Skip to main content

Visual Cortical Plasticity and Neurotrophic Factors

  • Chapter
Basic and Clinical Perspectives in Vision Research

Abstract

In a series of landmark experiments, Hubel and Wiesel (1963) demonstrated that the development of primary visual cortex could be disrupted by a variety of sensory perturbation. If a mammal is monocularly deprived (MD) of vision for several days during the early period of postnatal development, the animal permanently becomes ambliopic in that eye (Baker et al., 1974; Boothe et al., 1985; Domenici et al., 1991). The visual acuity of the deprivated eye is decreased and its contrast sensitivity depressed. Most visual cortical neurones become unresponsive to visual stimulation of the deprived eye and the ocular dominance distribution of cells shifts in favour of the eye receiving normal visual input (Giffin and Mitchell, 1978; Harwerth et al., 1989; Domenici et al., 1991a, c). Anatomically, MD performed during the critical period determined the reduction of the territories occupied in the primary visual cortex by the afferents from the deprived laminae of the LGN and the expansion of the territories occupied by the terminals from the non deprived laminae. There is also a shrinkage of the soma size of LGN projection cells in the binocular portion of the deprived laminae (Shatz and Stryker, 1978; LeVay et al., 1980; Guillery and Stelzner, 1970; Sherman et al., 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson A., Baker P.A., Alderson R.F., Miller F.D. and Murphy RA. (1991) Detection of Brain-Derived Neurotrophic Factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF, Neuron 7:265–275.

    Article  PubMed  CAS  Google Scholar 

  • Baker F.H., Grigg P. and von Noorden G.K. (1974) Effects of visual deprivation and strabismus of the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in normal animals, Brain Res. 6:185–208.

    Article  Google Scholar 

  • Bandtlow C., Heumann R., Schwab M.E. and Thoenen H. (1987) Cellular localization of NGF synthesis by in situ hybridization, EMBO J. 6:891–899.

    PubMed  CAS  Google Scholar 

  • Berardi N., Domenici L., Parisi V., Pizzorusso T., Cellerino A. and Maffei L. (1993) Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by Nerve Growth Factor (NGF). I. Visual cortex, Proc. R. Soc. Lond. 251:17–23.

    Article  CAS  Google Scholar 

  • Berardi N., Cellerino A., Domenici L., Fagiolini M., Pizzorusso T., Cattaneo A. and Maffei L. (1993) Monoclonal antibodies to NGF affect the postnatal development of the visual system, Proc. Natl. Acad. Sci. USA (in press).

    Google Scholar 

  • Berardi N., Cattaneo A., Cellerino A., Domenici L., Fagiolini M., Maffei L. and Pizzorusso T. (1992) Monoclonal antibodies to NGF affects the postnatal development of the rat geniculocortical system, J. Physiol. 452:293P.

    Google Scholar 

  • Boothe, R.G., Dobson, M.V. and Teller, D.Y. (1985) Postnatal development of vision in human and non human primates, Ann. Rev. Neurosci. 8:495–545.

    Article  PubMed  CAS  Google Scholar 

  • Bozzi, Y., Pizzorusso, T., Cremisi, F., Comelli, M.C., Berardi, N. and Maffei, L. (1993) Monocular deprivation decreases the expression of BDNF mRNA in rat visual cortex. Soc. Neurosci. Abstr. 19:6.

    Google Scholar 

  • Brokes, J.P., Fields, K.L. and Raff, M.C. (1979) Studies on cultured rat Schwann cells. I: Establishment of purified population from cultures of peripheral nerve, Brain Res. 165:105–118.

    Article  Google Scholar 

  • Campbell, F.W. and Maffei, L. (1970) Electrophysiological evidence for the existance of orentation in size detectors in the human visual system, J. Physiol. (Lond.) 207:635–652.

    CAS  Google Scholar 

  • Carmignoto, G., Canella, R., Candeo, P., Comelli, M.C. and Maffei, L. (1993) Effects of NGF on neuronal placicity of the kitten visual cortex, J. Physiol. (Lond.) 464:343–360.

    CAS  Google Scholar 

  • Carmignoto G., Maffei L., Candeo P., Canella R. and Comelli M.C. (1989) Effect of NGF on the survival of retinal ganglion cells after section of the optic nerve J. Neurosci. 9:1263–1272.

    PubMed  CAS  Google Scholar 

  • Castren, E., Zafra, F., Thoenen, H. and Lindholm, D. (1992) Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex, Proc. Natl. Acad. Sci. USA 89:9444–9448.

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo A., Rapposelli B. and Calissano P. (1988) Three distinct types of monoclonal antibodies after long-term immunization of rats with mouse NGF, J. Neurochem. 50:1003–1010.

