Bacterial Growth and Lysis pp 453-463 | Cite as
Cellular Growth without a Murein Sacculus — the Nucleoid-Associated Compartmentation Concept
Chapter
Abstract
Cell wall-less bacterial strains, isolated by experimental treatment from normal bacteria, are designated as L-forms. Several of them are genetically stable organisms showing extreme pleotropic changes in their properties. During numerous years of cultivation, some L-form strains could be adapted to grow in media without supplements of serum or additional osmotic stabilizers (Gilpin and Patterson, 1976; Gumpert and Taubeneck, 1983; Leon and Panos, 1976; Madoff, 1986).
Keywords
Cytoplasmic Membrane Proteus Mirabilis Division Process Streptomyces Hygroscopicus Lysozyme Treatment
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Casaregola, S., Norris, V., Goldberg, M. and Holland, I.B. (1990) Identification of a 180 kD protein in Escherichia coli related to a yeast heavy-chain myosin. Mol. Microbiol. 4, 505–512.PubMedCrossRefGoogle Scholar
- Cooper, S. (1991) “Bacterial Growth and Division, Biochemistry and Regulation of Prokaryotic and Eukaryotic Division Cycles”. Academic Press, New York.Google Scholar
- Cooper, S. and Helmstetter, C.E. (1968) Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 31, 519–540.PubMedCrossRefGoogle Scholar
- Donachie, W.D. and Begg, K.J. (1970) Growth of the bacterial cell. Nature 227, 1220–1224.PubMedCrossRefGoogle Scholar
- Drlica, K. and Riley, M. (1990) “The Bacterial Chromosome”. Americ. Soc. for Microbiology, Washington.Google Scholar
- Fuhs, G.W. (1969) “The Nuclear Structure of Prokaryontic Organisms/Bacteria and Cyanophyceae”. Springer Verlag, Wien.Google Scholar
- Gilpin, R.W. and Patterson, S.K. (1976) Adaptation of a stable L-form of Bacillus subtilis to minimal salts medium without osmotic stabilizers. J. Bacteriol. 125, 845–849.PubMedGoogle Scholar
- Gualerzi, C.O. and Pon, C.L. (1986) “Bacterial Chromatin”. Springer Verlag, Berlin.CrossRefGoogle Scholar
- Gumpert, J. (1983) A model of the organization of the bacterial nucleoid and consequences for replication and segregation, in “Progress in Cell Cycle Controls”, (Chaloupka, J., Kotyk, A. and Streiblova, E., Edts.) pp 153–154. Institute of Microbiology. Czechoslovak. Academy of Sciences, Prag.Google Scholar
- Gumpert, J. und Taubeneck, U. (1966) Beobachtungen über die Vermehrung der stabilen L-Form von Proteus mirabilis in flüssigen Nährmedien und die Funktion der Zellwand bei der Zellteilung. Z. Allg. Mikrobiol. 6, 211–218.CrossRefGoogle Scholar
- Gumpert, J. and Taubeneck, U. (1983) Characteristic properties and biological significance of stable protoplast type L-forms. Experientia Suppl. Vol. 46, 227–241.Google Scholar
- Gumpert, J., Sarfert, E. and Zimmer, C. (1986) Chromosome structure and DNA-binding proteins in streptomycetes, in “Biological, Biochemical and Biomedical Aspects of Actinomycets Part A”, (Szabo, G., Biro, S. and Goodfellow, M., Edts.) pp 453–463. Akademiai Kiado, Budapest.Google Scholar
- Gumpert, J., Todorov, T. and Toshkov, A. (1980) Light microscopic investigations on lysozyme-and penicillin-induced morphological changes in Erysipelothrix rhusiopathiae and on propagation of its protoplast type L-form. Z. Allg. Mikrobiol. 20, 431–440.PubMedCrossRefGoogle Scholar
- Holland, L.B., Casaregola, S. and Norris, V. (1990) Cytoskeletal elements and calcium: do they play a role in the Escherichia coli cell cycle? Research in Microbiol. 141, 131–139.CrossRefGoogle Scholar
- Klessen, C, Schmidt, K.H., Gumpert, J., Grosse, H.H. and Malke, H. (1989) Complete secretion of activable bovine prochymosin by genetically engineered L-forms of Proteus mirabilis. Appl. Environ. Microbiol. 55, 1009–1015.PubMedGoogle Scholar
- Laplace, F., Egerer, R., Gumpert, J, Kraft, R., Kostka, S. and Malke, H. (1989) Heterologous signal peptide processing in fusion interferon synthesis by engineered L-forms of Proteus mirabilis. FEMS Microbiol. Letters 59, 59–64.CrossRefGoogle Scholar
- Leon, O. and Panos, C. (1976) Adaptation of an osmotically fragile L-form of Streptococcus pyogenes to physiological osmotic condition and its ability to destroy human heart cells in tissue culture. Infect. Immun. 13, 252–262.PubMedGoogle Scholar
- Madoff, S. (1986) “The Bacterial L-Forms”. Marcel Dekker Inc., New York.Google Scholar
- Mason, D.J. and Powelson, D.M. (1956) Nuclear division as observed in live bacteria by a new technique. J. Bacteriol. 71, 474–479.PubMedGoogle Scholar
- Murray, R.G.E. (1960) The internal structure of the cell, in “The Bacteria Vol. I, Structure”, (Gunsalus, I.C. and Stanier, R.Y., Edts.). Academic Press, New York.Google Scholar
- Nanninga, N. (1985) “Molecular Cytology of Escherichia coir. Academic Press, London.Google Scholar
- Nanninga, N., Wientjes, F.B., de Jonge, B.L.M. and Woldringh, C.L. (1990) Polar cap formation during cell division in Escherichia coli. Research in Microbiol. 141, 103–118.CrossRefGoogle Scholar
- Noms, V. (1990) DNA replication in Escherichia coli is initiated by membrane detachment of oriC. A model. J. Mol. Biol. 215, 67–72.CrossRefGoogle Scholar
- Pettijohn, D.E. (1982) Structure and properties of the bacterial nucleoid. Cell 30, 667–669.PubMedCrossRefGoogle Scholar
- Sarfert, E., Zimmer, C, Gumpert, J. and Lang, H. (1983) Folded chromosome structure and DNAbinding protein of Streptomyces hygroscopicus. Biochim. Biophys. Acta 740, 118–124.CrossRefGoogle Scholar
- Schaechter, M. (1990) The bacterial equivalent of mitosis, in “The Bacterial Chromosome”, (Drlica, K. and Riley, M., Edts.), pp 313–322, American Society for Microbiology, Washington.Google Scholar
- Sinden, R.R. and Pettijohn, D.E. (1981) Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. Proc. Natl. Acad. Sci. USA 78, 224–228.PubMedCrossRefGoogle Scholar
- Strunk, C. und Schuhmann, E. (1973) Cytomorphologische Untersuchungen an einer stabilen L-Form von Escherichia coli. Z. Allg. Mikrobiol. 13, 597–612.PubMedCrossRefGoogle Scholar
- Verkleij, A.J. (1984) Lipidic intramembranous particles. Biochim. Biophys. Acta 779, 43–63.PubMedCrossRefGoogle Scholar
- Woldringh, C.L. and Nanninga, N. (1985) Structure of nucleoid and cytoplasm in the intact cell, in “Molecular Cytology of Escherichia coli”, (Nanninga, N., Ed.), pp 616–697. Academic Press, London.Google Scholar
- Voldringh, C.L., Mulder, E., Valkenburg, J.A.C., Wientjes, F.B., Zaritzky, A. and Nanninga, N. (1990) Role of the nucleoid in the toporegulation of division. Research in Microbiol. 141, 39–49.CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1993