The Regulatory Role of Dopaminergic Pathways in the Mammalian Outer Retina

  • M. W. Hankins
  • H. Ikeda


This chapter examines the role of dopaminergic pathways in the physiology of the mammalian retina and reviews the current literature regarding this important regulatory retinal pathway. It was my (M.W.H.) good fortune to join Professor Ikeda’s group in 1988, where I began to develop in vitro preparations of the mammalian retina for intracellular recording. This chapter is illustrated by data from neuropharmacological experiments performed in the Vision Research Unit during the period of 1988–1993.


Receptive Field Horizontal Cell Dopaminergic Pathway Mammalian Retina Control Retina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Besharse, J.C. and Iuvone, P.M. (1992) Is dopamine a light-adaptive or a dark-adaptive modulator in the retina?, Neurochem. Int., 20:193–199.PubMedCrossRefGoogle Scholar
  2. Birch, D.G., Bersen, E.L. and Sandberg, M.A. (1984) Diurnal rhythms in the human rod ERG, Invest. Ophthalmol. Vis. Sci. 25:236–238.PubMedGoogle Scholar
  3. Bodis-Wollner, I. and Yahr, M. (1978) Measurement of visual evoked potentials in Parkinson’s disease. Brain, 101:661–671.PubMedCrossRefGoogle Scholar
  4. Bok, D. and Hall, M.O. (1971) The role of pigment epithelium in the etiology of inherited retinal dystrophy in the rat, J. Cell Biol. 14:73–109.Google Scholar
  5. Bubenik, G.A. and Purtill, R.A. (1980) The role of melatonin and dopamine in retinal physiology, Can. J. Physiol. 58:1475–1462.CrossRefGoogle Scholar
  6. Cahill, G.M. and Besharse, J.C. (1993) Circadian clock functions localised in xenopus photoreceptors. Neuron 10:573–577.PubMedCrossRefGoogle Scholar
  7. Cohen, A.I., Todd, R.D., Harmon, S. and O’Maley, K.L. (1992) Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase, Proc. Nat. Acad. Sci. (USA), 89:12093–12097.CrossRefGoogle Scholar
  8. Djamgoz, M.B.A. and Wagner, H.-J. (1992) Localization and function of dopamine in the adult retina, Neurochem. Int., 20:139–191.PubMedCrossRefGoogle Scholar
  9. Domenichi, L., Trimarchi, C., Piccolino, M., Fiorentini, A. and Maffei, L. (1985) Dopaminergic drugs improve human visual contrast sensitivity, Human Neurobiol. 4:195–197.Google Scholar
  10. Dong, C.-J. and McReynolds, J.S. (1991) The relationship between light, dopamine release and horizontal cell coupling in the mudpuppy retina, J. Physiol. 440:291–309.PubMedGoogle Scholar
  11. Dowling, J. E. and Ehinger, B. (1975) Synaptic organisation of the amine containing interplexiform cells in the goldfish and cebus monkey retinas, Science 188:270–273.PubMedCrossRefGoogle Scholar
  12. Dowling, J.E. and Ehinger, B. (1978) The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina, Proc. Roy. Soc. Lond. B 201:7–26.CrossRefGoogle Scholar
  13. Dowling, J.E. and Sidman, R.L. (1962) Inherited retinal dystrophy in the rat, J. Cell Biol. 14:73–109.PubMedCrossRefGoogle Scholar
  14. Dubocovich, M.L. (1983) Melatonin is a potent modulator of dopamine release in the retina, Nature 306:782–784.PubMedCrossRefGoogle Scholar
  15. Dubocovich, M.L. (1989) Role of melatonin in the retina, Prog. Retinal Res. 8:129–151.CrossRefGoogle Scholar
  16. Frucht, Y. Vidauri, J. and Melamed, E. (1982) Light activation of dopaminergic neurones in the rat retina is mediated through photoreceptors, Brain Res. 249:153–156.PubMedCrossRefGoogle Scholar
  17. Godley, B.F. and Wurtman, R.J. (1988) Release of endogenous dopamine from superfused rabbit retina in vitro: effects of light stimulation, Brain Res. 452:393–395.PubMedCrossRefGoogle Scholar
  18. Hampson, E.C.G.M., Vaney, D.I. and Weiler, R. (1992) Dopaminergic modulation of gap-junction permeability between amacrine cells in mammalian retina, J. Neurosci. 12:4911–4922.PubMedGoogle Scholar
  19. Hankins, M.W. and Ikeda, H. (1991a) Non-NMDA type excitatory amino acid receptors mediate rod input to horizontal cells in the isolated rat retina, Vision Res. 31:609–617.PubMedCrossRefGoogle Scholar
  20. Hankins, M.W. and Ikeda, H. (1991b) The role of dopaminergic pathways at the outerplexiform layer of the mammalian retina, Clin. Vision Sci. 6:87–93.Google Scholar
  21. Hankins, M.W. and Ikeda, H. (1994) Early abnormaities of retinal dopamine pathways in rats with hereditary retinal dystrophy, Documenta Ophthalmologica. 86:325–334.PubMedCrossRefGoogle Scholar
  22. Hankins, M.W., Rowe, J.S. and Ruddock, K.H. (1985) Properties of amino acid binding sites on horizontal cells determined by electrophysiological studies on the isolated roach retina. In: Neurocircuitry of the Retina A Cajal Memorial (Ed. A. Gallego and P. Gouras), Elsevier-N.Y, pp 99-108.Google Scholar
  23. Hankins, M.W., Jones, R.J.M. and Ruddock, K.H. (1995) Diurnal variation in the b-wave component of the human electroretinogram (ERG), J. Physiol. 483:42PGoogle Scholar
  24. Hamois, C. and DiPaolo, T. (1990) Decreased dopamine in the retinas of patients with Parkinson’s disease, Invest. Ophthalmol. Vis. Sci. 31:2473–2475.Google Scholar
  25. Harsanyi, K. and Mangel, S.C. (1992) Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release, Proc. Natl. Acad. Sci. (USA), 89:9220–9224.CrossRefGoogle Scholar
  26. Hawlina, M., Jenkins, H.G., and Ikeda, H. (1992) Diurnal variations in the electroretinographic c-wave and retinal melatonin content in rats with inherited retinal dystrophy, Documenta Ophthalmologica, 79:141–150.PubMedCrossRefGoogle Scholar
  27. Ikeda, H., Priest, T.D., Robbins, J. and Wakakuwa, K. (1986) Silent dopaminergic synapse at feline retinal ganglion cells, Clin. Vis. Sci., 1:25–38.Google Scholar
  28. Iuvone, P.M. and Besharse, J.C. (1986) Dopamine receptor-mediated inhibition of seratonin-N-acetyltransferase activity in the retina, Brain Res. 369:168–176.PubMedCrossRefGoogle Scholar
  29. Kaneko, A. (1973) Receptive field organization of bipolar and amacrine cells in the goldfish retina, J. Physiol. 235:133–153.PubMedGoogle Scholar
  30. Kebabian, J.W. and Caine, D.B. (1979) Multiple receptors for dopamine, Nature 277:93–96.PubMedCrossRefGoogle Scholar
  31. Knapp, A.G. and Dowling, J.E. (1987) Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells, Nature 325:437–439.PubMedCrossRefGoogle Scholar
  32. Naka, K.-I. and Rushton, W.A.H. (1967) The generation and spread of S-potentials in fish (Cyprinidae), J. Physiol 192:437–461.PubMedGoogle Scholar
  33. Negishi, K. and Drujan, B.D. (1978) Effects of catecholamine on horizontal cell membrane potential in the fish retina, Sensory Processes 2:388–395.PubMedGoogle Scholar
  34. Nguyen-Legros. J., Savy, C., Martin-Martinelli, E., and Yelnik J. (1989) Distribution and spatial organisation of dopaminergic interplexiform cells in the rat retina. In: Weiler R. and Osborne N. Eds. Neurobiology of the inner retina. Berlin: Springer-Verlag. pp65–75.CrossRefGoogle Scholar
  35. Piccolino, M., Witkovsky, P. and Timarchi, C. (1987) Dopaminergic mechanisms underlying the reduction of the electrical coupling between horizontal cells of the turtle retina induced by D-amphetamine. bicuculline and veratridine, J. Neurosci. 7:2273–2284.PubMedGoogle Scholar
  36. Redbum, D.A. and Mitchell, C.K. (1989) Darkness stimulates rapid synthesis and release of melatonin in rat retina, Vis. Neurosci. 3:391–403.CrossRefGoogle Scholar
  37. Sibley, D.R. and Monsma, F.J. (1992) Molecular biology of dopamine receptors, Trends Pharmacol. Sci. 13:61–69.PubMedCrossRefGoogle Scholar
  38. Souetre, E., De Galeani, B., Gastaud, P., Salvati, E. and Darcourt, G. (1989) 5-methoxypsoralen increases the sensitivity of the retina to light in humans, Eur. J. Clin. Pharmacol 36:59–61.PubMedCrossRefGoogle Scholar
  39. Teranishi, T., Negishi, K. and Kato, S. (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina, Nature 301:243–246.PubMedCrossRefGoogle Scholar
  40. Toyoda, J.-I. and Tonasaki, K. (1978) Effect of polarization of horizontal cells on the on the ON-center bipolar cell of the carp retina, Nature 276:399–400.PubMedCrossRefGoogle Scholar
  41. Wiechmann, A.F. and Hollyfield, J.G. (1988) HIOMT-like immunoreactivity in the vertebrate retina: a species comparison, Exp. Eye Res. 49:1079–1095.CrossRefGoogle Scholar
  42. Witkovsky, P. and Dearry, A. (1991) Functional roles of dopamine in the vertebrate retina, Prog. Retinal Res. 11:247–292.CrossRefGoogle Scholar
  43. Yamada, E. and Ishikawa, T. (1965) Some observations on the fine structure of the vertebrate retina, Cold Spring Harb. Symp. Quant. Biol. 30:383–392.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. W. Hankins
    • 1
  • H. Ikeda
    • 1
  1. 1.The Vision Research Unit (U.M.D.S.), The Rayne InstituteSt. Thomas’ HospitalLondonUK

Personalised recommendations