Ramifications of Gaba Receptor Subtypes on Retinal Information Processing

  • Malcolm Slaughter
  • Jian Zhang
  • Ning Tian


GABAergic inhibition shapes light responses in both plexiform layers of the vertebrate retina. GABA is contained in a population of horizontal cells and in about one-third of amacrine cells in the amphibian retina. Almost all second and third order neurons have GABA receptors. GABA’s influence is not only diffuse, but also diverse. Pharmacological studies, coupled with amino acid sequence analysis, have identified several subtypes of the GABA receptor, including: the classical GABAa, the GABAb, GABAρ, and GABAc receptors. We have begun investigating the role of these different receptors in information processing in the proximal retina. Although some of our results are preliminary, and our conclusions tentative, it appears that: 1) the GABAa receptor produces a strong, shunting inhibition of amacrine and ganglion cell EPSPs; 2) the GABAb receptor suppresses sustained signals while augmenting transient responses; 3) GABAρ receptors preferentially suppress transient ON responses; and 4) GABAc receptors appear to suppress sustained activity, somewhat similar to the action of GABAb receptors. Overall, GABA can modulate the retinal network through a variety of mechanisms, utilizing different receptor systems, to selectively suppress particular information pathways.


Ganglion Cell GABAa Receptor Bipolar Cell Gaba Receptor Amacrine Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, S-H., and Slaughter, M.M. (1989) Effects of baclofen on transient neurons in the mudpuppy retina: Electrogenic and network actions, J. Neurophysiol. 61:382–390.PubMedGoogle Scholar
  2. Barlow, H.B. and Levick, W.R. (1965) The mechanism of directionally selective units in rabbit’s retina, J. Physiol. 178:477–504.PubMedGoogle Scholar
  3. Belgum, J.H., Dvorak, D.R. and McReynolds, J.S. (1984) Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells, J Physiol. 354:273–286.PubMedGoogle Scholar
  4. Bittinger, H., Froestl, W., Hall, R., Karlsson, G., Klebs, K., Olpe, H-R., Pozza, M.F., Steinmann, M.W. and Van Riezen, H. (1990) Biochemistry, electrophysiology, and pharmacology of a new GABAb antagonist: CGP 35348. In: GABAb receptors in mammalian function (Bowery, N.G., Bittinger, H. and Olpe. H-R, eds) pp47–60. New York: Wiley.Google Scholar
  5. Bormann, J., Hamill, O.P. and Sakman, B. (1987) Mechanisms of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. 385:243–286.PubMedGoogle Scholar
  6. Bowery, N.G., Hill, D.R., Hudson, A.L., Doble, A., Middlemiss, D.N., Shaw, J. and Turnbull, M.J. (1980) (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor, Nature 283:92–94.PubMedCrossRefGoogle Scholar
  7. Boycott, B.B. and Wassle, H. (1974) The morphological types of ganglion cells of the domestic cat’s retina, J. Physiol. 240:397–419.PubMedGoogle Scholar
  8. Caldwell, J.H., Daw, N.W. and Wyatt, H.J. (1978) Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: Lateral interactions for cells with more complex receptive fields, J. Physiol. 276:277–298.PubMedGoogle Scholar
  9. Cohen, B.N., Fain, G.L. and Fain, M.J. (1989) GABA and glycine channels in isolated ganglion cells from goldfish retina, J. Physiol. 418:53–82.PubMedGoogle Scholar
  10. Cunningham, J.R. and Neal, M.J. (1983) Effect of gamma-aminobutyric acid agonists, glycine, taurine, and neuropeptides on acetylcholine release from the rabbit retina, J. Physiol. 336:563–577.PubMedGoogle Scholar
  11. Cutting, G., Lu, L., O’Hara, B.F., Kasch, L.M., Montrose-Rafizdeh, C., Donovan, D.M., Shimada, S., Antononarakis. S.E., Guggino, W.B., Uhl, G.R. and Kazazian, H.H. (1991) Cloning of the γ-aminobutyric acid (GABA) p 1 cDNA: a GABA receptor subunit highly expressed in the retina, Proc. Natl. Acad. Sci. USA 88:2673–2677.PubMedCrossRefGoogle Scholar
  12. Dolphin, A.C. and Scott, R.H. (1986) Inhibition of calcium currents in cultured rat dorsal root ganglion neurones by (-)baclofen, Br. J. Pharmacol. 88:213–220.PubMedCrossRefGoogle Scholar
  13. Dutar, P. and Nicoll, R.A.(1988a) A physiological role for GABAb receptors in the central nervous system, Nature 332:156–158.PubMedCrossRefGoogle Scholar
  14. Dutar, Rand Nicoll, R.A. (1988b) Pre-and postsynaptic GABAb receptors in the hippocampus have different pharmacological properties, Neuron 1:585–591.PubMedCrossRefGoogle Scholar
  15. Feigenspan, A., Wässle, H. and Bormann, J. (1993) Pharmacology of GABA receptor Cl channels in rat retinal bipolar cells, Nature 361:159–162.PubMedCrossRefGoogle Scholar
  16. Frumkes, T.E., Miller, R.F., Slaughter, M. and Dacheux, R.F. (1981) Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina III. Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: A model, J. Neurophysiol 45:783–804.PubMedGoogle Scholar
  17. Heidelberger, R. and Matthews, G. (1991) Inhibition of calcium influx and calcium current by γ-aminobutyric acid in single synaptic terminals, Proc. Natl Acad. Sci. USA 88:7135–7139.PubMedCrossRefGoogle Scholar
  18. Ikeda, H., Hankins, M.W. and Kay, C.D. (1990) Actions of baclofen and phaclofen upon ON-and OFF-ganglion cells in the cat retina, Eur. J. Pharmacol. 190:1–9.PubMedCrossRefGoogle Scholar
  19. Ikeda, H. and Sheardown, M.J. (1982) Aspartate may be an excitatory transmitter mediating visual excitation of’ sustained’ but not ‘transient’ cells in the cat retina: Iontophoretic studies, in vivo, Neurosci. 7:25–36.CrossRefGoogle Scholar
  20. Ikeda, H. and Sheardown, M.J. (1983) Transmitters mediating inhibition of ganglion cells in the cat retina: Iontophoretic studies in vitro, Neurosci. 8:837–853.CrossRefGoogle Scholar
  21. Johnston, G.A.R., Curtis, D.R., De Groat, W.C. and Duggan, A.W. (1968) Central actions of ibotenic acid and muscimol, Biochem. Pharmacol. 17:2488–2489.PubMedCrossRefGoogle Scholar
  22. Johnston, G.A.R., Curtis, D.R., Beart, P.M., Game, C.J.A., McCulloch, R.M. and Twitchin, B. (1975) Cis and trans-4-aminocrotonic acid as GABA agonists of restricted conformation, J. Neurochem. 24:157–160.PubMedCrossRefGoogle Scholar
  23. Kerr, D.I., Ong, J., Johnston, G.A.R., Abbenante, J. and Prager, R.H. (1988) 2-Hydroxy-saclofen: An improved antagonist at central and peripheral GABAb receptors, Neurosci. Lett. 92:92–96.PubMedCrossRefGoogle Scholar
  24. Kerr, D.I., Ong, J., Johnston, G.A.R., Abbenante, J. and Prager, R.H. (1989) Antagonism at GABAb receptors by saclofen and related sulphonic analogues of baclofen and GABA, Neurosci. Lett. 107:239–244.PubMedCrossRefGoogle Scholar
  25. Kerr, D.I., Ong, J., Prager, R.H., Gynther, B.D. and Curtis, D.R. (1987) Phaclofen: A peripheral and central baclofen antagonist, Brain Res. 405:150–154.PubMedCrossRefGoogle Scholar
  26. Kmjevic, K. and Schwartz, S. (1967) The action of gamma-amino-butyric acid on cortical neurones. Exp. Brain Res. 3:320–336.CrossRefGoogle Scholar
  27. Maguire, G., Lukasiewicz, P. and Werblin, F. (1989a) Amacrine cell interactions underlying the response to change in the tiger salamander retina, J. Neurosci. 9:726–735.PubMedGoogle Scholar
  28. Maguire, G., Maple, B., Lukasiewicz, P. and Werblin, F. (1989b) Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander, Proc. Natl. Acad. Sci. USA 86:10144–10147.PubMedCrossRefGoogle Scholar
  29. Massey SC Redbum DA (1987) Transmitter circuits in the vertebrate retina. Prog Neurobiol 28:55–96.PubMedCrossRefGoogle Scholar
  30. Matthews, G., Ayoub, G. and Heidelberger, R. (1991) Inhibition of presynaptic calcium currents via GABAc receptors, Soc. Neurosci. Abstr. 17:900.Google Scholar
  31. Neal, M.J., Cunningham, J.R. and Slaughter, M.M. (1993) Synergy of acetylcholine and gamma-aminobutyric acid in rabbit cholinergic amacrine cells, Invest. Ophthalmol. Vis. Sci. (suppl.) 34:1062.Google Scholar
  32. Newberry, N.R. and Nicoll, R.A. (1984) Baclofen directly hyperpolarizes hippocampal cells, Nature 308:450–452.PubMedCrossRefGoogle Scholar
  33. Pan, Z-H. and Slaughter, M.M. (1991) Control of retinal information coding by GABAb receptors, J. Neurosci. 11:1810–1821.PubMedGoogle Scholar
  34. Qian, H. and Dowling, J.E. (1993) Novel GABA responses from rod-driven retinal horizontal cells, Nature 361:162–164.PubMedCrossRefGoogle Scholar
  35. Redbum, D.A., Friedman, D.L. and Massey, S.C. (1989) The function of multiple subclasses of GABA receptors in rabbit retina. In: Neurobiology of the Inner Retina (Weiler, R. and Osborne, N.N. eds)pp 41–52. Berlin: Springer-Verlag.Google Scholar
  36. Scherer, R.W., Ferkany, J.W. and Enna, S.J. (1988) Evidence for pharmacologically distinct subsets of GABAb receptors, Brain Res. Bull. 21:439–443.PubMedCrossRefGoogle Scholar
  37. Slaughter, M.M. and Bai, S-H. (1989) Differential effects of baclofen on sustained and transient cells in the mudpuppy retina, J. Neurophysiol. 61:374–381.PubMedGoogle Scholar
  38. Slaughter, M.M. and Miller, R.F. (1981) 2-Amino-4-phosphonobutyric acid: Anew pharmacological tool for retina research, Science 211:182–185.PubMedCrossRefGoogle Scholar
  39. Werblin, F., Maguire, G., Lukasiewicz, P., Eliasof, S. and Wu, S.M. (1988) Neural interactions mediating the detetion of motion in the retina of the tiger salamander, Visual Neurosci. 1:317–329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Malcolm Slaughter
    • 1
  • Jian Zhang
    • 1
  • Ning Tian
    • 1
  1. 1.Departments of Biophysical Sciences and Ophthalmology, School of MedicineState University of New YorkBuffaloUSA

Personalised recommendations