Crystalline Bacterial Cell Surface Layers and their Application Potentials

  • Paul Messner
  • Margit Sára
  • Dietmar Pum
  • Uwe B. Sleytr
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)


Crystalline cell surface layers (S-layers) have been identified as the outermost envelope component in hundreds of different species of every taxonomical group of walled eubacteria and archaebacteria (Fig. 1) by electron microscopy of either freeze-etched, freeze-dried and shadowed, negatively stained, or thin sectioned preparations (for reviews see Sleytr, 1978; Sleytr and Messner, 1983, 1988 a; Sleytr et al., 1988; Messner and Sleytr, 1992).


Bacillus Stearothermophilus Surface Array Glycan Chain Crystalline Array Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, E., Brisson, J.-R., Gagné, S.M., Kolbe, J., Messner, P. and Sleytr, U.B. (1992) Structure of the glycan chain from the surface layer glycoprotein of Clostridium thermohydrosulfuricum L77-66. Biochim. Biophys. Acta, in press.Google Scholar
  2. Baumeister, W. and Engelhardt, H. (1987) Three-dimensional structure of bacterial surface layers, in “Electron Microscopy of Proteins” vol. 6, “Membraneous Structure” (Harris, J.R. and Horne, R.W., Eds.), pp. 109–154. Academic Press, London.Google Scholar
  3. Baumeister, W., Wildhaber, I. and Phipps, B.M. (1989) Principles of organization in eubacterial and archaebacterial surface proteins. Can. J. Microbiol. 35, 215–227.PubMedCrossRefGoogle Scholar
  4. Beveridge, T.J. (1981) Ultrastructure, chemistry, and function of the bacterial wall. Int. Rev. Cytol. 72, 229–317.PubMedCrossRefGoogle Scholar
  5. Beveridge, T.J. and Graham, L.L. (1991) Surface layers of bacteria. Microbiol. Rev. 55, 684–705.PubMedGoogle Scholar
  6. Beveridge, T.J. and Murray, R.G.E. (1975) Surface arrays on the cell wall of Spirillum metamorphum. J. Bacteriol. 124, 1529–1544.PubMedGoogle Scholar
  7. Buckmire, F.L.A. and Murray, R.G.E. (1976) Substructure and in vitro assembly of the outer, structured layer of Spirillum serpens. J. Bacteriol. 125, 290–299.PubMedGoogle Scholar
  8. Dubreuil, J.D., Logan, S.M., Cubbage, S., Ni Eidhin, D., McCubbin, W.D., Kay, C.M., Beveridge, T.J., Ferris, F.G. and Trust, T.J. (1988) Structural and biochemical analyses of a surface array protein of Campylobacter fetus. J. Bacteriol. 170, 4165–4173.PubMedGoogle Scholar
  9. Kist, M.L. and Murray, R.G.E. (1984) Components of the regular surface array of Aquaspirillum serpens MW5 and their assembly in vitro. J. Bacteriol. 157, 599–606.PubMedGoogle Scholar
  10. König, H. (1988) Archaeobacteria, in “Biotechnology” vol. 6b (Rehm, H.-J., Ed.), pp. 697–728. VCH Publishers, Weinheim.Google Scholar
  11. König, H. and Stetter, K.O. (1986) Studies on archaebacterial S-layers. System. Appl. Microbiol. 7, 300–309.CrossRefGoogle Scholar
  12. Koval, S.F. (1988) Paracrystalline protein surface arrays on bacteria. Can. J. Microbiol. 34, 407–414.CrossRefGoogle Scholar
  13. Koval, S.F. and Hynes, S.H. (1991) Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol. 173, 2244–2249.PubMedGoogle Scholar
  14. Koval, S.F. and Murray, R.G.E. (1984) The isolation of surface array proteins from bacteria. Can. J. Biochem. Cell Biol. 62, 1181–1189.PubMedCrossRefGoogle Scholar
  15. Küpcü, S., Sara, M. and Sleytr, U.B. (1991) Chemical modification of crystalline ultrafiltration membranes and immobilization of macromolecules. J. Membrane Sci. 61, 167–175.CrossRefGoogle Scholar
  16. Lechner, J. and Wieland, F. (1989) Structure and biosynthesis of prokaryotic glycoproteins. Annu. Rev. Biochem. 58, 173–194.PubMedCrossRefGoogle Scholar
  17. Lortal, S., van Heijenoort, J., Gruber, K. and Sleytr, U.B. (1992) S-layer of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and re-formation after extraction with lithium chloride. J. Gen. Microbiol. 138, 611–618.CrossRefGoogle Scholar
  18. Malcolm, A.J., Messner, P., Sleytr, U.B., Smith, R.H. and Unger, F.M. (1992) Crystalline bacterial cell surface layers (S-layers) as combined carrier/adjuvants for conjugate vaccines, in “Immobilised Macromolecules. Application Potentials in Biotechnology and Biosensors” (Sleytr, U.B., Messner, P., Pum, D. and Sara, M., Eds.), Springer-Verlag, London, in press.Google Scholar
  19. Marshall, K.C. (1991) The importance of studying microbial cell surfaces, in “Microbial Cell Surface Analysis. Structural and Physicochemical Methods” (Mozes, N., Handley, P.S., Busscher, H.J. and Rouxhet, P.G., Eds.), pp. 3–19. VCH Publishers, New York.Google Scholar
  20. Masuda, K. and Kawata, T. (1985) Reassembly of a regularly arranged protein in the cell wall of Lactobacillus buchneri and its reattachment to cell walls: chemical modification studies. Microbiol. Immunol. 29, 927–938.PubMedGoogle Scholar
  21. Matteuzzi, D., Hollaus, F. and Biavati, B. (1978) Proposal of neotype for Clostridium thermohydrosulfiiricum and the merging of Clostridium tartarivorum with Clostridium thermosaccharolyticum. Int. J. Syst. Bacteriol. 28, 528–531.CrossRefGoogle Scholar
  22. Messner, P. and Sleytr, U.B. (1988 a)Asparaginyl-rhamnose: a novel type of protein-carbohydrate linkage in a eubacterial surface-layer glycoprotein. FEBS Lett. 228, 317–320.PubMedCrossRefGoogle Scholar
  23. Messner, P. and Sleytr, U.B. (1988 b) Separation and purification of S-layers from gram-positive and gram-negative bacteria, in “Bacterial Cell Surface Techniques” (Hancock, I.C. and Poxton, I.R., Eds.), pp. 97–104. John Wiley & Sons, Chichester.Google Scholar
  24. Messner, P. and Sleytr, U.B. (1991) Bacterial surface layer glycoproteins. Glycobiology 1, 545–551.PubMedCrossRefGoogle Scholar
  25. Messner, P. and Sleytr, U.B. (1992) Crystalline bacterial cell-surface layers, in “Advances in Microbial Physiology” vol. 33 (Rose, A.H. and Tempest, D.W., Eds.), pp. 213–275. Academic Press, London.Google Scholar
  26. Messner, P., Hollaus, F. and Sleytr, U.B. (1984) Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int. J. Syst. Bacteriol. 34, 202–210.CrossRefGoogle Scholar
  27. Messner, P., Pum, D. and Sleytr, U.B. (1986) Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a. J. Ultrastruct. Mol. Struct. Res. 97, 73–88.PubMedCrossRefGoogle Scholar
  28. Messner, P., Küpcü, S., Sára, M., Pum, D. and Sleytr, U.B. (1991) Characterization and biotechnological application of eubacterial glycoproteins, in “Protein Glycosylation: Cellular, Biotechnological and Analytical Aspects” (Conradt, H.S., Ed.), pp. 111–116. GBF Monographs, vol. 15. VHC-Verlagsgesellschaft, Weinheim.Google Scholar
  29. Messner, P., Christian, R., Kolbe, J., Schulz. G. and Sleytr, U.B. (1992 a) Analysis of a novel linkage unit of O-linked carbohydrates from crystalline surface layer glycoprotein of Clostridium thermohydrosulfiiricum S102-70. J. Bacteriol. 174, 2236–2240.PubMedGoogle Scholar
  30. Messner, P., Mazid, M.A., Unger, F.M. and Sleytr, U.B. (1992 b) Artificial antigens. Synthetic carbohydrate haptens immobilized on crystalline bacterial surface layer glycoproteins. Carbohydr. Res., in press.Google Scholar
  31. Peters, J., Peters, M., Lottspeich, F. and Baumeister, W. (1989) S-layer protein gene of Acetogenium kivui: cloning and expression in Escherichia coli and determination of the nucleotide sequence. J. Bacteriol. 171, 6307–6315.PubMedGoogle Scholar
  32. Pum, D., Sára, M. and Sleytr, U.B. (1989 a) Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulatis E38-66. J. Bacteriol. 171, 5296–5303.PubMedGoogle Scholar
  33. Pum, D., Sára, M. and Sleytr, U.B. (1989 b) Use of two-dimensional protein crystals from bacteria for nonbiological applications. J. Vac. Sci. Technol. B 7, 1391–1397.Google Scholar
  34. Pum, D., Sára, M. and Sleytr, U.B. (1992 a) Two-dimensional (glyco)protein crystals as patterning elements and immobilisation matrices for the development of biosensors, in “Immobilised Macromolecules. Application Potentials in Biotechnology and Biosensors” (Sleytr, U.B., Messner, P., Pum, D. and Sára, M., Eds.), Springer-Verlag, London, in press.Google Scholar
  35. Pum, D., Sara, M., Messner, P. and Sleytr, U.B. (1992 b) Two-dimensional (glyco)protein crystals as patterning elements for the controlled immobilisation of functional molecules. Nanotechnology 4, 196–202.Google Scholar
  36. Sára, M. and Sleytr, U.B. (1987 a) Charge distribution on the S-layer of Bacillus stearothermophilus NRS 1536/3c and importance of charged groups for morphogenesis and function. J. Bacteriol. 169, 2804–2809.PubMedGoogle Scholar
  37. Sára, M. and Sleytr, U.B. (1987 b) Molecular sieving through S-layers of Bacillus stearothermophilus strains. J. Bacteriol. 169, 4092–4098.PubMedGoogle Scholar
  38. Sára, M. and Sleytr, U.B. (1987 c) Production and characteristics of ultrafiltration membranes with uniform pores from two-dimensional arrays of proteins. J. Membrane Sci. 33, 27–49.CrossRefGoogle Scholar
  39. Sára, M. and Sleytr, U.B. (1988) Membrane biotechnology: Two-dimensional protein crystals for ultrafiltration purposes, in “Biotechnology” vol. 6b (Rehm, H.-J., Ed.), pp. 615–636. VCH Publishers, Weinheim.Google Scholar
  40. Sára, M. and Sleytr, U.B. (1989) Use of regularly structured bacterial cell envelope layers as matrix for the immobilization of macromolecules. Appl. Microbiol. Biotechnol. 30, 184–189.CrossRefGoogle Scholar
  41. Sára, M., Küpcü, S. and Sleytr, U.B. (1989) Localization of the carbohydrate residue of the S-layerglycoprotein from Clostridium thermohydrosulfuricum LI 11-69. Arch. Microbiol. 151, 416–420.CrossRefGoogle Scholar
  42. Sára, M., Moser-Thier, K., Kainz, U. and Sleytr, U.B. (1990) Characterization of S-layers from mesophilic bacillaceae and studies on their protective role towards muramidases. Arch. Microbiol. 153, 209–214.CrossRefGoogle Scholar
  43. Sára, M., Pum, D. and Sleytr, U.B. (1992 a) Permeability and charge dependent adsorption properties of the S-layer lattice from Bacillus coagulans E38-66. J. Bacteriol. 174, 3487–3493.PubMedGoogle Scholar
  44. Sára, M., Küpcü, S., Weiner, C, Weigert, S. and Sleytr, U.B. (1992 b) Crystalline protein layers as isoporous molecular sieves and immobilisation and affinity matrices, in “Immobilised Macromolecules. Application Potentials in Biotechnology and Biosensors” (Sleytr, U.B., Messner, P., Pum, D. and Sára, M., Eds.), Springer-Verlag, London, in press.Google Scholar
  45. Sjögren, A., Hovmöller, S., Farrants, G., Ranta, H., Haapsalo, M., Ranta, K. and Lounatmaa, K. (1985) Structures of two different surface layers found in six Bacteroides strains. J. Bacteriol. 164, 1278–1282.PubMedGoogle Scholar
  46. Sleytr, U.B. (1975) Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces. Nature 257, 400–402.PubMedCrossRefGoogle Scholar
  47. Sleytr, U.B. (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int. Rev. Cytol. 53, 1–64.PubMedCrossRefGoogle Scholar
  48. Sleytr, U.B. and Messner, P. (1983) Crystalline surface layers on bacteria. Annu. Rev. Microbiol. 37, 311–339.PubMedCrossRefGoogle Scholar
  49. Sleytr, U.B. and Messner, P. (1988 a) Crystalline surface layers on bacteria, in “Crystalline Bacterial Cell Surface Layers” (Sleytr, U.B., Messner, P., Pum, D. and Sára, M., Eds.), pp. 160–186. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  50. Sleytr, U.B. and Messner, P. (1988 b) Crystalline surface layers in procaryotes. J. Bacteriol. 170, 2891–2897.PubMedGoogle Scholar
  51. Sleytr, U.B. and Messner, P. (1989) Self-assemblies of crystalline bacterial cell surface layers, in “Electron Microscopy of Subcellular Dynamics” (Plattner, H., Ed.), pp. 13–31. CRC Press, Boca Raton.Google Scholar
  52. Sleytr, U.B. and Plohberger, R. (1980) The dynamic process of assembly of two-dimensional arrays of macromolecules on bacterial cell walls, in “Electron Microscopy at Molecular Dimensions” (Baumeister, W. and Vogell, W., Eds.), pp. 36–47. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  53. Sleytr, U.B., Messner, P. and Pum, D. (1988) Analysis of crystalline bacterial surface layers by freeze-etching, metal shadowing, negative staining and ultrathin sectioning, in “Methods in Microbiology” vol. 20 (Mayer, F., Ed.), pp. 29–60. Academic Press, London.Google Scholar
  54. Sleytr, U.B., Sára, M. and Pum, D. (1989) Application potential of two dimensional protein crystals. Microelectronic Engineering 9, 13–20.CrossRefGoogle Scholar
  55. Sleytr, U.B., Pum, D., Sára, M. and Messner, P. (1992) Two-dimensional protein crystals as patterning elements in molecular nanotechnology, in “Proc. 2nd Int. Conference on Molecular Electronics-Science and Technology” (Aviram, A., Ed.). The Engineering Foundation, New York, in press.Google Scholar
  56. Smit, J. (1987) Protein surface layers of bacteria, in “Bacterial Outer Membranes as Model Systems” (Inouye, M., Ed.), pp. 343–376. John Wiley & Sons, New York.Google Scholar
  57. Smit, J. and Agabian, N. (1982) Cell surface patterning and morphogenesis: biogenesis of a periodic surface array during Caulobacter development. J. Cell Biol. 95, 41–49.PubMedCrossRefGoogle Scholar
  58. Smith, S.H. and Murray, R.G.E. (1990) The structure and associations of the double S-layer on the cell wall of Aquaspirillum sinuosum. Can. J. Microbiol. 36, 327–335.PubMedCrossRefGoogle Scholar
  59. Takeoka, A., Takumi, K., Koga, T. and Kawata, T. (1991) Purification and characterization of S layer proteins from Clostridium difficile GAI 0714. J. Gen. Microbiol. 137, 261–267.PubMedCrossRefGoogle Scholar
  60. Thome, K.J.I., Oliver, R.C. and Glauert, A.M. (1976) Synthesis and turnover of the regularly arranged surface protein of Acinetobacter sp. relative to the other components of the cell envelope. J. Bacteriol. 127, 440–450.Google Scholar
  61. Tsuboi, A., Tsukagoshi, N. and Udaka, S. (1982) Reassembly in vitro of hexagonal surface arrays in a protein-producing bacterium, Bacillus brevis 47. J. Bacteriol. 151, 1485–1497.PubMedGoogle Scholar
  62. Wicken, A.J. (1985) Bacterial cell walls and surfaces, in “Bacterial Adhesion. Mechanisms and Physiological Significance” (Savage, D.C. and Fletcher, M., Eds.), pp. 45–70. Plenum Press, New York.CrossRefGoogle Scholar
  63. Wildhaber, I., Santarius, U. and Baumeister, W. (1987) Three-dimensional structure of the surface protein of Desulfiirococcus mobilis. J. Bacteriol. 169, 5563–5568.PubMedGoogle Scholar
  64. Yamada, H., Tsukagoshi, N. and Udaka, S. (1981) Morphological alterations of cell wall concomitant with protein release in a protein-producing bacterium, Bacillus brevis 47. J. Bacteriol. 148, 322–332.PubMedGoogle Scholar
  65. Yang, L., Pei, Z., Fujimoto, S. and Blaser, M.J. (1992) Reattachment of surface array proteins to Campylobacter fetus cells. J. Bacteriol. 174, 1258–1267.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Paul Messner
    • 1
  • Margit Sára
    • 1
  • Dietmar Pum
    • 1
  • Uwe B. Sleytr
    • 1
  1. 1.Zentrum für Ultrastrukturforschung und Ludwig-Boltzmann-Institut für Molekulare NanotechnologieUniversität für BodenkulturWienAustria

Personalised recommendations