Skip to main content

Spatio-Chromatic Signalling in the Vertebrate Retina

  • Chapter
  • 59 Accesses

Abstract

The optical image focussed on the photoreceptor layer of the retina has distributed within it a variety of informative features that represent visual conditions in the surrounding environment. One of these features is colour. In fact, the functional organization of the vertebrate visual system is such that the colour of a given ‘local’ stimulus is not perceived just according to the wavelengths of light reflected from that point but is also influenced by wavelengths emitted from surrounding areas. This spatio-chromatic phenomenon leads to “colour constancy” whereby the colour of an object appears unchanged under different spectral illumination conditions (Land, 1959). Colour constancy has been demonstrated by both psychophysics and electrophysiology in vertebrates as diverse as fish and primates (Zeki, 1980; 1995; Ingle, 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov, I. & Levine, M.W. (1972) The effects of carbon dioxide on the excised goldfish retina. Vision Res. 12:1881–1895.

    Article  PubMed  CAS  Google Scholar 

  • Adams, A.J. & Afandor, A.J. (1971) Ganglion cell receptive field organization at different levels of light adaptation, Am. J. Optom. 48:889–894.

    Article  Google Scholar 

  • Ashmore, J.F. & Falk, G. (1980) Responses of rod bipolar cells in the dark adapted retina of the dogfish, Scyliorhinus canicula, J. Physiol. 300:115–150.

    CAS  Google Scholar 

  • Barlow, H.B., Fitzhugh, R., & Kuffler, S.W. (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation, J. Physiol. 137:338–354.

    PubMed  CAS  Google Scholar 

  • Barnes, S. (1995) Photoreceptor synaptic output: neurotransmitter release and photoreceptor coupling. In Neurobiology and Clinical Aspects of the Outer Retina (Djamgoz M.B. A., Archer, S. and Vallerga, S. eds.). Chapman & Hall, London, pp. 133–153.

    Chapter  Google Scholar 

  • Baldridge, W.H. & Ball, A.K. (1991) Background illumination reduces horizontal cell receptive-field size in both normal and 6-hydroxydopamine lesioned goldfish retinas, Visual Neurosci. 7:441–450.

    Article  CAS  Google Scholar 

  • Bauer, B. & Ehinger, B. (1980) Action of alpha-MSH on the release of neurotransmitters from the retina, Acta Physiol. Scand. 108:105–107.

    Article  PubMed  CAS  Google Scholar 

  • Baylor, D.A., Fourtes, M.G.F & O’Bryan, P.M. (1971) Receptive field of cones in the retina of the turtle, J. Physiol. 214:65–214.

    Google Scholar 

  • Beauchamp, R.D. & Daw, N.W. (1972) Rod and cone input to single goldfish optic nerve fibres, Vision Res. 12:1201–1212.

    Article  PubMed  CAS  Google Scholar 

  • Bilotta, J. & Abramov, I. (1989a) Spatial properties of goldfish ganglion cells, J. Gen. Physiol. 93:1147–1169.

    Article  PubMed  CAS  Google Scholar 

  • Bilotta, J. & Abramov, I. (1989b) Spatio-spectral properties of goldfish retinal ganglion cells, J. Neurophysiol. 62:1140–1148.

    PubMed  CAS  Google Scholar 

  • Bowmaker, J.K. & Kunz, Y.W. (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes, Vision Res. 27:2101–2108.

    Article  PubMed  CAS  Google Scholar 

  • Browman, H.I. & Hawryshyn, C.W. (1992) Thyroxine induces a precocial loss of ultraviolet photosensitivity in rainbow trout (Oncorhynchus mykiss), Vision Res. 32:2303–2312.

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt, D.A. (1977) Responses and receptive field organization of cones in perch retina, J. Neurophysiol. 40:53–62.

