Johnson, J. P., Naggert, J. K., Krauss, R. M. (1992) Linkage of atherogenic lipoprotein phenotype tot he low density lipoprotein receptor locus on the short arm of chromosome 19. Proceedings of the National Academy of Sciences, USA, 89, 708–712.CrossRefGoogle Scholar
  28. Olson, J. M., and Wijsman, E. M. (1993). Linkage between quantitative trait and marker loci: Methods using all relative pairs. Genetic Epidemiology, 10, 87–102.PubMedCrossRefGoogle Scholar
  29. Ott, J. (1991). Analysis of human genetic linkage. Baltimore: Johns Hopkins University Press. Penrose, L. S. (1938). Genetic linkage in graded human characters. Annals Eugenics, 6, 133–138.Google Scholar
  30. Plomin, R., McClearn, G. E., Smith, D. L., Vignetti, S., Chorney, M. J., Chorney, K., et al. (1994). DNA markers associated with high versus low IQ: The IQ quantitative trait loci (QTL) project. Behavior Genetics, 24, 107–118.PubMedCrossRefGoogle Scholar
  31. Risch, N. (1990). Linkage strategies for genetically complex traits. II. The power of affected relative pairs. American Journal of Human Genetics, 46, 229–241.PubMedGoogle Scholar
  32. Robertson, A. (1973). Linkage between marker loci and those affecting a quantitative trait. Behavior Genetics, 3, 389–391.PubMedCrossRefGoogle Scholar
  33. Schork, N. J., Amos, C. I., Fulker, D. W., and Cardon, L. R. (1995). Interval mappiing of quantitative trait loci using variance components (submitted).Google Scholar
  34. Schork, N. J., Boehnke, M., Terwilliger, J. D., and Ott, J. (1993). Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits. American Journal of Human Genetics, 53, 1127–1136.PubMedGoogle Scholar
  35. Schork, N. J., and Weder, A. B. (1995). Statistical analysis of genetic loci influencing quantitative traits that exhibit postnatal developmental patterns (submitted).Google Scholar
  36. Ward, R. (1990). Familial aggregation and genetic epidemiology of blood pressure. In J. H. Laragh and B. M. Brenner (Eds.), Hypertension: Pathophysiology, diagnosis and management (pp. 81100 ). New York: Raven Press.Google Scholar
  37. Williams, R. R., Hunt, S. C., Hopkins, P. N., Hasstedt, S. J., Wu, L. L., and Lalouel, J.-M. (1994). Tabulations and expectations regarding the genetics of human hypertension. Kidney International, 44, S57 - S64.PubMedGoogle Scholar
  38. Williams, R. R., Hunt, S. C., Hopkins, P. N., Wu, L. L., Hasstedt, S. J., Berry, T. D., Barlow, G. K., Stults, B. M., Schumacher, M. C., Ludwig, E. H., Elbein, S. C., Wilson, D. E., Lifton, R. P., and Lalouel, J.-M. (1993). Genetic basis of familial dyslipidemia and hypertension: 15-Year results from Utah. Hypertension, 6, 319S - 327S.CrossRefGoogle Scholar
  39. Wilson, D. E., Emi, M., Iverius, P. H., Hata, A., Wu, L. L., Hillas, E., Williams, R. R., and Lalouel, J.-M. (1990). Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation. Journal of Clinical Investigation, 86, 735–750.PubMedCrossRefGoogle Scholar
  40. Ying, L. J., Zee, R. Y., Griffiths, L. R., and Morris, B. J. (1991). Association of a RFLP for the insulin receptor gene, but not insulin, with essential hypertension. Biochemistry and Biophysics Research Communication, 181, 486–492.CrossRefGoogle Scholar
  41. Zee, R. Y., Ying, L. H., Morris, B. J., and Griffiths, L. R. (1991). Association and linkage analyses of restriction fragment length polymorphisms for the human renin and antithrombin III genes in essential hypertension. Journal of Hypertension, 9, 825–830.PubMedCrossRefGoogle Scholar
  42. Zee, R. J., Lou, Y. K., Griffiths, L. R., and Morris, B. J. (1992). Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. Biochemistry and Biophysics Research Communication, 184, 9–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Lon R. Cardon
    • 1
  1. 1.Sequana TherapeuticsLa JollaUSA

Personalised recommendations