“Three for one” — a Simple Growth Mechanism that Guarantees a Precise Copy of the Thin, Rod-Shaped Murein Sacculus of Escherichia coli

  • Joachim-Volker Höltje
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)


During growth and division of Escherichia coli the stress-bearing rod-shaped murein sacculus necessarily has to be elongated and divided into two intact daughter sacculi. For Gram-positive rods such as Bacillus subtilis it has been shown that this is accomplished by an inside-to-outside growth mechanism (Koch and Doyle, 1985). It is based on the presence of a thick multi-layered murein shell which is characteristic for this group of bacteria. The thin murein layer of Gram-negative bacteria demands for a different, more sophisticated mechanism.


Template Strand Glycan Chain Patching Model FtsZ Ring Murein Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bi, E. and Lutkenhaus, J. (1991) FtsZ ring structure associated with division in Escherichia coll. Nature 354, 161–164.PubMedCrossRefGoogle Scholar
  2. Braun, V., Gnirke, H., Henning, U. and Rehn, K. (1973) Model for the structure of the shape-maintaining layer of Escherichia coli cell envelope. J. Bacteriol. 114, 1264–1270.PubMedGoogle Scholar
  3. Burman, L.G. and Park, J.T. (1984) Molecular model for elongation of the murein sacculus of Escherichia coli. Proc. Natl. Acad. Sci. USA 81, 1844–1848.PubMedCrossRefGoogle Scholar
  4. Giesbrecht, P., Wecke, J. and Reinicke, B. (1976) On the morphogenesis of the cell wall of Staphylococci. Int. Rev. Cytol. 44, 225–318.PubMedCrossRefGoogle Scholar
  5. Glauner, B. and Höltje, J.-V. (1990) Growth pattern of the murein sacculus of Escherichia coli. J. Biol. Chem. 265, 18988–18996.PubMedGoogle Scholar
  6. Glauner, B., Höltje, J.-V. and Schwarz, U. (1988) The composition of the murein of Escherichia coli. J. Biol. Chem. 263, 10088–10095.PubMedGoogle Scholar
  7. Goodell, E.W. (1985) Recycling of murein by Escherichia coli. J. Bacteriol. 163, 305–310.PubMedGoogle Scholar
  8. Harz, H., Burgdorf, K. and Höltje, J.-V. (1990) Isolation and separation of the glycan Strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal. Biochem. 190, 120–128.PubMedCrossRefGoogle Scholar
  9. Höltje, J.-V. and Glauner, B. (1990) Structure and metabolism of the murein sacculus. Res. Microbiol. 141, 75–89.PubMedCrossRefGoogle Scholar
  10. Koch, A.L. (1990) Additional arguments for the key role of “smart” autolysins in the enlargement of the wall of Gram-negative bacteria. Res. Microbiol. 141, 529–541.PubMedCrossRefGoogle Scholar
  11. Koch, A.L. and Doyle, R.J. (1985) Inside-to-citside growth and turnover of the wall of Gram-positive rods. J. Theor. Biol. 117, 137–157.PubMedCrossRefGoogle Scholar
  12. Kohlrausch, U. and Höltje, J.-V. (1991) Analysis of murein and murein precursors during antibiotic-induced lysis of Escherichia coli. J. Bacteriol. 173, 3425–3431.PubMedGoogle Scholar
  13. Labischinski, H., Barnickel, G. and Naumann, D. (1983) The state of order of bacterial peptidoglycan, in “The target of Penicillin” (Hackenbeck, R., Höltje, J.-V. and Labischinski, H., Eds.) pp. 49–54. de Gruyter, Berlin.Google Scholar
  14. Labischinski, H., Goodell, E.W., Goodell, A. and Hochberg, M.L. (1991) Direct proof of a “more-than single-layered” peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J. Bacteriol. 173, 751–756.PubMedGoogle Scholar
  15. Verwer, R.W.H., Nanninga, N., Keck, W. and Schwarz, U. (1978) Arrangement of glycan chains in the sacculus of Escherichia coli. J. Bacteriol. 136, 723–729.PubMedGoogle Scholar
  16. Pelzer, H. (1983) Murein ring structure and biosynthesis in gram-negative bacteria: some tentative contemplations, in “The target of Penicillin” (Hackenbeck, R., Höltje, J.-V. and Labischinski, H., Eds.) pp. 105–111. de Gruyter, Berlin.Google Scholar
  17. Wientjes, F.B. and Nanninga, N. (1989) Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge. J. Bacteriol. 171, 3412–3419.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Joachim-Volker Höltje
    • 1
  1. 1.Abteilung BiochemieMax-Planck-Institut für EntwicklungsbiologieTübingenGermany

Personalised recommendations