In Enterobacter Cloacae Alterations Induced by Glycine and d-Amino Acids in the Composition and Structure of Peptidoglycan Are Accompanied by Induction of Chromosomal β-Lactamase: A Model Involving ftsZ and Septation

  • Abramo C. Ottolenghi
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

The induction of Class I β-lactamase (Bla) in the Enterobacteriaceae and other Gram negative organisms has been studied extensively but as yet no information is available as to the nature of the event(s) which triggers it nor of the specific molecule that might act as the inducer. It is the purpose of this paper to present evidence and to suggest a model which makes septation/division the controlling factor for the induction of Bla.

Keywords

Nalidixic Acid Enterobacter Cloaca Penicillin Binding Protein Division Gene Peptidoglycan Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldea, M, Garrido, T., Pia, J. and Vicente, M. (1990) Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. Embo J. 9 3787–3794.PubMedGoogle Scholar
  2. Begg, J.K., Takasuga, A., Edwards, D.H., Dewar, S.J., Spratt, B.G., Adachi, H., Ohta, T., Matsuzawa, H. and Donachie, W.D. (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172, 6697–6703.PubMedGoogle Scholar
  3. Bi, E and Lutkenhaus, J. (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164.PubMedCrossRefGoogle Scholar
  4. Cullmann, W., Dalhoff, A. and Dick, W. (1984) Nonspecific induction of 0-lactamase in Entewbacter cloacae. J. Gen. Microbiol. 130, 1781–1786.PubMedGoogle Scholar
  5. Dai, K. and Lutkenhaus, J.(1991) &sZ is an essential division gene in Escherichia coli h Bacteriol. 173, 3500–3506.Google Scholar
  6. Dalhoff, A. and Cullman, W. (1984) Specificity of β-lactamase induction in Pseudomonas aervginosa. J. Antimicrob. Chemother. 14, 349–357.PubMedCrossRefGoogle Scholar
  7. Findell, C.M. and Sherris, J.D. (1976) Susceptibility of Entewbacter to cefamandole: evidence for a high mutation rate for resistance. Antimicrob. Agents Chemother. 9, 970–974.PubMedCrossRefGoogle Scholar
  8. Gatus, B.J., Bell, S.M. and Jimenez A.J. (1986) Enhancement β-lactamase production by glycine in Entewbacter cloacae ATCC 13047. Pathology 18, 145–147.PubMedCrossRefGoogle Scholar
  9. Gatus, B.J., Bell, S.M. and Jimenes A.J. (1988) Comparison of Glycine enhancement with cefoxitin induction of class 1 β-lactamase production in Entewbacter cloacaeATCC 13047. J. Antimicrob. Chemother., 21, 163–170.PubMedCrossRefGoogle Scholar
  10. Hammes, W., Schleifer, K.H. and Kandler, O. (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116, 1029–1053.PubMedGoogle Scholar
  11. Korfmann, G. and Sanders, C.C. (1989) ampG is essential for high level expression of AmpC β-lactamase in Entewbacter cloacae. Antimicrob. Agents Chemother. 33, 1946–1951.PubMedCrossRefGoogle Scholar
  12. Lark, C. and Lark, K.G. (1959) The effects of D-amino acids on Mcaligenes fecalis. Can. J. Microbiol. 5, 369–379.PubMedCrossRefGoogle Scholar
  13. Letendre, E.D. and Turgeon, P.L. (1989) Production and induction of β-lactamase during growth of Pseudomonas aervginosa in biological fluids. Antimicrob. Agents Chemother. 33, 776–777.PubMedCrossRefGoogle Scholar
  14. Lindberg, F., Westman, M. and Normark, S. (1985) Regulatory components in Citrobacter freundii ampC β-lactamase induction. Proc. Natl. Acad.Sci. USA. 82, 620–4624.CrossRefGoogle Scholar
  15. Lindberg, F., Lindquist, S. and Normark, S. (1987) Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii β lactamase. J. Bacteriol. 169, 1923–1928.PubMedGoogle Scholar
  16. Martin, H.H., Schmidt, B., Bräutigam S., Noguchi, H. and Matsuhashi, M. (1988) Initiation of induction of chromosomal 0-lactamase by binding of inducing β-lactam antibiotics to low molecular-weight penicillin binding proteins, in: “Antibiotic inhibition of bacterial cell surface assembly and function” (Actor, P., Daneo-Moore, L., Higgins, M.L., Salton, M.R.J. and Shockman, G.D., Eds.), pp. 494–451. American Society for Microbiology, Washington. D.C.Google Scholar
  17. Nanninga, N. (1991) Cell division and peptidoglycan assembly in Escherichia coif. Mol. Microbiol. 5, 791–795.PubMedCrossRefGoogle Scholar
  18. Oliva, B., Bennet, P.M. and Chopra, I. (1989) Penicillin binding protein 2 is required for induction of Citrobacter freundii class I chromosomal β-lactamase in Escherichia coli Antimicrob Agents Chemother. 33, 1116–1117.Google Scholar
  19. Ottolenghi A, C. and Ayala, J.A., (1991) Induction of class I β lactamase from Entewbacter freundii in Escherichia coli requires active ftsZ but not ftsA or ftsQ, products. Antimicrob Agents Chemother. 35, 2359–2365.CrossRefGoogle Scholar
  20. Ottolenghi, A.C., Caparrós, M. and de Pedro, M.A. (1991) Induction of class I β-lactamase by glycine and D-amino acids in Entewbacter cloacae ATCC 13047. Program Abstr. 31st Interscience Conf. Antimicrob. Agents. Chemother. abstr. 21, p 102.Google Scholar
  21. Peter, K., Korfmann, G., and Wiedemann, B. (1989) Impact of the ampD gene and its product on β-lactamase production in Entewbacter cloacae Rev. Inf. Dis. 10, 800–805.CrossRefGoogle Scholar
  22. Reeve, J.N. (1977) Mucopeptide biosynthesis in minicells Escherichia coli. J. Bacteriol. 131, 363–365.PubMedGoogle Scholar
  23. Robin, A., Joseleau-Petit, D. and D’An, R. (1990) Transcription of the ftsZ gene and cell division in Escherichia coli. J. Bacteriol. 172, 1392–1399.PubMedGoogle Scholar
  24. Torriani, A. (1960) Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim. Biophys. Acta 38, 460–469.PubMedCrossRefGoogle Scholar
  25. Wu, P.J. and Livermore, D.M. (1990) Response of chemostat cultures of Pseudomonas aeruginosa to carbamapens and other β-lactams. J. Antimicrob. Chemother. 25, 891–902.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Abramo C. Ottolenghi
    • 1
  1. 1.Department of Medical Microbiology and ImmunologyThe Ohio State UniversityColumbusUSA

Personalised recommendations