    PubMed  CAS  Google Scholar 

  • Burkhardt, D.A., Hassin, G., Levine, J.S. & MacNichol, E.F. Jr. (1980) Electrical responses and photopigments of twin cones in the retina of the walleye, J. Neurophysiol. 309:215–228.

    CAS  Google Scholar 

  • Cajal, S.R. (1893) La retiné des vertébrés. La Cellule 9:17–257.

    Google Scholar 

  • Cowan, M.W. (1970) Centrifugal fibres to the avian retina, Br. Med. Bull. 26:112–118.

    Google Scholar 

  • Dacey, D.M. & Lee, B.B. (1994) The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type, Nature 367:731–735.

    Article  PubMed  CAS  Google Scholar 

  • Dacheux, R.F. & Raviola, E. (1986) The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell, J. Neurosci. 6:331–345.

    PubMed  CAS  Google Scholar 

  • Davis, G.W. & Naka, K-I. (1980) Spatial organization of catfish retinal neurons. I. Single-and random-bar stimulation, J. Neurophysiol. 43:807–831.

    PubMed  CAS  Google Scholar 

  • Davis, R.E., Kyle, A. & Klinger, RD. (1988) Nervus terminalis innervation of the goldfish retina and behavioural visual sensitivity, Neurosci. Lett. 91:126–130.

    Article  PubMed  CAS  Google Scholar 

  • Daw, N.W. (1968) Colour-coded ganglion cells in the goldfish retina. Extension of their receptive fields by means of new stimuli, J. Physiol. 197:567–592.

    PubMed  CAS  Google Scholar 

  • Daw, N.W. (1973) Neurophysiology of colour vision, Physiol. Rev. 53:571–611.

    PubMed  CAS  Google Scholar 

  • De Monasterio, F.M. & Gouras, R (1975) Functional properties of ganglion cells of the rhesus monkey retina, J. Physiol. 251:167–195.

    PubMed  Google Scholar 

  • DeVries, S.H. & Schwartz, E.A. (1989) Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers, J. Physiol. 44:351–375.

    Google Scholar 

  • van Dijk, B.W. & Spekreijse, H. (1984) Linear color opponency in carp retinal ganglion cells, Vision Res. 24:1865–1872.

    Article  PubMed  Google Scholar 

  • Djamgoz M.B.A. & Ruddock K.H. (1978a) Properties of amacrine cell responses recorded from isolated fish retinae, Neurosci. Lett. 7:89–93.

    Article  PubMed  CAS  Google Scholar 

  • Djamgoz, M.B.A. & Ruddock, K.H. (1978b) Changes in structure and electrophysiological function of retinal neurones induced by laser irradiation, Neurosci. Lett. 7:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Djamgoz, M.B.A., Stell, W.K., Chin, C.A. & Lam, D.M.K. (1981) An opiate system in the goldfish retina. Nature 292:620–623.

    Article  PubMed  CAS  Google Scholar 

  • Djamgoz, M.B.A., Spadevecchia, L., Usai, C. & Vallerga, S. (1990) Light-evoked response pattern variability and morphological characterization of amacrine cells in goldfish retina, J. Comp. Neurol. 301:171–190.

    Article  PubMed  CAS  Google Scholar 

  • Djamgoz, M.B.A. & Wagner, H-J. (1992) Localization and function of dopamine in the adult vertebrate retina, Neurochem. Int. 20:139–191.

    Article  PubMed  CAS  Google Scholar 

  • Djamgoz, M.B.A & Yamada, M. (1992) Dopamine and light adaptation sharpen the spectral response of HI horizontal cells in carp retina, Neurosci.Res. Comm. 10:149–153.

    CAS  Google Scholar 

  • Djamgoz, M.B.A., Furukawa, T., Yamada, M. and Yasui, S. (1993) Short-wavelength signal transmission to HI horizontal cells in the isolated carp retina: involvement of APB receptor activated by light adaptation, J. Physiol. 467:353P.

