Skip to main content

Effect of Apamin and Melittin on Ion Channels and Intracellular Calcium of Heart Cells

  • Chapter
Bee Products
  • 977 Accesses

Abstract

Several toxins have been reported to be highly specific blockers of a single type of ionic channel. A good example of this is tetrodotoxin (TTX), a highly specific fast Na+− channel blocker1. Like TTX, scorpion toxins have become important tools for the study of Na+ channels2. However, different scorpion venoms have different types of action on this channel2–4. Saxotoxin (STX) was also reported to be a specific fast Na+ channel blocker1,5,6. Some natural toxins do not inhibit the fast Na+ channel but rather activate or open this type of channel. These include gonioporatoxin (GPT)7, batrachotoxin (BXT)8 and grayanotoxin (GTX)9. Several other types of toxins were found to be specific for different types of K+ channels. Examples are charybdotoxin (ChTX), apamin, dendrotoxin, noxiustoxin and gaboon viper venom10,11. Our laboratory, as well as others, reported that some toxins may specifically affect the L-type Ca2+ channels12 as well as the early embryonic fast transient (ft) slow Na+ channels13–15 in heart muscle. Another toxin, ω-conotoxin (ω-CgTx), was reported to block the L-type and N-type Ca2+ channels but with only transient inhibitory effects on T-type Ca2+ channels in neurons and not in heart muscle16. Maitotoxin (MTX) was found to activate a new class of voltage-independent Ca2+ channel or an entirely modified form of voltage-gated Ca2+ channel in heart cells17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mille D. (1975) The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys. J. 15, 615–619.

    Google Scholar 

  2. Wheller KP., Watt DD., Lazdunski M. (1983) Classification of Na+ channel receptors specific for various scorpion toxins. Pflugers Archv — Eur. J. Physiol. 397, 164–165.

    Article  Google Scholar 

  3. Carbone E., Prestipino G., Franciolini F., Dent MA. Possani LD. (1984) Selective modification of the squid axon Na+ currents by Centruroides noxius toxin II-10. J. Physiol. 79, 179–184.

    CAS  Google Scholar 

  4. Yatani A., Kunze DL. and Brown AM. (1988) Effects of dihydropyridine calcium channel modulators on cardiac sodium channels. Am. J. Physiol. 254, 140–147.

    Google Scholar 

  5. Kao CY. and Nishiyama A. (1965) Actions of saxitoxin on peripheral neuromuscular systems. J. Physiol. 180, 50–66.

    CAS  Google Scholar 

  6. Strichartz G. (1984) Structural determinants of the affinity of saxitoxin for neuronal sodium channels. Electrophysiological studies on frog peripheral nerve. J. Gen. Physiol. 84, 281–305.

    CAS  Google Scholar 

  7. Nishio M., Muramatsu I., Kigoshi S., Fujiwara M. (1988) Effects of goniopora toxin on the action potential and membrane currents of guinea-pig single ventricular cells. Naunyn-Schmiedebergs Arch. Pharmacol. 337, 440–446.

    CAS  Google Scholar 

  8. Garber SS. (1988) Symmetry and asymmetry of permeation through toxin-modified Na+ channels. Biophys. J. 54, 767–776.

    Article  CAS  Google Scholar 

  9. Seyama I., Yamada K., Kato R., Masutani T., Hamada M. (1988) Grayanotoxin opens Na+ channels from inside the squid axonal membrane. Biophys. J. 53, 271–274.

    Article  CAS  Google Scholar 

  10. Castle NA., Haylett DG., Jenkinson DH. (1989) Toxins in the characterization of potassium channels. Trends in Neurosci. 12, 59–65.

    Article  CAS  Google Scholar 

  11. Carbone E. and Swandulla D. (1989) Neuronal calcium channels: kinetics, blockade and modulation. Prog. Biophys. Molec. Biol. 54, 31–58.

    Article  CAS  Google Scholar 

  12. Bkaily G., Sperelakis N., Renaud J.-F., Payet MD. (1985) Apamin, a highly specific Ca2+ blocking agent in heart muscle. Am. J. Physiol. 248, H961–965.

    CAS  Google Scholar 

  13. Bkaily G., Jacques D., Yamamoto T., Sculptoreanu A., Payet MD., Sperelakis N. (1988) Three types of slow inward currents as distinguished by melittin in 3-day-old embryonic heart. Can. J. Physiol. Pharmacol. 66, 1017–1022.

    Article  CAS  Google Scholar 

  14. Bkaily G., Peyrow M. Yamamoto T., Sculptoreanu A., Jacques D. and Sperelakis N. (1988) Macroscopic Ca2+-Na+ and K+ currents in single heart and rabbit aortic cells. Mol. Cell. Biochem. 80, 59–72.

    CAS  Google Scholar 

  15. Bkaily G., Jacques D., Sculptoreanu A., Yamamoto T., Carrier, D., Vigneault D. and Sperelakis N. (1991) Apamin, a highly potent blocker of the TTX-and Mn2+— insensitive fast transient Na+ current in young embryonic heart. J. Mol. Cell Cardiol. 23, 25–39.

    Article  CAS  Google Scholar 

  16. McCleskey EW., Fox AR, Feldman DH., Cruz IJ., Olivera BM., Tsien RW., Yoshikami D.(1987) Omegaconotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Nat. Acad. Sciences of USA. 84, 4327–4331.

    Article  CAS  Google Scholar 

  17. Kobayashi M., Ochi R., Ohizumi Y. (1987) Maitotoxin-activated single calcium channels in guinea-pig cardiac cells. Br. J. Pharmacol. 92, 665–671.

    Article  CAS  Google Scholar 

  18. Bkaily G. Single heart cells as models for studying cardiac toxicology in: In Vitro Methods in Toxicology (Jolies G and Cordier A. Editors) Academic Press London 1992 pp.289-334.

    Google Scholar 

  19. Bkaily G., Sculptoreanu A., Jacques D., Economos D. and Ménard D. (1992) Apamin, a highly potent fetal L-type Ca2+ current blocker in single heart cells. Am. J. Physiol. 262, H463–471.

    CAS  Google Scholar 

  20. Bkaily G., Gros-Louis N., Naik R., Jaalouk D. and Pothier P. (1996) Implication of the nucleus in excitation contraction coupling of heart cells. Mol. Cell. Biochem. 154, 113–121.

    Article  CAS  Google Scholar 

  21. Bkaily G., Pothier P., D’Orléans-Juste P., Simaan M., Belzile F., Jaalouk D. and Neugebauer W. (1996) The use of confocal microscopy in the investigation of cell structure and function in heart, vascular endothelium and smooth muscle cells. Mol. Cell. Biochem. In press.

    Google Scholar 

  22. Sperelakis N. Change in membrane electrical properties during development of the heart in: In vitro methods in toxicology. (Zipes DP, Bailey JC. and Elharrar V. Editors) Martinus Nijhoff Publisher The Hague 1980 pp.221-262.

    Google Scholar 

  23. Kojima M. and Sperelakis N. (1983) Calcium antagonistic drugs differ in ability to block the slow Na+ channels of young embryonic chick hearts. Eur. J. Pharmacol. 94, 9–18.

    Article  CAS  Google Scholar 

  24. Bernard C. Establishment of ionic permeabilities of the myocardial membrane during embryonic development of the rat in: Development and physiological correlates of cardiac muscle. (Lieberman M. and Sano T. Editors) Raven Press N.Y. 1988 pp. 169-184.

    Google Scholar 

  25. Brown AM., Lee KS., Powell T. (1981) Sodium current in single rat heart muscle cells. J. Physiol. 318, 479–500.

    CAS  Google Scholar 

  26. Follmer CH. Ten Erck RE., Yeh JZ. (1987) Sodium current kinetics in cat atrial myocytes. J. Physiol. (Lond) 384, 169–197.

    CAS  Google Scholar 

  27. Anderson PAV. (1987) Properties and pharmacology of a TTX-insensitive Na+ current in neurones of the jellyfish cyancea capillata. J. Exp. Biol. 133, 231–248.

    Google Scholar 

  28. Bossu J-L., Fletz A. (1984) Patch-clamp study of the tetrodotoxin-resistant sodium current in group C sensory neurones. Neurosci Let, 51, 241–246.

    Article  CAS  Google Scholar 

  29. Ikeda S. Schofield GG. (1987) Tetrodotoxin-resistant sodium current of rat nodose neurones: Monovalent cation selectivity and divalent cation block. J. Physiol. (Lond) 389, 255–270.

    CAS  Google Scholar 

  30. Sperelakis N., Shigenobu K. and McLean M.J. Membrane cation channels: changes in developing hearts, in cell culture, and in organ culture in: Developmental and physiological correlates of cardiac muscle. (Lieberman M. and Sano T. Editors) Raven Press N.Y. 1976 pp.209-234.

    Google Scholar 

  31. Bean BP. (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J. Physiol. (Lond). 86, 1–30.

    CAS  Google Scholar 

  32. Fox AP., Nowycky MC., Tsien RW. (1987) Kinetic and pharmacological properties distinguishing three types of calcium current in chick sensory neurones. J. Physiol. (Lond) 394, 149–172.

    CAS  Google Scholar 

  33. Schetz JA. and Anderson PAV. (1995) Pharmacology of the high-affinity apamin receptor in rabbit heart. Cardiovasc. Res. 30, 755–762.

    CAS  Google Scholar 

  34. Sokol PT., Hu W., Yi L., Toral J., Chandra M. and Ziai MR. (1994) Cloning of an apamin binding protein of vascular smooth muscle. J. Protein Chem. 13, 117–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bkaily, G., Simaan, M., Jaalouk, D., Pothier, P. (1997). Effect of Apamin and Melittin on Ion Channels and Intracellular Calcium of Heart Cells. In: Mizrahi, A., Lensky, Y. (eds) Bee Products. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9371-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9371-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9373-4

  • Online ISBN: 978-1-4757-9371-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics