Inhibition of an Autolysin Together with PBP3 Causes the Formation of Bulges: Identification of the Soluble Lytic Tranglycosylase in E. coli as the Specific Target of Bulgecin

  • Markus F. Templin
  • David H. Edwards
  • Joachim-Volker Höltje
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)


A coordinated action of murein synthetases and murein hydrolases is assumed to be essential for proper growth of the bacterial cell. A disturbance of this balance, for example by blocking parts of the synthetic pathway turns the hydrolases into autolysins which then cause lysis of the cell (Tomasz, 1979).


Penicillin Binding Protein Beta Lactam Antibiotic Beta Lactam Bacterial Metabolite Muramic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Betzner, A.S. and Keck, W. (1989) Molecular cloning, overexpression and mapping of the sit gene encoding the soluble lytic transglycolsylase of Escherichia coll Mol. Gen. Genet. 219, 489–491.CrossRefGoogle Scholar
  2. Engel, H., Kazemier, B. and Keck, W. (1991) Murein-metabolizing enzymes from Escherichia colt sequence analysis and controlled overexpression of the sit gene which encodes the soluble lytic transglycosylase. J. Bacteriol. 173, 6773–6782.PubMedGoogle Scholar
  3. Gilkes, N.R., Henrissat, B., Kilbum, D.G., Miller, J.R.R.C., Warren, R.A.J. (1991) Domains in microbial β-l,4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55, 303–315.PubMedGoogle Scholar
  4. Giudicelli, S. and Tomasz, A. (1984) Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J. Bacteriol. 158, 1188–1190.PubMedGoogle Scholar
  5. Glauner, B. (1988) Separation and quantitation of muropeptides with high performance liquid chromatography. Analyt. Biochem. 172, 451–464.PubMedCrossRefGoogle Scholar
  6. Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P. and Kushner, S.R. (1989) New Method for Generating Deletions and Gene Replacements in Escherichia coli. J. Bacteriol. 171, 4617–4622.PubMedGoogle Scholar
  7. Höltje, J.-V., Mirelman, D., Sharon, N. and Schwarz, U. (1975) Novel type of murein transglycosylase in Escherichia coll J. Bacteriol. 124, 1067–1076.Google Scholar
  8. Höltje, J.-V. and Tomasz, A. (1975) Specific recognition of choline residues in the cell wall teichoic acid by the N-actylmuramyl-L-alanineamidaseofpneumococcus. J. Biol. Chem. 250, 6072–6076.PubMedGoogle Scholar
  9. Höltje, J.-V. and Tuomanen, E.I. (1991) The murein hydrolases of Escherichia coli — properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137, 441–454.PubMedCrossRefGoogle Scholar
  10. Imada, A., Kintaka, K., Nakao, M. and Shinagawa, S. (1982) Bulgecin, a bacterial metabolite which in concert with β-lactam antibiotics causes bulge formation. J. Antibiot. 35, 1400–1403.PubMedCrossRefGoogle Scholar
  11. Mett, H., Keck, W., Funk, A., and Schwarz, U. (1980) Two different species of murein transglycosylase in Escherichia coli: J. Bacteriol. 144,45–52.PubMedGoogle Scholar
  12. Nakao, N., Yukishige, K., Kondo, M. and Imada, A. (1986) Novel morphological changes in gram-negative bacteria caused by combination of bulgecin and cefmenoxime. Antimicrob. Agents Chemother 30, 414–417.PubMedCrossRefGoogle Scholar
  13. Rozeboom, H.J., Dijkstra, B.W., Engel, H. and Keck, W. (1990) Crystallization of the soluble lytic transglycosylase from Escherichia coli.K12. J. Mol. Biol. 212, 557–559.PubMedCrossRefGoogle Scholar
  14. Shinagawa, S., Maki, M., Kintaka, K., Imada, A. and Asai, M. (1985) Isolation and characterisation of bulgecins, new bacterial metabolites with bulge-inducing activity. J. Antibiot. 38, 17–23.PubMedCrossRefGoogle Scholar
  15. Spratt, B.G. (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Nad. Acad. Sci. USA 72, 2999–3002.CrossRefGoogle Scholar
  16. Tomasz, A. (1979) The mechanism ot the irreversible antimicrobial effects of penicillins: How the beta lactam antibiotic kill and lyse bacteria. Annual Rev. Microbiol. 33, 113–137.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Markus F. Templin
    • 1
  • David H. Edwards
    • 2
  • Joachim-Volker Höltje
    • 1
  1. 1.Abteilung BiochemieMax-Planck-Institut für EntwicklungsbiologieTübingenGermany
  2. 2.Department of Molecular BiologyUniversity of EdinburghEdinburghScotland

Personalised recommendations