    Google Scholar 

  • Djamgoz, M.B.A., Wagner, H-J & Witkovsky, P. (1995a) Photoreceptor-horizontal cell connectivity, synaptic transmission and neuromodulation. In Neurobiology and Clinical Aspects of the Outer Retina. (Djamgoz M.B.A., Archer S.N. and Vallerga S. eds.). Chapman & Hall, London, pp. 155–193.

    Chapter  Google Scholar 

  • Djamgoz, M.B.A., Cunningham, J.R., Hutson, P.H., Murray, F. & Neal, M.J. (1995b) Nitric oxide inhibits depolarization-induced release of endogenous dopamine in the rabbit retina. Neurosci. Lett. 198:1–4.

    Article  Google Scholar 

  • Dowling, J.E. (1979) Information processing by local circuits: the vertebrate retina as a model system. In The Neurosciences, Fourth Study Program (Schmitt F.O. and Worden F.G. eds.). MIT Press, Cambridge, Mass. pp. 163–181.

    Google Scholar 

  • Dowling, J.E. (1986) Dopamine: a retinal neuromodulator?, Trends Neurosci. 9:236–240.

    Article  CAS  Google Scholar 

  • Dowling, J.E. (1989) Neuromodulation in the retina: the role of dopamine, The Neurosciences 1, 35–43.

    Google Scholar 

  • Downing, J.E.G., Djamgoz, M.B.A. & Bowmaker, J.K. (1986) Photoreceptors of a cyprinid fish, the roach: morphological and spectral characteristics, J. Comp. Physiol. A 159:859–868.

    Article  Google Scholar 

  • Downing, J.E.G. and Djamgoz, M.B.A. (1989) Quantitative analysis of cone photoreceptor-horizontal cell connectivity patterns in the retina of a cyprinid fish: electron microscopy of functionally-identified and HRP-labelled horizontal cells, J. Comp. Neurol. 289:537–553.

    Article  PubMed  CAS  Google Scholar 

  • Dubin, M. (1970) The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis, J. Comp. Neurol. 140, 479–506.

    Article  PubMed  CAS  Google Scholar 

  • Engstrom, A. (1963) Cone types and cone arrangements in teleost retinae, Acta Zool. 42:179–243.

    Article  Google Scholar 

  • Enroth-Cugell, C. & Lennie, P. (1975) The control of retinal ganglion cell discharge by receptive field surrounds, J. Physiol. 247:51–578.

    Google Scholar 

  • Enroth-Cugell, C. & Robson, (1966) The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. 87:517–552.

    Google Scholar 

  • Gleason, E., Borges, S. & Wilson, M. (1993) Synaptic transmission between pairs of retinal amacrine cells in culture, J. Neurosci. 13:2359–2370.

    PubMed  CAS  Google Scholar 

  • Gouras, P. (1971) The function of the midget cell system in primate colour vision, Vision Res. Suppl. 3:397–410.

    Article  Google Scholar 

  • Gouras, P. & Zrenner, E. (1981a) Color coding in primate retina, Vision Res. 21:1591–1598.

    Article  PubMed  CAS  Google Scholar 

  • Gouras, P. & Zrenner, E. (1981b) Color vision: a review from a neurophysiological perspective, Prog. Sensory Physiol. 1:139–179.

    Article  Google Scholar 

  • Gouras, P. & Eggers, H. (1982) Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness, Vision Res. 22:675–679.

    Article  PubMed  CAS  Google Scholar 

  • Gouras, P. & Eggers, H. (1983) Responses of primate ganglion cells to moving spectral contrast, Vision Res. 23:1175–1182.

    Article  PubMed  CAS  Google Scholar 

  • Greenstreet E.H. (1994) Neuronal connectivity and plasticity in the outer retina of cyprinid fish. PhD Thesis. University of London.

    Google Scholar 

  • Greenstreet E.H. & Djamgoz M.B.A. (1994a) Nitric oxide induces light-adaptive morphological changes in retinal neurones, NeuroReport 6:109–112.

    Article  PubMed  CAS  Google Scholar 

  • Greenstreet, E.H. & Djamgoz, M.B.A. (1994b) Triphasic chromaticity-type horizontal cells selectively contact short wavelength-sensitive cone photoreceptors in the retina of a cyprinid fish, Rutilus rutilus, Proc. R. Soc. Lond. B 256:227–230.

    Article  Google Scholar 

  • Grüsser-Cornhels, U. & Langeveld, S. (1985) Velocity sensitivity and directional selectivity of frog retinal ganglion cells depend on chromaticity of moving stimuli, Brain Behav. Evol. 27:165–185.

    Article  Google Scholar 

  • Hampson, E.C.G.M., Vaney, D.I. & Weiler, R. (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina, J. Neurosci. 12:4911–4922.

    PubMed  CAS  Google Scholar 

  • Hankins, M.W. (1995) Horizontal cell coupling and its regulation. In Neurobiology and Clinical Aspects of the Outer Retina. (Djamgoz M.B.A., Archer S.N. & Vallerga S. eds.). Chapman & Hall, London, pp. 195–220.

    Chapter  Google Scholar 

  • Hedden, W.L. & Dowling, J.E. (1978) The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurones, Proc. R. Soc. Lond. B 201:27–55.

    Article  PubMed  CAS  Google Scholar 

  • Hochstein, S. & Shapley, R.M. (1976) Quantitative analysis of retinal ganglion cell classifications, J. Phvsiol. 262:237–264.

    CAS  Google Scholar 

  • Ingle, D.J. (1985) The goldfish as a retinex animal, Science 227:755–758.

    Article  Google Scholar 

  • Kamermans, M., van Dijk, B.W., Spekreijse, H. & Zweypfenning, R.C.V.J. (1989) Lateral feedback from monophasic horizontal cells to cones in carp retina. I. Experiments, J. Gen. Physiol. 93:681–694.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, A. (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells of goldfish retina, J. Physiol. 207:623–633.

    PubMed  CAS  Google Scholar 

  • Kaneko, A. (1973) Receptive field organization of bipolar and amacrine cells in the goldfish retina, J. Physiol. 235:133–153.

    PubMed  CAS  Google Scholar 

  • Kaneko, A. & Tachibana, M. (1981) Retinal bipolar cells with double colour-opponent receptive fields, Nature 293:220–222.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, A. & Tachibana, M. (1983) Double colour-opponent receptive fields of carp bipolar cells, Vision Res. 23:381–388.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, E., Marcus, S. & So, Y.T. (1979) Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus, J. Physiol. 294:561–580.

    PubMed  CAS  Google Scholar 

  • Kaplan, E. & Shapley, R.M. (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity, Proc. Natl. Acad. Sci. USA 83:2755–2757.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H. (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells, Phil. Trans. R. Soc. Lond. B 258:261–283.

    Article  CAS  Google Scholar 

  • Kraft, T.W. & Burkhardt, D.A. (1986) Telodendrites of cone photoreceptors: Structure and probable function, J. Comp. Neurol. 249:13–27.

    Article  PubMed  CAS  Google Scholar 

  • Land, E.H. (1959) Color vision and the natural image. Parts I and II., Proc. Natl. Acad. Sci. USA 45:115–129 and 636-644.

    Article  Google Scholar 

  • Lasater, E.M. (1982) Spatial receptive fields of catfish retinal ganglion cells, J. Neurophysiol. 48:823–835.

    PubMed  CAS  Google Scholar 

  • Lasater, E.M. & Lam, D.M.K. (1984a) The identification and some functions of GABAergic neurones in the distal catfish retina., Vision Res. 24:497–506.

    Article  PubMed  CAS  Google Scholar 

  • Lasater, E.M. & Lam, D.M.K. (1984b) The identification and some functions of GABAergic neurones in the proximal retina of the catfish, Vision Res. 24:875–881.

    Article  PubMed  CAS  Google Scholar 

  • Levine, M.W. & Shefner, J.M. (1979) X-like and not X-like cells in goldfish retina, Vision Res. 19:95–97.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J.S. & MacNichol, E.F. Jr. (1982) Color vision in fishes, Sci. Am. 246:108–117.

    Google Scholar 

  • Lipetz, L.E. & Kaneko, A. (1984) Receptive field properties of the photopic luminosity horizontal cell of carp retina, Vision Res. 24:1947–1950.

    Article  PubMed  CAS  Google Scholar 

  • Loew, E.R. & McFarland, W.N. (1990) The underwater environment. In The Visual System of Fish (Douglas R.H. & Djamgoz M.B.A. eds.). Chapman & Hall, London, pp. 1–43.

    Chapter  Google Scholar 

  • Lyall, A.H. (1957) Cone arrangement in teleost retinae, Q. J. Microsc. Sci. 98:189–201.

    Google Scholar 

  • Mackintosh, R.M., Bilotta, J. & Abramov, I. (1987) Contributions of short-wavelength cones to goldfish ganglion cells, J. Comp. Physiol. A 161:85–94.

    Article  CAS  Google Scholar 

  • Mangel, S.C. (1991) Analysis of the horizontal cell contributionto the receptive field surround of ganglion cells in the rabbit retina, J. Physiol. 442:211–234.

    PubMed  CAS  Google Scholar 

  • Mangel, S.C. & Dowling, J.E. (1985) Responsiveness of receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine, Science 229:1107–1109.

    Article  PubMed  CAS  Google Scholar 

  • Marchiafava, RL. (1985) Cell coupling in double cones of the fish retina, Proc. R. Soc. Lond. B 226:211–215.

    Article  Google Scholar 

  • Marchiafava, RL., Strettoi, E. & Alpigiani, V. (1985) Intracellular recording from single and double cone cells isolated from the fish retina (Tinea tinea). Exp. Biol. 44:173–180.

    PubMed  CAS  Google Scholar 

  • Miller, J.L. & Karenbrot, J.I. (1993) Phototransduction and adaptation in rods, single cones and twin cones of the striped bass retina: a comparative study, Visual Neurosci. 10:653–667.

    Article  CAS  Google Scholar 

  • Mitarai, G., Goto, T. & Takagi, S. (1978) Receptive field arrangement of colour-opponent bipolar and amacrine cells in the carp retina. Sensory Processes 2:375–382.

    PubMed  CAS  Google Scholar 

  • Miyachi, E-I., Murakami, M. & Nakaki, T. (1990) Arginine blocks gap junctions between retinal horizontal cells, NeuroReport 1:107–110.

    Article  PubMed  CAS  Google Scholar 

  • Miyachi, E-I. & Nishikawa, C. (1994) Blocking effect of L-arginine on retinal gap junctions by activating guanylate cyclase via generation of nitric oxide, Biogen. Amines 10:459–464.

    CAS  Google Scholar 

  • Murakami, M. & Shimoda, Y. (1977) Identification of amacrine and ganglion cells in the carp retina. J. Physiol. 265:801–818.

    Google Scholar 

  • Naka, K-I. (1977) Functional organization of catfish retina, J. Neurophysiol. 36:502–518.

    Google Scholar 

  • Naka, K-I. & Ohtsuka, T. (1975) Morphological and functional identifications of catfish retinal neurons. II. Morphological identification., J. Neurophysiol. 38:72–91.

    PubMed  CAS  Google Scholar 

  • Naka, K-I., Marmarelis, P.X. & Chan, R.Y. (1975) Morphological and functional identifications of catfish retinal neurons. III. Functional identification, J. Neurophysiol. 38:92–131.

    PubMed  CAS  Google Scholar 

  • Naka, K-I. & Christensen, B.N. (1981) Direct electrical connections between transient amacrine cells in the catfish retina, Science 214:462–464.

    Article  PubMed  CAS  Google Scholar 

  • Neal, M.J. (1984) Cholinergic mechanisms in the vertebrate retina, Prog. Retinal Res. 2:191–212.

    Article  Google Scholar 

  • Nelson, R. & Kolb, H. (1983) Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res. 23:1183–1195.

    Article  PubMed  CAS  Google Scholar 

  • Neumeyer, C. & Arnold, K. (1989) Tetrachromatic colour vision in the goldfish becomes trichromatic under white adaptation light of moderate intensity, Vision Res. 29:1719–1727.

    Article  PubMed  CAS  Google Scholar 

  • Normann, R.A., Perlman, I., Kolb, H., Jones, J. & Daly, S.J. (1984) Direct excitatory interactions between cones of different spectral types in the turtle retina, Science 224:625–627.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka, T. & Kawamata, K. (1990) Telodendrinal contact of HRP-filled photoreceptors in the turtle retina: pathways of photoreceptor coupling, J. Comp. Neurol. 292:599–613.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V.H., Oehler, R. & Cowey, A. (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey, Neurosci. 12:1101–1123.

    Article  CAS  Google Scholar 

  • Petruv, R., Furukawa, T., Yasui, S. & Djamgoz, M.B.A. (1993) Sodium nitroprusside, a nitric oxide donor, generates chromatic difference in the receptive field size of HI horizontal cells in isolated retinae of carp, J. Physiol. 473:163P.

    Google Scholar 

  • Piccolino, J., Neyton, J. & Gerschenfeld, H.M. (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine d’:5’-monophosphate in horizontal cells of turtle retina, J. Neurosci. 4:2477–2488.

    PubMed  CAS  Google Scholar 

  • Raynauld, J.P., Laviolette, J.R. & Wagner, H-J. (1979) Goldfish retina: a correlate between cone activity and morphology of the horizontal cell in cone pedicules, Science 204:1436–1438.

    Article  PubMed  CAS  Google Scholar 

  • Richter, A. & Simon, E.J. (1975) Properties of centre-hyperpolarizing, red-sensitive bipolar cells in the turtle retina, J. Physiol. 248:317–334.

    PubMed  CAS  Google Scholar 

  • Saito, T. & Kujiraoka, T. (1982) Physiological and morphological identification of two types of on-centre bipolar cells in the carp retina, J. Comp. Neurol. 205:161–170.

    Article  PubMed  CAS  Google Scholar 

  • Saito, T. & Kujiraoka, T. (1988) Characteristics of bipolar-bipolar coupling in the carp retina, J. Gen. Physiol. 91:275–287.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H.M. & Naka, K-I. (1986) Synaptic organization of the cone horizontal cells in the catfish retina., J. Comp. Neurol. 245:107–115.

    Article  PubMed  CAS  Google Scholar 

  • Sakai H.M. & Naka K-I. (1987) Signal transmission in the catfish retina. IV. Transmission to ganglion cells, J. Neurophysiol. 58:1307–1328.

    PubMed  CAS  Google Scholar 

  • Schellart, N.A.M., van Acker, H.F. & Spekreijse, H. (1984) Influence of GAB A and the spectral and spatial coding of goldfish retinal ganglion cells, Neurosci. Lett. 48:31–36.

    Article  PubMed  CAS  Google Scholar 

  • Scholes, J.H. (1975) Colour receptors and their synaptic connections, in the retina of a cyprinid fish, Phil. Trans. R. Soc. Lond. B 270:61–118.

    Article  CAS  Google Scholar 

  • Schultze, M. (1866) Zur anatomie und physioloigie der retina, Arch. Mikr. Anat. 2:175–286.

    Article  Google Scholar 

  • Schwartz, E.A. (1974) Responses of bipolar cells in the retina of the turtle, J. Physiol. 236:211–224.

    PubMed  CAS  Google Scholar 

  • Shigematsu, Y. & Yamada, M. (1988) Effects of dopamine on spatial properties of horizontal cell responses in the carp retina, Neurosci. Res. Suppl. 8: S69–S80.

    Article  PubMed  CAS  Google Scholar 

  • Spekreijse, H., Wagner, H.G. & Wolbarsht, M.L. (1972) Spectral and spatial coding of ganglion cell responses in goldfish retina. J. Neurophysiol. 35:73–86.

    PubMed  CAS  Google Scholar 

  • Spekreijse, H., Wietsma, J.J. & Neumeyer, C. (1991) Induced color blindness in goldfish: a behavioral and electrophysiological study. Vision Res. 31:551–562.

    Article  PubMed  CAS  Google Scholar 

  • Sperling H.G. (1986) Spectral sensitivity, intense spectral light studies and the colour receptor mosaic of primates. Vision Res. 26:1557–1571.

    Article  PubMed  CAS  Google Scholar 

  • Stell W.K. (1980) Photoreceptor-specific synaptic pathways in goldfish retina: a world of colour, a wealth of connections. In Colour Vision Deficiencies V (Verriest, G. ed.). Adam Hilger, Bristol, pp. 1–14.

    Google Scholar 

  • Stell, W.K. & Harosi, F.I. (1976) Cone structure and visual pigment content in the retina of goldfish, Vision Res. 16:647–657.

    Article  PubMed  CAS  Google Scholar 

  • Stell, W.K., Lightfoot, D.O., Wheeler, T.G & Leeper, H.F. (1975) Goldfish retina; functional polarization of cone horizontal cell dendrites and synapses, Science 190:989–990.

    Article  PubMed  CAS  Google Scholar 

  • Stell, W.K., Walker, S.E. & Ball, A.K. (1987) Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes, Ann. N. Y. Acad. Sci. 519:80–96.

    Article  PubMed  CAS  Google Scholar 

  • Teranishi, T. & Negishi, K. (1994) Double-staining of horizontal and amacrine cells by intracellular injection with lucifer yellow and biocytin in carp retina, Neurosci. 59:217–266.

    Article  CAS  Google Scholar 

  • Teranishi, T., Kato, S. & Negishi, K. (1982) Lateral spread of S-potential components in the carp retina, Exp. Eye Res. 34:389–399.

    Article  PubMed  CAS  Google Scholar 

  • Thier, P. & Alder, V. (1984) Action of iontophoretically applied dopamine on cat retinal ganglion cells., Brain Res. 292 109–121.

    Article  PubMed  CAS  Google Scholar 

  • Thorell L.G., De Valois R.L. & Albrecht D.G. (1984) Spatial mapping of monkey VI cells with pure colour and luminance stimuli, Vision Res. 24:751–769.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, J-I., Hashimoto, H. & Ohtsu, K. (1973) Bipolar-amacrine transmission in the carp retina, Vision Res. 13:295–307.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, J-I. & Fujimoto, M. (1983) Analyses of neural mechanisms mediating the effect of horizontal cell polarization., Vision Res. 23:1143–1150.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, J-I. & Tonosaki, K. (1978) Effect of polarization of horizontal cells on the on-center bipolar cell of carp retina, Nature 276:399–400.

    Article  PubMed  CAS  Google Scholar 

  • Umino, O., Lee, Y.L. & Dowling, J.E. (1991) Effects of light stimuli on the release of dopamine from interplexiform cells in the white perch retina, Visual Neurosci. 7:451–458.

    Article  CAS  Google Scholar 

  • Wagner, H-J. (1990) Retinal structure of fishes. In The Visual System of Fish. (Douglas R.H. & Djamgoz M.B.A. eds.). Chapman & Hall, London, pp. 109–157.

    Chapter  Google Scholar 

  • Wagner, H.G., MacNichol, E.F. Jr. & Wolbarsht, M.L. (1960) The response properties of single ganglion cells in the goldfish retina, J. Gen. Physiol. 43:43–62.

    Article  Google Scholar 

  • Wagner, H.G., MacNichol, E.F. Jr. & Wolbarsht, M.L. (1963) Functional basis for ‘on’-centre and ‘off.’-centre receptive fields in the retina, J. Opt. Soc. Am. 53:66–70.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, H-J. & Djamgoz, M.B.A. (1993) Spinules: a case for retinal synaptic plasticity, Trends Neurosci. 16:201–206.

    Article  PubMed  CAS  Google Scholar 

  • Warner, A.E. & Lawrence, P. (1982) Permeability of gap junctions at the segmental border in insect epidermis, Cell 28:243–252.

    Article  PubMed  CAS  Google Scholar 

  • Wassle, H. & Boycott, B.B. (1991) Functional architecture of the mammalian retina, Physiol. Rev. 11:447–480.

    Google Scholar 

  • Werblin, F.S. (1974) Control of retina sensitivity. II. Lateral interactions at the outer plexiform layer, J. Gen. Physiol. 63:62–87.

    Article  PubMed  CAS  Google Scholar 

  • Werblin, F.S. & Dowling, J.E. (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording, J. Neurophysiol. 32:339–355.

    CAS  Google Scholar 

  • Wietsma, J.J. & Spekreijse, H. (1991) Bicuculline produces reversible red-green color blindness in goldfish, as revealed by monocular behavioral testing., Vision Res. 31:2101–2107.

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky, P. & Dowling, J.E. (1969) Synaptic relationships of the plexiform layers of carp retina, Z. Zellforsch. Mikrosk. Anat. 100:60–82.

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky, P., Shakib, M. & Ripps, H. (1974) Interreceptoral junctions in the teleost retina, Invest. Ophthalmol. Visual Sci. 13:996–1009.

    CAS  Google Scholar 

  • Witkovsky, P. & Stone, S. (1983) Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina, Vision Res. 23:1251–1258.

    Article  PubMed  CAS  Google Scholar 

  • Witkovsky, P. & Dearry, A. (1991) Functional roles of dopamine in the vertebrate retina, Prog. Retinal Res. 11:247–292.

    Article  CAS  Google Scholar 

  • Yamada, M. & Saito, T. (1988) Effects of dopamine on bipolar cells in the carp retina, Biomed. Res. 9, Suppl. 2:125–130.

    Google Scholar 

  • Yamada, M., Djamgoz, M.B.A., Low, J.C., Furukawa, T. & Yasui, S.(1991) Conductance decreasing cone-output to HI horizontal cells in carp retina, Neurosci. Res. Suppl 15: S51–S65.

    PubMed  CAS  Google Scholar 

  • Yasui, S., Yamada, M. & Djamgoz, M.B.A. (1990) Dopamine and 2-amino-4-phosphonobutyrate differentially affect spectral responses of HI horizontal cells in carp retina, Exp. Brain Res. 83:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. (1976) Cone input to bipolar cells in the turtle retina, Vision Res. 16:737–744.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. (1980) The representation of colours in the cerebral cortex, Nature 284:412–418.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. (1995) Behind the scene: An exploration of the visual brain (Ferrier Lecture), Proc.R. Soc. Lond. B. (In press).

    Google Scholar 

  • Zrenner, E. & Gouras, P. (1983) Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina. In Colour Vision: Physiology and Psychophysics (Mollon J.D. and Sharpe L.T. eds). Academic Press, London, pp. 211–223.

    Google Scholar 

  • Zucker, C.L. & Dowling, J.E. (1987) Centrifugal fibers synapse on dopaminergic interplexiform cells in the teleost retina, Nature 330:166–168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Djamgoz, M.B.A., Petruv, R. (1995). Spatio-Chromatic Signalling in the Vertebrate Retina. In: Robbins, J.G., Djamgoz, M.B.A., Taylor, A. (eds) Basic and Clinical Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9362-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9362-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9364-2

  • Online ISBN: 978-1-4757-9362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics