Investigations on Structure and Biosynthesis of Cyanelle Murein from Cyanophora paradoxa

  • Beatrix Pfanzagl
  • Ernst Pittenauer
  • Günter Allmaier
  • Jorge Martinez
  • Jose Berenguer
  • Erich R. Schmid
  • Miguel A. de Pedro
  • Wolfgang Löffelhardt
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

The endosymbiotic origin of plastids and mitochondria from prokaryotic invaders into originally heterotrophic and anaerobic protoeukaryotic host cells is now generally accepted (Margulis, 1981). However, examples for intermediary or side line forms in this long-lasting and presumably still ongoing process that e. g. combine the function and genetic complexity of an organelle with the distinct prokaryotic structural feature of the peptidoglycan wall could be found to date only for the evolutionary line leading to plastids. The cyanelles from the photoautotrophic protist Cyanophora paradoxa have originally been considered as endosymbiotic cyanobacteria since they resemble them in morphology, thylakoid structure (Giddings et al., 1983), the presence of carboxysomes (Mangeney and Gibbs, 1987) and of a lysozyme-sensitive murein sacculus between their inner and outer envelope membranes (Schenk, 1970).

Keywords

Amino Acid Analysis Glutamic Acid Residue Diaminopimelic Acid Muramic Acid High Retention Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, A. and Stanier, R. Y. (1979) Characterization of peptidoglycan from the cyanelles of Cyanophora paradoxa. J. Gen. Microbiol. 212, 218–229.Google Scholar
  2. Berenguer, J., Rojo, F., de Pedro, M. A., Pfanzagl, B. and Löffelhardt, W. (1987) Penicillin-binding proteins in the cyanelles of Cyanophora paradoxa, a eukaryotic photoautotroph sensitive to β-lactam antibiotics. FEBS Lett. 224, 401–405.CrossRefGoogle Scholar
  3. Biemann, K. (1990) Nomenclature for peptide fragment ions (positive ions). Methods Enzymol. 193, 886–887.PubMedCrossRefGoogle Scholar
  4. Bohnert, H. J. and Löffelhardt, W. (1992) Molecular genetics of cyanelles from Cyanophora paradoxa, in “Algae and Symbioses” (Reisser, W., Ed.), pp. 379–397. Biopress, Bristol.Google Scholar
  5. Bohnert, H. J., Crouse, E. J., Pouyet, J., Mucke, H. and Löffelhardt, W. (1982) The subcellular location of DNA components from Cyanophora paradoxa, a flagellate containing endosymbiotic cyanelles. Eur. J. Biochem. 126, 381–388.PubMedCrossRefGoogle Scholar
  6. Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  7. Breiteneder, H., Seiser, C, Löffelhardt, W., Michalowski, C. and Bohnert, H. J. (1988) Physical map and protein gene map of cyanelle DNA from the second known isolate of Cyanophora paradoxa (Kies-strain). Curr. Genet. 13, 199–206.PubMedCrossRefGoogle Scholar
  8. Caparros, M., Pisabarro, A. G. and de Pedro, M. A. (1992) Effect of Z)-amino acids on structure and synthesis of peptidoglycan in E. coli. J. Bacteriol., in press.Google Scholar
  9. Giddings, jr., T. H., Wasmann, C. and Staehelin, L. A. (1983) Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol. 71, 409–419.PubMedCrossRefGoogle Scholar
  10. Glauner, B. (1988) Separation and quantification of muropeptides with HPLC. Anal. Biochem. 172, 451–464.PubMedCrossRefGoogle Scholar
  11. Glauner, B., Höltje, J.-V. and Schwarz, U. (1988) The composition of murein of E. coli. J. Biol. Chem. 263, 10088–10095.PubMedGoogle Scholar
  12. Hash, J. H. and Rothlauf, M. V. (1967) The N,O-diacetyl-muramidase of Chalaropsis species; purification and cristallization. J. Biol. Chem. 242, 5586–5590.PubMedGoogle Scholar
  13. Herdman, M. and Stanier, R. Y. (1977) The cyanelle: chloroplast or endosymbiotic prokaryote. FEMS Microbiol. Lett. 1, 7–12.CrossRefGoogle Scholar
  14. Höltje, J.V., Mirelman, D., Sharon, N. and Schwarz, U. (1975) Novel type of murein transglycosylase in Escherichia coli. J. Bacteriol. 124, 1067–1076.PubMedGoogle Scholar
  15. Kies, L. (1988) The effect of penicillin on the morphology and ultrastructure of Cyanophora, Gloeochaete and Glaucocystis (Glaucocystophyceae) and their cyanelles. Endocyt. Cell Res. 5, 361–372.Google Scholar
  16. Löffelhardt, W., Michalowski, C. B., Kraus, M., Neumann-Spallart. C, Jakowitsch, J., Flachmann, R. and Bohnert, H. J. (1992) Towards the complete structure of the Cyanophora paradoxa cyanelle genome, in “Endocytobiology V “(Ishikawa, H., Ed.), Tübingen University Press, in press.Google Scholar
  17. Mangeney, E. and Gibbs, S. P. (1987) Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Eur. J. Cell Biol. 43, 65–70.Google Scholar
  18. Margulis, L. (1981) “Symbiosis and Cell Evolution”, W. H. Freeman and Co., San Francisco.Google Scholar
  19. Mucke, H., Löffelhardt, W. and Bohnert, H. J. (1980) Partial characterization of the genome of the “endosymbiotic” cyanelles from Cyanophora paradoxa. FEBS Lett. 111, 347–352.PubMedCrossRefGoogle Scholar
  20. Plaimauer, B., Pfanzagl, B., Berenguer, J., de Pedro, M. A. and Löffelhardt, W. (1991) Subcellular distribution of enzymes involved in the biosynthesis of cyanelle murein in theprotist Cyanophora paradoxa. FEBS Lett. 284, 169–172.PubMedCrossRefGoogle Scholar
  21. Schenk, H. E. A. (1970) Nachweis einer lysozymempfindlichen Stützmembran der Endocyanellen von Cyanophora paradoxa (Korschikoff). Z. Naturforsch. 25b, 656.Google Scholar
  22. Schindler, M., Mirelmann, D. and Schwarz, U. (1976) Quantitative determination of N-acetylglucosamine residues at the non-reducing ends of peptidoglycan chains by enzymic attachment of 14C-D-Galactose. Eur. J. Biochem. 71, 131–134.PubMedCrossRefGoogle Scholar
  23. Tipper, D. J. (1968) Alkali-catalyzed elimination of D-lactic acid from muramic acid and its derivatives and the determination of muramic acid. Biochemistry 7, 1441–1449.CrossRefGoogle Scholar
  24. Woitzik, D., Weckesser, J. and Jürgens, U. J. (1988) Isolation and characterization of cell wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307. J. Gen. Microbiol. 134, 619–627.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Beatrix Pfanzagl
    • 1
  • Ernst Pittenauer
    • 2
  • Günter Allmaier
    • 2
  • Jorge Martinez
    • 3
  • Jose Berenguer
    • 3
  • Erich R. Schmid
    • 2
  • Miguel A. de Pedro
    • 3
  • Wolfgang Löffelhardt
    • 1
  1. 1.Institut für Allgemeine BiochemieUniversität Wien und Ludwig Boltzmann-Forschungsstelle für BiochemieViennaAustria
  2. 2.Institut für Analytische ChemieUniversität WienViennaAustria
  3. 3.Centro de Biologia MolecularUniversidad Autonoma de MadridMadridSpain

Personalised recommendations