    Article  PubMed  CAS  Google Scholar 

  • Daniloff, J.K. (1991) A novel assay fpor the, in vivo study of Schwann cells, Exp. Neurol. 114:140–143.

    Article  PubMed  CAS  Google Scholar 

  • Domenici, L., Berardi, N., Carmigntot, G., Vantini, G. and Maffei, L. (1991) Nerve growth factor prevents the amplyopic effects of monocular deprivation, Proc. Natl Acad. Sci. USA 88:8811–8815.

    Article  PubMed  CAS  Google Scholar 

  • Domenici, L., Cellerino, A. and Maffei, L. (1993) Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by NGF. II. Lateral geniculate nucleus, Proc. R. Soc. Lond B 251:25–31.

    Article  CAS  Google Scholar 

  • Ferrari G., Fabris M., Polato P., Skaper S.D., Fiori M.G. and Yan Q. (1991) Rat NGF receptor is recognized by Tumor-associated antigen monoclonal antibody 217c, Exp. Neurol. 112:183–194.

    Article  PubMed  CAS  Google Scholar 

  • Fischer W., Bjorklund A. Chen K. and Gage F.H. (1991) NGF improves spatial memory in aged rodents as a function of age, J. Neurosci. 11:1889–1906.

    PubMed  CAS  Google Scholar 

  • Friden P.M., Walus L.R., Watson P., Doctrow S.R., Kozarich J.W., Backman C., Bergman H., Hoffer B., Bloom F. and Granholm A.C. (1993) Blood-brian barrier penetration and in vivo activity of an NGF conjugate, Science 259:373–377.

    Article  PubMed  CAS  Google Scholar 

  • Friedman B., Scherer S.S., Rudge J.S., Helgren M., Morrisey D., McClain J., Wangf D., Wiegand S.J., Furth M.E., Lindsay R.M. and Ip N.Y. (1992) Regulation of Ciliary Neurotrophic Factor expressio in myelin-related Schwann cells in vivo, Neuron 9:295–305.

    Article  PubMed  CAS  Google Scholar 

  • Giffin F. and Mitchell D.E. (1978) The rate of recovery of vision after early monocular deprivation in kittens, J. Physiol. (Lond.) 274:511–537.

    CAS  Google Scholar 

  • Guillery R.W. and Stelzner D.J. (1970) The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal genicualte nucleus in the cat, J. Comp. Neurol 139:413–422.

    Article  PubMed  CAS  Google Scholar 

  • Hanker J.S., Yates P.E., Metz C.B. and Rustioni A. (1977) A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase, Histochem. J. 9:789–792.

    Article  PubMed  CAS  Google Scholar 

  • Harwerth R.S., Smith E.L. III, Crawford M.L.J. and von Noorden G.K. (1989) the effects of reverse monocular deprivation in monkeys. I: Psychophysical experiments, Exp. Brain Res. 74:327–337.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F. (1986) NGF promotes survival of septal colinergic neurons after fimbrial transections, J. Neurosci. 6:2155–2162.

    PubMed  CAS  Google Scholar 

  • Hubel D. H. and Wiesel T. N. (1963) Receptive fields of cells in the striate cortex of very young, visually inexperienced kittens, J. Neurophysiol. 26:994–1002.

    PubMed  CAS  Google Scholar 

  • Hubel D. H. and Wiesel T. N. (1962) Receptive fields, binocualr interactionand functional architecturein the cat’s visual cortex, J Physiol (Lond) 160:106–154.

    CAS  Google Scholar 

  • Kawaja M.D., Rosenberg M.B., Yoshida K. and Gage F.H. (1992) Somatic gene transfer of NGF promotes the survival of axomized septal neurons and the regeneration of their axons in adult rats, J. Neurosci. 12:2849–2864.

    PubMed  CAS  Google Scholar 

  • Knusel B., Beck K.D., Winslow J.W., Rosenthal A., Burton L.E., Widmer H.R., Nikolics K. and Hefti F. (1992) BDNF administration protects basal forebrain cholinergic but not nigral dopaminergic neurons from degenerative changes after axotomy in the adult rat brain, J. Neurosci. 12:4391–4402.

    PubMed  CAS  Google Scholar 

  • Kromer L.F. and Combrooks C.J. (1985) Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain, Proc. Natl. Acad. Sci. USA 82:6330–6334.

    Article  PubMed  CAS  Google Scholar 

  • Lapchak P.A., Beck K.D., Araujo D.M., Irwin I., Langston J.W. and Hefti F. (1993) Chronic intranigral administration of BDNF producers striatal dopaminergic hypofunctioin in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection, Neurosci. 53:639–650.

    Article  CAS  Google Scholar 

  • Large T.H., Bodary S.C., Clegg D.O., Weskamp G., Otten U. and Reichardt L. F. (1986) Nerve growth factor gene expression in the developing rat brain, Science 234:352–355.

    Article  PubMed  CAS  Google Scholar 

  • LeVay S., Wiesel T.N. and Hubel D.H. (1980) The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191:1–51.

    Article  PubMed  CAS  Google Scholar 

  • Maffei L., Carmignoto G., Perry V.H., Candeo P. and Ferrari G. (1990) Schwann cells promote the survival of retinal ganglion cells after optic nerve section, Proc. Natl. Acad. Sci. USA 87:1855–1859.

    Article  PubMed  CAS  Google Scholar 

  • Maffei L., Berardi N., Domenici L., Parisi V. and Pizzorusso T. (1992) Nerve Growth Factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats, J. Neurosci. 12:4651–4662.

    PubMed  CAS  Google Scholar 

  • Matsuoka I., Meyer M. and Thoenen H. (1991) Cell-type-specific regulation of NGF synthesis in non-neuronal cells: comparison of Schwann cells with other cell types, J. Neurosci. 11:3165–3177.

    PubMed  CAS  Google Scholar 

  • Messersmith D.J., Fabrazzo M., Mocchetti I. and Kromer L.F. (1991) Effects of sciatic nerve transplants after fimbriafornixlesion: examination of the role of NGF, Brain Res. 557:293–297.

    Article  PubMed  CAS  Google Scholar 

  • Pamavelas J.G., Burne R.A. and Lin C.S. (1981) Receptive field properties of neurons in the visual cortex of the rat, Neurosci. Lett. 27:291–296.

    Article  Google Scholar 

  • Phelps C.H., Gage F.H., Growdon J.H., Hefti F., Harbaugh R., Johnston M.V., Kachaturian Z.S., Mobley W.C., Price D.L., Raskind M., Simpkins J., Thal L.J. and Woodcock J. (1989) Potential use of NGF to treat Alzheimer’s disease, Neurobiol. Aging 10:205–207.

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso T., Fagiolini M., Fabris M., Ferrari G. and Maffei L. (1994) Schwann cells transplanted in the lateral ventricles prevents the functional and anatomical effects of monocular deprivation in the rat, Proc. Natl. Acad. Sci. USA 91:2572–2576.

    Article  PubMed  CAS  Google Scholar 

  • Reese B.E. (1988) “Hidden lamination” in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat, Brain Res Rev. 13:119–137.

    Article  Google Scholar 

  • Reese B.E. and Jeffery G. (1983) Crossed and uncrossed visual topography in dorsal lateral genicualte nucleus of pigmented rat, J. Neurophysiol. 49:877–885.

    PubMed  CAS  Google Scholar 

  • Schnell L. and Schwab (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors, Nature 343:269–272.

    Article  PubMed  CAS  Google Scholar 

  • Shatz C.J. and Stryker M.P. (1978) Ocular dominance in layer IV of the cats visual cortex and the effects of visual deprivation, J. Physiol. 281:267–283.

    PubMed  CAS  Google Scholar 

  • Sherman S.M., Guillery R.W., Kaas J.H. and Sanderson K.J. (1974) Behavioral, electrophysiological and morphological studies of binocular competition in the development of the geniculo-cortical pathways of cats, J. Comp. Neurol. 158:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Sloan D.J., Wood M.J. and Charlton H.M. (1991) The immune response to intracerebral neural grafts, Trends Neurosci. 14:341–346.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H. (1991) The changing scene of neurotrophic factors, Trends Neurosci. 14:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Thurlow G. A. and Cooper R. M. (1988) Metabolic activity in striate and extrastriate cortex of the hooded rat: controlateral and ipsilateral eye input, J. Comp. Neurol. 274:595–607.

    Article  PubMed  CAS  Google Scholar 

  • Wiesel T. N. and Hubel D. H. (1963) Single-cell responses in striate cortex of kittens deprived of in one eye, J. Neurophysiol. 26:1003–1017.

    PubMed  CAS  Google Scholar 

  • Wiesenfeld Z. and Komel E. (1975) Receptive fields of single cells in the visual cortex of the hooded rat, Brain Res. 94:401–412.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fagiolini, M., Pizzorusso, T., Maffei, L. (1995). Visual Cortical Plasticity and Neurotrophic Factors. In: Robbins, J.G., Djamgoz, M.B.A., Taylor, A. (eds) Basic and Clinical Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9362-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9362-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9364-2

  • Online ISBN: 978-1-4757-9362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics