Mobilization of Chromosomes and Nonconjugative Plasmids by Cointegrative Mechanisms

  • Cornelia Reimmann
  • Dieter Haas


Conjugative plasmids in bacteria bring about the transfer of DNA by cell contact between a donor and a recipient (250). Naturally occurring conjugative plasmids transfer themselves. Furthermore, in many cases they can also transfer (mobilize) chromosomal DNA or nonconjugative plasmids. Thus, mobilization, as we define it, is the process by which a conjugative plasmid accomplishes the transfer of DNA that is not self-transmissible.


Insertion Sequence Conjugative Plasmid Illegitimate Recombination Broad Host Range Plasmid IncP Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allibert, P., Willison, J. C., and Vignais, P. M., 1987, Complementation of nitrogen-regulatory (ntr-like) mutations in Rhodobacter capsulatus by an Escherichia coli gene: Cloning and sequencing of the gene and characterization of the gene product, J. Bacteriol. 169: 260–271.PubMedGoogle Scholar
  2. 2.
    Al-Taho, N. M., and Warner, P. J., 1987, Restoration of phenotype in Escherichia coli auxotrophs by pULB113-mediated mobilisation from methylotrophic bacteria, FEMS Microbiol. Lett. 43: 235–239.CrossRefGoogle Scholar
  3. 3.
    Anderson, P., 1987, Twenty years of illegitimate recombination, Genetics 115: 581–584.PubMedGoogle Scholar
  4. 4.
    Arthur, A., and Sherratt, D., 1979, Dissection of the transposition process: A transposon-encoded site-specific recombination system, Mol. Gen. Genet. 175: 267–274.PubMedCrossRefGoogle Scholar
  5. 5.
    Arthur, A., Nimmo, E., Hettle, S., and Sherratt, D., 1984, Transposition and transposition immunity of transposon Tn3 derivatives having different ends, EMBO J. 3: 1723–1729.PubMedGoogle Scholar
  6. 6.
    Avila, P., de la Cruz, F., Ward, E., and Grinsted, J., 1984, Plasmids containing one inverted repeat of Tn21 can fuse with other plasmids in the presence of Tn21 transposase, Mol. Gen. Genet. 195: 288–293.PubMedCrossRefGoogle Scholar
  7. 7.
    Bagdasarian, M., Hryniewicz, M., Zdzienicka, M., and Bagdasarian, M., 1975, Integrative suppression of a dna mutation in Salmonella typhimurium, Mol. Gen. Genet. 139: 213–231.PubMedGoogle Scholar
  8. 8.
    Bainton, R., Gamas, P., and Craig, N. L., 1991, Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA, Cell 65: 805–816.PubMedCrossRefGoogle Scholar
  9. 9.
    BSnfalvi, Z., Randhawa, G. S., Kondorosi, E., Kiss, A., and Kondorosi, A., 1983, Construction and characterization of R-prime plasmids carrying symbiotic genes of R. meliloti, Mol. Gen. Genet. 189: 129–135.CrossRefGoogle Scholar
  10. 10.
    Barlett, M. M., Erickson, J. M., and Meyer, R. J., 1990, Recombination between directly repeated origins of conjugative transfer cloned in M13 bacteriophage DNA models ligation of the transferred plasmid strand, Nucleic Acids Res. 18: 3579–3586.PubMedCrossRefGoogle Scholar
  11. 11.
    Barrett, J. T., Rhodes, C. S., Ferber, D. M., Jenkins, B., Kuhl, S. A., and Ely, B., 1982, Construction of a genetic map for Caulobacter crescentus, J. Bacteriol. 149: 889–896.PubMedGoogle Scholar
  12. 12.
    Barth, P T., 1979, Plasmid RP4, with Escherichia coli DNA inserted in vitro, mediates chromosomal transfer, Plasmid 2: 130–136.PubMedCrossRefGoogle Scholar
  13. 13.
    Bashkirov, V. I., Khasanov, F. K., and Prozorov, A. A., 1987, Illegitimate recombination in Bacillus subtilis: Nucleotide sequences at recombinant DNA junctions, Mol. Gen. Genet. 210: 578–580.PubMedCrossRefGoogle Scholar
  14. 14.
    Beck, Y., Coetzee, W. F., and Coetzee, J. N., 1982, In vitro-constructed RP4-prime plasmids mediate orientated mobilization of the Proteus morganii chromosome, J. Gen. Microbiol. 128: 1163–1169.Google Scholar
  15. 15.
    Beeching, J. R., Weightman, A. J., and Slater, J. H., 1983, The formation of an R-prime carrying the fraction I dehalogenase gene from Pseudomonas putida PP3 using the IncP plasmic R68.44, J. Gen. Microbiol. 129: 2071–2078.Google Scholar
  16. 16.
    Benjamin, H. W., and Kleckner, N., 1992, Excision of Tn10 from the donor site during transposition occurs by flush double strand cleavages at the transposon termini, Proc. Natl. Acad. Sci. USA 89: 46484652.Google Scholar
  17. 17.
    Bennett, R M., de la Cruz, F., and Grinsted, J., 1983, Cointegrates are not obligatory intermediates in transposition of Tn3 and Tn21, Nature 305: 743–744.CrossRefGoogle Scholar
  18. 18.
    Bennett, P. M., Heritage, J., Comanducci, A., and Dodd, H. M., 1986, Evolution of R plasmids by replicon fusion, J. Antimicrob. Chemother. 18 (Suppl. C): 103–111.PubMedCrossRefGoogle Scholar
  19. 19.
    Bennett, P. M., Grinsted, J., and Foster, T. J., 1990, Detection and use of transposons, in: Methods in Microbiology, Vol. 21 ( J. Grinsted and P. M. Bennett, eds.), Academic Press, London, pp. 205–231.Google Scholar
  20. 20.
    Benson, S., and Shapiro, J., 1978, TOL is a broad-host-range plasmid, J. Bacteriol. 135: 278–280.PubMedGoogle Scholar
  21. 21.
    Berg, C. M., and Curtiss,111, R., 1967, Transposition derivatives of an Hfr strain of Escherichia coli K-12, Genetics 56: 503–525.PubMedGoogle Scholar
  22. 22.
    Berg, C. M., Berg, D. E., and Groisman, E. A., 1989, Transposable elements and the genetic engineering of bacteria, in: Mobile DNA ( D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, D. C., pp. 879–925.Google Scholar
  23. 23.
    Berg, D. E., 1977, Insertion and excision of the transposable kanamycin resistance determinant Tn5, in: DNA Insertion Elements, Plasmids, and Episomes ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., pp. 205–212.Google Scholar
  24. 24.
    Berg, D. E., 1989, Transposon Tn5, in: Mobile DNA ( D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, D.C., pp. 185–210.Google Scholar
  25. 25.
    Beringer, J. E., and Hopwood, D. A., 1976, Chromosomal recombination and mapping in Rhizobium leguminosarum, Nature 264: 291–293.PubMedCrossRefGoogle Scholar
  26. 26.
    Beringer J. E., Hoggan, S. A., and Johnston, A. W. B., 1978, Linkage mapping in Rhizobium leguminosarum by means of R plasmid-mediated recombination, J. Gen. Microbiol. 104: 201–207.Google Scholar
  27. 27.
    Beringer, J. E., Johnston, A. W. B., and Kondorosi, A., 1987, Rhizobium meliloti and Rhizobium leguminosarum, in: Genetic Maps, Vol. 4 (S. J. O’Brien, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 245–251.Google Scholar
  28. 28.
    Bhattacharjee, M. K., and Meyer, R. J., 1991, A segment of a plasmid gene required for conjugal transfer encodes a site-specific, single-strand DNA endonuclease and ligase, Nucleic Acids Res. 19: 1129–1137.PubMedCrossRefGoogle Scholar
  29. 29.
    Biel, S. W, and Berg, D. E., 1984, Mechanism of IS1 transposition in E. coli: Choice between simple insertion and cointegration, Genetics 108: 319–330.PubMedGoogle Scholar
  30. 30.
    Birkenbihl, R. P., and Vielmetter, W., 1989, Complete maps of IS1, IS2, IS3, IS4, ISS, IS30 and IS150 locations in Escherichia coli K12, Mol. Gen. Genet. 220: 147–153.PubMedCrossRefGoogle Scholar
  31. 31.
    Bissonette, L., and Roy, P H., 1992, Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria, J. Bacteriol. 175: 1248–1257.Google Scholar
  32. 32.
    Bittle, C., and Konopka, A., 1990, IncP-mediated transfer of loci involved with gas vesicle production in Ancylobacter aquaticus, J. Gen. Microbiol. 136: 1259–1263.Google Scholar
  33. 33.
    Blanco, G., Gutierrez, J. C., Ramos, E, and Tortolero, M., 1991, Isolation and characterization of R-primes of Azotobacter vinelandii, FEMS Microbiol. Lett. 80: 213–216.CrossRefGoogle Scholar
  34. 34.
    Boccard, F., Smokvina, T., Pernodet, J.-L., Friedmann, A., and Guérineau, M., 1989, The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages, EMBO J. 8: 973–980.PubMedGoogle Scholar
  35. 35.
    Bowen, A. R. S. G., and Pemberton, J. M., 1985, Mercury resistance transposon Tn813 mediates chromosome transfer in Rhodopseudomonas sphaeroides and intergeneric transfer of pBR322, in: Plasmids in Bacteria ( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), Plenum Press, New York, pp. 105–115.CrossRefGoogle Scholar
  36. 36.
    Boyd, A. C., Archer, J. A. K., and Sherratt, D. J., 1989, Characterization of the ColE1 mobilization region and its protein products, Mol. Gen. Genet. 217: 488–498.PubMedCrossRefGoogle Scholar
  37. 37.
    Brandt, R., Günther, E., and Herrmann, H., 1984, Mapping of cysteine genes on the chromosome of Pseudomonas aeruginosa PAO, Mol. Gen. Genet. 197: 292–296.PubMedCrossRefGoogle Scholar
  38. 38.
    Bray, R., Strom, D., Barton, J., Dean, H. F., and Morgan, A. F, 1987, Isolation and characterization of Pseudomonas putida R-prime plasmids, J. Gen. Microbiol. 133: 683–690.PubMedGoogle Scholar
  39. 39.
    Bresler, S. E., Krivonogov, S. V, and Lanzov, V. A., 1979, Genetic determination of the donor properties in Escherichia coli K-12, Mol. Gen. Genet. 177: 177–184.PubMedCrossRefGoogle Scholar
  40. 40.
    Breton, A. M., Jaoua, S., and Guespin-Michel, J., 1985, Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome, J. Bacteriol. 161: 523–528.PubMedGoogle Scholar
  41. 41.
    Broome-Smith, J., 1980, RecA independent, site-specific recombination between ColE1 or ColK and a miniplasmid they complement for mobilization and relaxation: Implications for the mechanism of DNA transfer during mobilization, Plasmid 4: 51–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Brown, P 0., 1990, Integration of retroviral DNA, in: Retroviruses—Strategies of Replication ( R. Swanstrom and P K. Vogt, eds.), Springer Verlag, Berlin, pp. 19–48.CrossRefGoogle Scholar
  43. 43.
    Bryan, J., Saeed, N., Fox, D., and Sastry, G. R. K., 1982, R68.45 mediated chromosomal gene transfer in Agrobacterium tumefaciens, Arch. Microbiol. 131: 271–277.PubMedCrossRefGoogle Scholar
  44. 44.
    Bushman, F D., Fujiwara, T., and Craigie, R., 1990, Retroviral DNA integration directed by HIV integration protein in vitro, Science 249: 1555–1558.PubMedCrossRefGoogle Scholar
  45. 45.
    Bushman, F D., and Craigie, R., 1991, Activities of human immunodeficiency virus (HIV) integration protein in vitro: Specific cleavage and integration of HIV DNA, Proc. Natl. Acad. Sci. USA 88: 1339–1343.PubMedCrossRefGoogle Scholar
  46. 46.
    Campbell, A., 1962, Episomes, Adv. Genet. 11: 101–145.CrossRefGoogle Scholar
  47. 47.
    Carter, J. R., and Porter, R. D., 1991, traY and tral are required for oriT-dependent enhanced recombination between lac-containing plasmids and Xplac5, J. Bacteriol. 173: 1027–1034.Google Scholar
  48. 48.
    Chakrabarty, A. M., and Gunsalus, I. C., 1979, Chromosomal mobilization from a recA mutant of Pseudomonas putida, Mol. Gen. Genet. 176: 151–154.PubMedCrossRefGoogle Scholar
  49. 49.
    Chandler, M., Silver, L., Roth, Y., and Caro, L., 1976, Chromosome replication in an Hfr strain of Escherichia coli, J. Mol. Biol. 104: 517–523.PubMedCrossRefGoogle Scholar
  50. 50.
    Chandler, M., Silver, L., and Caro, L., 1977, Suppression of an Escherichia coli dnaA mutation by the integrated R factor R100.1: Origin of chromosome replication during exponential growth, J. Bacteriol. 131: 421–430.PubMedGoogle Scholar
  51. 51.
    Chandler, M., Roulet, E., Silver, L., Boy de la Tour, E., and Caro, L., 1979, Tn10 mediated integration of the plasmid R100.1 into the bacterial chromosome: Inverse transposition, Mol. Gen. Genet. 173: 23–30.Google Scholar
  52. 52.
    Chandler, P. M., and Krishnapillai, V., 1974, Isolation and properties of recombination-deficient mutants of Pseudomonas aeruginosa, Mutation Res. 23: 15–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Chafer, K. F., Henderson, D. J., Bibb, M. J., and Hopwood, D. A., 1988, Genome flux in Streptomyces coelicolor and other streptomycetes and its possible relevance to the evolution of mobile antibiotic resistance determinants, in: Transposition ( A. J. Kingsman, K. F. Chater, and S. M. Kingsman, eds.), Cambridge University Press, Cambridge, England, pp. 7–42.Google Scholar
  54. 54.
    Chatterjee, A. K., 1980, Acceptance by Erwinia spp. of R plasmid R68.45 and its ability to mobilize the chromosome of Erwinia chrysanthemi, J. Bacteriol. 142: 111–119.PubMedGoogle Scholar
  55. 55.
    Chatterjee, A. K., and Starr, M. P., 1973, Gene transmission among strains of Erwinia amylovora, J. Bacteriol. 116: 1100–1106.PubMedGoogle Scholar
  56. 56.
    Chatterjee, A. K., and Starr, M. R, 1977, Donor strains of the soft-rot bacterium Erwinia chrysanthemi and conjugational transfer of the pectolytic capacity, J. Bacteriol. 132: 862–869.PubMedGoogle Scholar
  57. 57.
    Chatterjee, A. K., and Starr, M. P., 1980, Genetics of Erwinia species, Annu. Rev. Microbiol. 34: 645–676.PubMedCrossRefGoogle Scholar
  58. 58.
    Chatterjee, A. K., Ross, L. M., McEvoy, J. L., and Thurn, K. K., 1985, pULB113, an RP4::mini-Mu plasmid, mediates chromosomal mobilization and R-prime formation in Erwinia amylovora, Erwinia chrysanthemi, and subspecies of Erwinia carotovora, Appl. Environ. Microbiol. 50: 1–9.Google Scholar
  59. 59.
    Chilton, M-D., Farrand, S. K., Levin, R., and Nester, E. W, 1976, RP4 promotion of transfer of a large Agrobacterium plasmid which confers virulence, Genetics 83: 609–618.PubMedGoogle Scholar
  60. 60.
    Chumley, F G., Menzel, R., and Roth, J. R., 1979, Hfr formation directed by Tn10, Genetics 91: 639–655.PubMedGoogle Scholar
  61. 61.
    Clark, A. J., and Warren, G. J., 1979, Conjugal transmission of plasmids, Anna. Rev. Genet. 13: 99–125.CrossRefGoogle Scholar
  62. 62.
    Clewell, D. B., Tomich, P. K., Gawron-Burke, M. C., Franke, A. E., Yagi, Y., and An, F. Y.,1982, Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917, J. Bacteriol. 152: 1220–1230.Google Scholar
  63. 63.
    Clowes, R. C., and Moody, E. E. M., 1966, Chromosomal transfer from “recombination-deficient” strains of Escherichia coli, Genetics 53: 717–726.PubMedGoogle Scholar
  64. 64.
    Coetzee, J. N., 1978, Mobilization of the Proteus mirabilis chromosome by R plasmid R772, J. Gen. Microbiol. 108: 103–109.PubMedGoogle Scholar
  65. 65.
    Coetzee, J. N., 1979, Patterns of mobilization of the Proteus mirabilis chromosome by R plasmids, J. Gen. Microbiol. 111: 243–251.PubMedGoogle Scholar
  66. 66.
    Coetzee, J. N., van Dijken, M. C., and Coetzee, W. F., 1987, Proteus mirabilis, in: Genetic Maps, Vol. 4 (S. J. O’Brien, ed), Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., pp. 224–229.Google Scholar
  67. 67.
    Cohen, A., Silberstein, Z., Broido, S., and Laban, A., 1985, General genetic recombination of bacterial plasmids, in: Plasmids in Bacteria ( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), Plenum Press, New York, pp. 505–519.CrossRefGoogle Scholar
  68. 68.
    Colbeau, A., Magnin, J.-P., Cauvin, B., Champion, T, and Vignais, P. M., 1990, Genetic and physical mapping of an hydrogenase gene cluster from Rhodobacter capsulatus, Mol. Gen. Genet. 220: 393–399.CrossRefGoogle Scholar
  69. 69.
    Collis, C. M., and Hall, R. M., 1992, Gene cassette from the insert region of integrons are excised as covalently closed circles, Mol. Microbiol. 6: 2875–2885.PubMedCrossRefGoogle Scholar
  70. 70.
    Craig, N. L., 1988, The mechanism of conservative site-specific recombination, Annu. Rev. Genet. 22: 77–105.PubMedCrossRefGoogle Scholar
  71. 71.
    Craig, N. L., 1991, Tn7: A target site-specific transposon, Mol. Microbiol. 5: 2569–2573.PubMedCrossRefGoogle Scholar
  72. 72.
    Cullum, J., and Broda, P., 1979, Chromosome transfer and Hfr formation by F in rec+ and recA strains of Escherichia coli K12, Plasmid 2: 358–365.PubMedCrossRefGoogle Scholar
  73. 73.
    Currier, T. C., and Morgan, M. K., 1982, Direct DNA repeat in plasmid R68.45 is associated with deletion formation and concomitant loss of chromosome mobilization ability, J. Bacteriol. 150: 251–259.PubMedGoogle Scholar
  74. 74.
    Curtiss, III, R., and Stallions, D. R., 1969, Probability of F integration and frequency of stable Hfr donors in F+ populations of Escherichia coli K-12, Genetics 63: 27–38.Google Scholar
  75. 75.
    Cuzin, F., and Jacob, E, 1967, Mutations de l’épisome F d’Escherichia coli K12. 2. Mutants à réplication thermosensible, Ann. Inst. Pasteur 112: 397–418.Google Scholar
  76. 76.
    Dalrymple, B., 1987, Novel rearrangements of IS30 carrying plasmids leading to the reactivation of gene expression, Mol. Gen. Genet. 207: 413–420.PubMedCrossRefGoogle Scholar
  77. 77.
    Danilevich, V. N., and Kostyuchenko, D. A., 1986, Immunity to repeated insertion of IS21 sequence, Mol. Biol. 19: 1016–1022 (English translation).Google Scholar
  78. 78.
    Danilevich, V. N., Kostyuchenko, D. A., and Negrii, N. V, 1986, Interaction (incorporation and excision) of the plasmid pRP19.6, a derivative of RP1 containing a duplicated sequence IS21, with the chromosome of Escherichia coli K12, Mol. Biol. 19: 858–867 (English translation).Google Scholar
  79. 79.
    Datta, N., and Barth, P T., 1976, Hfr Formation by I pilus-determining plasmids in Escherichia coli K-12, J. Bacteriol. 125: 811–817.PubMedGoogle Scholar
  80. 80.
    Davidson, N., Deonier, R. C., Hu, S., and Ohtsubo, E., 1975, Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. X. Deoxyribonucleic acid sequence organization of F and F-primes, and the sequences involved in Hfr formation, in: Microbiology-1974 ( D. Schlessinger, ed.), American Society for Microbiology, Washington, D. C., pp. 56–65.Google Scholar
  81. 81.
    De Graaff, J., Kreuning, P. C., and Stouthamer, A. H., 1974, Isolation and characterization of Hfr males in Citrobacter freundii, Antonie van Leeuwenhoek J. Microbiol. 40: 161–170.PubMedCrossRefGoogle Scholar
  82. 82.
    DeVries, J. K., and Maas, W K., 1971, Chromosomal integration of F’ factors in recombination-deficient Hfr strains of Escherichia coli, J. Bacteriol. 106: 150–156.PubMedGoogle Scholar
  83. 83.
    Dean, H. F., and Morgan, A. F., 1983, Integration of R91–5::Tn501 into the Pseudomonas putida PPN chromosome and genetic circularity of the chromosomal map, J. Bacteriol. 153: 485–497.PubMedGoogle Scholar
  84. 84.
    Deonier, R. C., and Davidson, N., 1976, The sequence organization of the integrated F plasmid in two Hfr strains of Escherichia coli, J. Mol. Biol. 107: 207–222.PubMedCrossRefGoogle Scholar
  85. 85.
    Deonier, R. C., and Hadley, R. G., 1980, IS2–IS2 and IS3–IS3 relative recombination frequencies in F integration, Plasmid 3: 48–64.PubMedCrossRefGoogle Scholar
  86. 86.
    Deonier, R. C., and Mirels, L., 1977, Excision of F plasmid sequences by recombination at directly repeated insertion sequence 2 elements: Involvement of recA, Proc. Natl. Acad. Sci. USA 74: 3965–3969.PubMedCrossRefGoogle Scholar
  87. 87.
    Depicker, A., De Block, M., Inzé, D., Van Montagu, M., and Schell, J., 1980, IS-like element IS8 in RP4 plasmid and its involvement in cointegration, Gene 10: 329–338.PubMedCrossRefGoogle Scholar
  88. 88.
    Dessaux, Y., Petit, A., Ellis, J. G., Legrain, C., Demarez, M., Wiame, J.-M., Popoff, M., and Tempé, J., 1989, Ti plasmid-controlled chromosome transfer in Agrobacterium tumefaciens, J. Bacteriol. 171: 63636366.Google Scholar
  89. 89.
    Dixon, D. A., and Kowalczykowski, S. C., 1991, Homologous pairing in vitro stimulated by the recombinant hotspot, Chi, Cell 66: 361–371.PubMedCrossRefGoogle Scholar
  90. 90.
    Dixon, R., and Kinghorn, J. R., 1990, Separation of large DNA molecules by pulsed-field gel electrophoresis, Soc. Gen. Microbiol. Q. 17: 86–88.Google Scholar
  91. 91.
    Dixon, R., Cannon, E C., and Postgate, J. R., 1975, Properties of the R-factor R144drd3 in Klebsiella pneumoniae strain M5a1, Genet. Res. 28: 327–338.CrossRefGoogle Scholar
  92. 92.
    Dreyfus, L. A., and Iglewski, B. H., 1985, Conjugation-mediated genetic exchange in Legionella pneumophila, J. Bacteriol. 161: 80–84.PubMedGoogle Scholar
  93. 93.
    Ehrlich, S. D., 1989, Illegitimate recombination in bacteria, in: Mobile DNA ( D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, D. C., pp. 799–832.Google Scholar
  94. 94.
    Engelman, A., Mizuuchi, K., and Craigie, R., 1991, HIV-1 DNA integration: Mechanism of viral DNA cleavage and DNA strand transfer, Cell 67: 1211–1221.PubMedCrossRefGoogle Scholar
  95. 95.
    Espin, G., Alvarez-Morales, A., and Merrick, M., 1981, Complementation analysis of glnA-linked mutations which affect nitrogen fixation in Klebsiella pneumoniae, Mol. Gen. Genet. 184: 213–217.PubMedGoogle Scholar
  96. 96.
    Faelen, M., Toussaint, A., and De Lafontaine, J., 1975, Model for the enhancement of X-gal integration into partially induced Mu-1 lysogens, J. Bacteriol. 121: 873–882.PubMedGoogle Scholar
  97. 97.
    Fayet, O., Ramond, P., Polard, P., Prère, M. E, and Chandler, M., 1990, Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences, Mol. Microbiol. 4: 1771–1777.PubMedCrossRefGoogle Scholar
  98. 98.
    Fitzgerald, G. E, and Gasson, M. J., 1988, In vivo gene transfer systems and transposons, Biochimie 70: 489–502.Google Scholar
  99. 99.
    Forbes, K. J., and Pérombelon, M. C. M., 1985, Chromosomal mapping in Erwinia carotovora subsp. carotovora with the IncP plasmid R68::Mu, J. Bacteriol. 164: 1110–1116.PubMedGoogle Scholar
  100. 100.
    Franche, C., Canelo, E., Gauthier, D., and Elmerich, C., 1981, Mobilization of the chromosome of Azospirillum brasilense by plasmid R68–45, FEMS Microbiol. Lett. 10: 199–202.CrossRefGoogle Scholar
  101. 101.
    François, V., Conter, A., and Louarn, J.-M., 1990, Properties of new Escherichia coli Hfr strains constructed by integration of pSC101-derived conjugative plasmids, J. Bacteriol. 172: 1436–1440.PubMedGoogle Scholar
  102. 102.
    Franke, A. E., Dunny, G. M., Brown, B. L., An, E, Oliver, D. R., Damle, S. P., and Clewell, D. B., 1978, Gene transfer in Streptococcus faecalis: Evidence for the mobilization of chromosomal determinants by transmissible plasmids, in: Microbiology-1978 ( D. Schlessinger, ed.), American Society for Microbiology, Washington, D.C., pp. 45–47.Google Scholar
  103. 103.
    Franklin, N. C., 1971, Illegitimate recombination, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., pp. 175–194.Google Scholar
  104. 104.
    Frey, J., and Bagdasarian, M., 1989, The molecular biology of IncQ plasmids, in: Promiscuous Plasmids of Gram-negative Bacteria ( C. M. Thomas, ed.), Academic Press, London, pp. 79–94.Google Scholar
  105. 105.
    Fürste, J. P., Pansegrau, W, Ziegelin, G., Kröger, M., and Lanka, E., 1989, Conjugative transfer of promiscuous IncP plasmids: Interaction of plasmid-encoded products with the transfer origin, Proc. Natl. Acad. Sci. USA 86: 1771–1775.PubMedCrossRefGoogle Scholar
  106. 106.
    Fulbright, D. W., and Leary, J. V, 1978, Linkage analysis of Pseudomonas glycinea, J. Bacteriol. 136: 497–500.PubMedGoogle Scholar
  107. 107.
    Galas, D. J., and Chandler, M., 1989, Bacterial insertion sequences, in: Mobile DNA ( D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, D.C., pp. 109–162.Google Scholar
  108. 108.
    Gennaro, M. L., Kornblum, J., and Novick, R. P., 1987, A site-specific recombination function in Staphylococcus aureus plasmids, J. Bacteriol. 169: 2601–2610.PubMedGoogle Scholar
  109. 109.
    Gerlitz, M., Hrabak, O., and Schwab, H., 1990, Partitioning of broad-host-range plasmid RP4 is a complex system involving site-specific recombination, J. Bacteriol. 172: 6194–6203.PubMedGoogle Scholar
  110. 110.
    Ghozlan, H. A., Ahmadian, R. M., Fröhlich, M., Sabry, S., and Kleiner, D., 1991, Genetic tools for Paracoccus denitrificans, FEMS Microbiol. Lett. 82: 303–306.CrossRefGoogle Scholar
  111. 111.
    Gobius, K. S., and Pemberton, J. M., 1986, Use of plasmid pULBII3 (RP4::mini-Mu) to construct a genomic map of Aeromonas hydrophila, Curr. Microbiol. 13: 111–115.CrossRefGoogle Scholar
  112. 112.
    Grandgenett, D. P., and Mumm, S. R., 1990, Unraveling retrovirus integration, Cell 60: 3–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Griffin, IV T. J., and Kolodner, R. D., 1990, Purification and preliminary characterization of the Escherichia coli K-12 RecF protein, J. Bacteriol. 172: 6291–6299.PubMedGoogle Scholar
  114. 114.
    Grindley, N. D. E, and Reed, R. R., 1985, Transpositional recombination in prokaryotes, Annu. Rev. Biochem. 54: 863–896.PubMedCrossRefGoogle Scholar
  115. 115.
    Grinsted, J., De la Cruz, F., and Schmitt, R., 1990, The Tn21 subgroup of bacterial transposable elements, Plasmid 24: 163–189.PubMedCrossRefGoogle Scholar
  116. 116.
    Grinter, N. J., 1981, Analysis of chromosome mobilization using hybrids between plasmid RP4 and a fragment of bacteriophage X carrying ISI, Plasmid 5: 267–276.PubMedCrossRefGoogle Scholar
  117. 117.
    Grinter, N. J., 1984, Replication control of IncP plasmids, Plasmid 11: 74–81.PubMedCrossRefGoogle Scholar
  118. 118.
    Grinter, N. J., 1984, Replication defective RP4 plasmids recovered after chromosomal integration, Plasmid 11: 65–73.PubMedCrossRefGoogle Scholar
  119. 119.
    Groenen, M. A. M., Kokke, M., and van de Putte, P, 1986, Transposition of mini-Mu containing only one of the ends of bacteriophage Mu, EMBO J. 5: 3687–3690.PubMedGoogle Scholar
  120. 120.
    Groisman, E. A., and Casadaban, M. J., 1986, Mini-Mu bacteriophage with plasmid replicons for in vivo cloning and lac gene fusing, J. Bacteriol. 168: 357–364.PubMedGoogle Scholar
  121. 121.
    Guiney, D. G., and Lanka, E., 1989, Conjugative transfer of IncP plasmids, in: Promiscuous Plasmids of Gram-negative Bacteria ( C. M. Thomas, ed.), Academic Press, London, pp. 27–56.Google Scholar
  122. 122.
    Guyer, M., 1978, The yS sequence of F is an insertion sequence, J. Mol. Biol. 126: 347–365.PubMedCrossRefGoogle Scholar
  123. 123.
    Guyer, M. S., Reed, R. R., Steitz, J. A., and Low, K. B., 1980, Identification of a sex-factor-affinity site in E. coli as 78, Cold Spring Harbor Symp. Quant. Biol. 45: 135–140.CrossRefGoogle Scholar
  124. 124.
    Haas, D., and Holloway, B. W, 1976, R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa, Mol. Gen. Genet. 144: 243–251.PubMedCrossRefGoogle Scholar
  125. 125. Haas,D., and Holloway, B. W, 1978, Chromosome mobilization by the R plasmid R68.45: A tool in Pseudomonas genetics, Mol. Gen. Genet. 158:229–237.Google Scholar
  126. 126.
    Haas, D., and Reimmann, C., 1989, Use of IncP plasmids in chromosomal genetics of gram-negative bacteria, in: Promiscuous Plasmids of Gram-negative Bacteria ( C. M. Thomas, ed.), Academic Press, London, pp. 185–206.Google Scholar
  127. 127.
    Haas, D., and Riess, G., 1983, Spontaneous deletions of the chromosome-mobilizing plasmid R68.45 in Pseudomonas aeruginosa PAO, Plasmid 9: 42–52.PubMedCrossRefGoogle Scholar
  128. 128.
    Haas, D., Watson, J., Krieg, R., and Leisinger, T., 1981, Isolation of an Hfr donor of Pseudomonas aeruginosa PAO by insertion of the plasmid RP1 into the tryptophan synthase gene, Mol. Gen. Genet. 182: 240–244.PubMedCrossRefGoogle Scholar
  129. 129.
    Hadley, R. G., and Deonier, C., 1980, Specificity in the formation of Atra F-prime plasmids, J. Bacteriol. 143: 680–692.PubMedGoogle Scholar
  130. 130. Hall, R. M., Brookes, D. E., and Stokes, H. W., 1991, Site-specific insertion of genes into integrons: Role of the 59-base element and determination of the recombination crossover point, Mol. Microbiol. 5:1941–1959. Google Scholar
  131. 131.
    Haniford, D. B., Chelouche, A. R., and Kleckner, N., 1989, A specific class of ISIO transposase mutants are blocked for target site interactions and promote formation of an excised transposon fragment, Cell 59: 385–394.PubMedCrossRefGoogle Scholar
  132. 132.
    Harayama, S., and Rekik, M., 1989, A simple procedure for transferring genes cloned in Escherichia coli vectors into other gram-negative bacteria: Phenotypic analysis and mapping of TOL plasmid gene xy1K, Gene 78: 19–27.PubMedCrossRefGoogle Scholar
  133. 133.
    Harayama, S., Tsuda, M., and lino, T., 1980, High frequency mobilization of the chromosome of Escherichia coli by a mutant of plasmid RP4 temperature-sensitive for maintenance, Mol. Gen. Genet. 180: 47–56.PubMedCrossRefGoogle Scholar
  134. 134.
    Harayama, S., Oguchi, T., and Iino, T., 1984, Does Tn10 transpose via the cointegrate molecule? Mol. Gen. Genet. 194: 444–450.PubMedCrossRefGoogle Scholar
  135. 135.
    Harayama, S., Oguchi, T., and Iino, T., 1984, The E. coli K-12 chromosome flanked by two ISIO sequences transposes, Mol. Gen. Genet. 197: 62–66.PubMedCrossRefGoogle Scholar
  136. 136.
    Harayama, S., Lehrbach, P. R., Tsuda, M., Leppik, R., Iino, T., Reineke, W, Knackmuss, H. J., and Timmis, K. N., 1984, Genetic engineering systems for Pseudomonas and their use in the analysis and manipulation of metabolic pathways, in: Transferable Antibiotic Resistance. Plasmids and Gene Manipulation (S. Mitsuhashi and V. Krcméry, eds.), Avicenum Czechoslovak Medical Press, Prague, pp. 361–372.Google Scholar
  137. 137.
    Hayes, E, Caplice, E., McSweeny, A., Fitzgerald, G. E, and Daly, C., 1990, pAMß1-associated mobilization of proteinase plasmids from Lactococcus lactis subsp. lactis UC317 and L. lactis subsp. cremoris ÚC205, Appl. Environ. Microbiol. 56: 195–201.Google Scholar
  138. 138.
    Hayes, F, Daly, C., and Fitzgerald, G. E, 1990, High-frequency, site-specific recombination between lactococcal and pAM(31 plasmid DNAs, J. Bacteriol. 172: 3485–3489.PubMedGoogle Scholar
  139. 139.
    Hayes, W., 1968, The genetics of bacteria and their viruses, Blackwell Scientific Publications, Oxford.Google Scholar
  140. 140.
    Hecht, D. W, and Malamy, M. H., 1989, Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis, J. Bacteriol. 171: 3603–3608.Google Scholar
  141. 141.
    Hecht, D. W, Thompson, J. S., and Malamy, M. H., 1989, Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis, Proc. Natl. Acad. Sci. USA 86: 5340–5344.PubMedCrossRefGoogle Scholar
  142. 142.
    Hedén, L-O., and Meynell, E., 1976, Comparative study of R1-specific chromosomal transfer in Escherichia coli K-12 and Salmonella typhimurium LT2, J. Bacteriol. 127: 51–58.PubMedGoogle Scholar
  143. 143.
    Hedges, R. W., and Jacob, A. E., 1977, In vivo translocation of genes of Pseudomonas aeruginosa onto a promiscuously transmissible plasmid, FEMS Microbiol. Leu. 2: 15–19.CrossRefGoogle Scholar
  144. 144.
    Hedges, R. W., Jacob, A. E., and Crawford, I. P., 1977, Wide range plasmid bearing the Pseudomonas aeruginosa tryptophan synthase genes, Nature 267: 283–284.PubMedCrossRefGoogle Scholar
  145. 145.
    Herrmann, H., and Günter, E., 1984, High frequency FP2 donor of Pseudomonas aeruginosa PAO, Mol. Gen. Genet. 197: 286–291.PubMedCrossRefGoogle Scholar
  146. 146.
    Herrmann, H., Klopotowski, T., and Günter, E., 1986, The Hfr status of Pseudomonas aeruginosa is stabilized by integrative suppression, Mol. Gen. Genet. 204: 519–523.PubMedCrossRefGoogle Scholar
  147. 147.
    Herrmann, H., Janke D., Kresja, S., and Roy, M., 1988, In vivo generation of R68.45-pPGH1 hybrid plasmids conferring a Phl+ (meta pathway) phenotype, Mol. Gen. Genet. 214: 173–176.PubMedCrossRefGoogle Scholar
  148. 148.
    Hille, J., van Kan, J., Klasen, I., and Schilperoort, R., 1983, Site-directed mutagenesis in Escherichia coli of a stable R772::Ti cointegrate plasmid from Agrobacterium tumefaciens, J. Bacteriol. 154: 693–701.PubMedGoogle Scholar
  149. 149.
    Hirschel, B. J., Galas, D. J., and Chandler, M., 1982, Cointegrate formation by Tn5, but not transposition, is dependent on recA, Proc. Natl. Acad. Sci. USA 79: 4530–4534.PubMedCrossRefGoogle Scholar
  150. 150.
    Holloway, B. W, 1978, Isolation and characterization of an R’ plasmid in Pseudomonas aeruginosa, J. Bacteriol. 133: 1078–1082.PubMedGoogle Scholar
  151. 151.
    Holloway, B. W, 1979, Plasmids that mobilize bacterial chromosome, Plasmid 2: 1–19.PubMedCrossRefGoogle Scholar
  152. 152.
    Holloway, B. W., 1983, Pseudomonas genetics and its application to other bacteria, in: Genetics of Industrial Microorganisms (Y. Ikeda and T. Beppu, eds.), Kodansha Ltd., Tokyo, pp. 41–45.Google Scholar
  153. 153.
    Holloway, B. W, and Low, K. B., 1987, F-prime and R-prime factors, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (F C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaehter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 11451153.Google Scholar
  154. 154.
    Holloway, B. W, Crowther, C., Dean, H., Hagedorn, J., Holmes, N., and Morgan, A. F.,1982, Integration of plasmids into the Pseudomonas chromosome, in: Drug Resistance in Bacteria (S. Mitsuhashi, ed.), Japan Scientific Societies Press, Tokyo, pp. 231–242.Google Scholar
  155. 155.
    Holloway, B. W., Kearney, P. P., and Lyon, B. R., 1987, The molecular genetics of Cl utilizing microorganisms—An overview, Antonie van Leeuwenhoek J. Microbiol. 53: 47–53.PubMedCrossRefGoogle Scholar
  156. 156.
    Holloway, B. W., O’Hoy, K., and Matsumoto, H., 1987, Pseudomonas aeruginosa PAO, in: Genetic Maps, Vol. 4 (S. J. O’Brien, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 213–221.Google Scholar
  157. 157.
    Holsters, M., Silva, B., Genetello, C., Engler, G., van Vliet, F., De Block, M., Villarroel, R., van Montagu, M., and Schell, J., 1978, Spontaneous formation of cointegrates of the oncogenic Ti-plasmid and the widehost-range P-plasmid RP4, Plasmid 1: 456–467.PubMedCrossRefGoogle Scholar
  158. 158.
    Holsters, M., Silva, B., van Vliet, E, Hemalsteens, J. P., Genetello, C., van Montagu, M., and Schell, J., 1978, In vivo transfer of the Ti-plasmid of Agrobacterium tumefaciens to Escherichia coli, Mol. Gen. Genet. 163: 335–338.PubMedCrossRefGoogle Scholar
  159. 159.
    Hooykaas, P. J. J., Klapwijk, P. M., Nuti, M. P., Schilperoort, R. A., and Rörsch, A., 1977, Transfer of the Agrobacterium tumefaciens TI plasmid to avirulent Agrobacteria and to Rhizobium ex planta, J. Gen. Microbiol. 98: 477–484.Google Scholar
  160. 160.
    Hooykaas, P. J. J., Den Dulk-Ras, H., and Schilperoort, R. A., 1980, Molecular mechanism of Ti plasmid mobilization by R plasmids: Isolation of Ti plasmids with transposon-insertions in Agrobacterium tumefaciens, Plasmid 4: 64–75.PubMedCrossRefGoogle Scholar
  161. 161.
    Hooykaas, P. J. J., Den Dulk-Ras, H., and Schilperoort, R. A., 1982, Method for the transfer of large cryptic, non-self-transmissible plasmids: Ex planta transfer of the virulence plasmid of Agrobacterium rhizogenes, Plasmid 8: 94–96.PubMedCrossRefGoogle Scholar
  162. 162.
    Hooykaas, P. J. J., Peerbolte, R., Regensburg-Tuink, A. J. G., de Vries, P., and Schilperoort, R. A., 1982, A chromosomal linkage map of Agrobacterium tumefaciens and a comparison with the maps of Rhizobium spp, Mol. Gen. Genet. 188: 12–17.CrossRefGoogle Scholar
  163. 163.
    Horowitz, B., and Deonier, R. C., 1985, Formation of titra F’ plasmids: Specific recombination at ortT, J. Mol. Bid. 186: 267–274.CrossRefGoogle Scholar
  164. 164.
    Ichige, A., Matsutani, S., Oishi, K., and Mizushima, S., 1989, Establishment of gene transfer systems for and construction of the genetic map of a marine Vibrio strain, J. Bacteriol. 171: 1825–1834.PubMedGoogle Scholar
  165. 165.
    Ichikawa, IL, and Ohtsubo, E., 1990, In vitro transposition of transposon Tn3, J. Biol. Chem. 265:1882918832.Google Scholar
  166. 166.
    lida, S., 1977, Directed integration of an F’ plasmid by integrative suppression, Mol. Gen. Genet. 155: 153–162.CrossRefGoogle Scholar
  167. 167.
    Ikeda, H., Aoki, K., and Naito, A., 1982, Illegitimate recombination mediated in vitro by DNA gyrase of Escherichia coli: Structure of recombinant DNA molecules, Proc. Natl. Acad. Sci. USA 79: 37243728.Google Scholar
  168. 168.
    Ikeda, H., Kawasaki, I., and Gellert, M., 1984, Mechanism of illegitimate recombination: Common sites for recombination and cleavage mediated by E. coli DNA gyrase, Mol. Gen. Genet. 196: 546–549.PubMedCrossRefGoogle Scholar
  169. 169.
    Isberg, R. R., and Syvanen, M., 1985, Tn5 transposes independently of cointegrate resolution: Evidence for an alternative model for transposition, J. Mol. Biol. 182: 69–78.PubMedCrossRefGoogle Scholar
  170. 170.
    Jacob, F., and Wollman, E. L., 1956, Recombinaison génétique et mutants de fertilité chez Escherichia coli, Comps. Rend. Acad. Sci. Paris 242: 303–306.Google Scholar
  171. 171.
    Janus, S., Letouvet-Pawlak, B., Monnier, C., and Guespin-Michel, J. F., 1990, Mechanism of integration of the broad-host-range plasmid RP4 into the chromosome of Myxococcus xanthus, Plasmid 23: 183–193.CrossRefGoogle Scholar
  172. 172.
    Johnson, D. A., 1988, Construction of transposons carrying the transfer function of RP4, Plasmid 20: 249–258.PubMedCrossRefGoogle Scholar
  173. 173.
    Johnson, D. A., and Willens, N. S., 1980, Tn2301, a transposon construct carrying the entire transfer region of the F plasmid, J. Bacteriol. 143: 1171–1178.PubMedGoogle Scholar
  174. 174.
    Johnson, M. S., McClure, M. A., Feng, D.-E, Gray, J., and Doolittle, R. F., 1986, Computer analysis of retroviral pol genes: Assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes, Proc. Natl. Acad. Sci. USA 83: 7648–7652.PubMedCrossRefGoogle Scholar
  175. 175.
    Johnson, S. R., and Romig, W. R., 1979, Transposon-facilitated recombination in Vibrio cholerae, Mol. Gen. Genet. 170: 93–101.PubMedCrossRefGoogle Scholar
  176. 176.
    Johnston, A. W. B., and Beringer, J. E., 1977, Chromosomal recombination between Rhizobium species, Nature 267: 611–613.CrossRefGoogle Scholar
  177. 177.
    Johnston, A. W. B., Setchell, S. M., and Beringer, J. E., 1978, Interspecific crosses between Rhizobium leguminosarum and R. meliloti: Formation of haploid recombinants and of R-primes, J. Gen. Microbio!. 104: 209–218.Google Scholar
  178. 178.
    Jones, K. S., Coleman, J., Merkel, G. W, Laue, T M., and Skallca, A. M., 1992, Retroviral integrase functions as a multimer and can turn over catalytically, J. Biol. Chem. 267: 16037–16040.PubMedGoogle Scholar
  179. 179.
    Julliot, J. S., and Boistard, P., 1979, Use of RP4-prime plasmids constructed in vitro to promote a polarized transfer of the chromosome in Escherichia coli and Rhizobium meliloti, Mol. Gen. Genet. 173: 289–298.PubMedCrossRefGoogle Scholar
  180. 180.
    Julliot, J. S., Dusha, I., Renalier, M. H., Terzaghi, B., Gamerone, A. M., and Boistard, P., 1984, An RP4prime containing a 285 kb fragment of Rhizobium meliloti pSym megaplasmid: Structural characterization and utilization for genetic studies of symbiotic functions controlled by pSym, Mol. Gen. Genet. 193: 17–26.CrossRefGoogle Scholar
  181. 181.
    Kahn, P. L., 1968, Isolation of high-frequency recombining strains from Escherichia coli containing the V colicinogenic factor, J. Bacteriol. 96: 205–214.PubMedGoogle Scholar
  182. 182. Kameneva, S. V., Polivtseva, T. P, Belavina, N. V., and Shestakov, S. V., 1986, Hfr donor of phototrophic nitrogen fixing bacterium Rhodopseudomonas sphaeroides: Localization of mutations in genes controlling nitrogen fixation, Genetika (Russ.) 22:2664–2672.Google Scholar
  183. 183.
    Kaney, A. R., and Atwood, K. C., 1972, Incompatibility of integrated sex factors in double male strains of Escherichia coli, Genetics 70: 31–39.PubMedGoogle Scholar
  184. 184.
    Katz, L., Brown, D. P., and Donadio, S., 1991, Site-specific recombination in Escherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea, Mol. Gen. Genet. 227: 155–159.PubMedCrossRefGoogle Scholar
  185. 185.
    Katz, R. A., Merkel, G., Kulkosky, J., Leis, J., and Skalka, A. M., 1990, The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro, Cell 63: 87–95.PubMedCrossRefGoogle Scholar
  186. 186.
    Khan, E., Mack, J. P. G., Katz, R. A., Kulkowsky, J., and Skalka, A. M., 1991, Retroviral integrase domains: DNA binding and the recognition of LTR sequences, Nucleic Acids Res. 19: 851–860.PubMedCrossRefGoogle Scholar
  187. 187.
    Kieser, H. M., Kieser, T, and Hopwood, D. A., 1992, A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome, J. Bacteriol. 174: 5496–5507.PubMedGoogle Scholar
  188. 188.
    Kilbane, J. J., and Malamy, M. H., 1980, F Factor mobilization of non-conjugative chimeric plasmids in Escherichia coli: General mechanisms and a role for site-specific recA-independent recombination at oriVI, J. Mol. Biol. 143: 73–93.PubMedCrossRefGoogle Scholar
  189. 189.
    Kiss, G. B., Dobo, K., Dusha, I., Breznovits, A., Orosz, L., Vincze, E., and Kondorosi, A., 1980, Isolation and characterization of an R-prime plasmid from Rhizobium meliloti, J. Bacteriol. 141: 121–128.PubMedGoogle Scholar
  190. 190.
    Kleckner, N., 1989, Transposon Tn10, in: Mobile DNA ( D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, D. C., pp. 227–268.Google Scholar
  191. 191.
    Kleckner, N., Roth, J., and Botstein, D., 1977, Genetic engineering in vivo using translocatable drug-resistance elements: New methods in bacterial genetics, J. Mol. Biol. 116: 125–159.PubMedCrossRefGoogle Scholar
  192. 192.
    Klein, S., Lohman, K., Clover, R., Walker, G. C., and Signer, E. R., 1992, A directional, high-frequency chromosomal mobilization system for genetic mapping of Rhizobium meliloti, J. Bacteriol. 174: 324–326.PubMedGoogle Scholar
  193. 193.
    Koonin, E. V., 1992, DnaC protein contains a modified ATP-binding motif and belongs to a novel family of ATPases including also DnaA, Nucleic Acids Res. 20: 1997.Google Scholar
  194. 194.
    Kondorosi, A., Kiss, G. B., Forrai, T, Vincze, E., and Banfalvi, Z., 1977, Circular linkage map of Rhizobium meliloti chromosome, Nature 268: 525–527.CrossRefGoogle Scholar
  195. 195.
    Konforti, B. B., and Davis, R. W, 1990, The preference for a 3’ homologous end is intrinsic to RecApromoted strand exchange, J. Biol. Chem. 265: 6916–6920.PubMedGoogle Scholar
  196. 196.
    Krishnapillai, V, Royle, P., and Lehrer, J., 1981, Insertions of the transposon Tnl into the Pseudomonas aeruginosa chromosome, Genetics 97: 495–511.PubMedGoogle Scholar
  197. 197.
    Laban, A., and Cohen, A, 1981, Interplasmidic and intraplasmidic recombination in Escherichia coli K-12, Mol. Gen. Genet. 184: 200–207.PubMedGoogle Scholar
  198. 198.
    Leemans, J., Villarroel, R., Silva, B., Van Montagu, M., and Schell, J., 1980, Direct repetition of a 1.2 Md DNA sequence is involved in site-specific recombination by the PI plasmid R68, Gene 10: 319–328.PubMedCrossRefGoogle Scholar
  199. 199.
    Lejeune, P., and Mergeay, M., 1980, R-plasmid-mediated chromosome mobilization in Pseudomonas fluorescens 6.2, Arch. Int. Physiol. Biochim. 88: B289 — B290.Google Scholar
  200. 200.
    Lejeune, P, Mergeay, M., Van Gijsegem, F., Faelen, M., Gerits, J., and Toussaint, A., 1983, Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4::mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fluorescens 6.2, J. Bacteriol. 155: 1015–1026.PubMedGoogle Scholar
  201. 201.
    Leonardo, J. M., and Goldberg, R. B., 1980, Regulation of nitrogen metabolism in glutamine auxotrophs of Klebsiella pneumoniae, J. Bacteriol. 142: 99–110.PubMedGoogle Scholar
  202. 202.
    Lichens-Park, A., and Syvanen, M., 1988, Cointegrate formation by IS50 requires multiple donor molecules, Mol. Gen. Genet. 211: 244–251.PubMedCrossRefGoogle Scholar
  203. 203.
    Liu, L., and Berg, C. M., 1990, Mutagenesis of dimeric plasmids by the transposon y8 (Tn1000), J. Bacteriol. 172: 2814–2816.PubMedGoogle Scholar
  204. 204.
    Lockshon, D., and Morris, D. R., 1985, Sites of reaction of Escherichia coli DNA gyrase on pBR322 in vivo as revealed by oxolinic acid-induced plasmid linearization, J. Mol. Biol. 181: 63–74.PubMedCrossRefGoogle Scholar
  205. 205.
    Low, K. B., 1972, Escherichia coli K-12 F-prime factors, old and new, Bacteriol. Rev. 36: 587–607.Google Scholar
  206. 206.
    Low, K. B., 1987, Hfr strains of Escherichia coli K-12, in: Escherichia coli and Salmonella typhimurium. Cellular andMolecularBidogy(F C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and E. Umbarger, eds.), American Society for Microbiology, Washington, D.C., pp. 1134–1137.Google Scholar
  207. 207.
    Luisi-DeLuca, C., Lovett, S. T., and Kolodner, R. D., 1989, Genetic and physical analysis of plasmid recombination in recB recC sbcB and recB recC sbcA Escherichia coli K-12 mutants, Genetics 122: 269–278.PubMedGoogle Scholar
  208. 208.
    Lycett, G. W, and Pritchard, R. H., 1986, Functioning of the F-plasmid origin of replication in an Escherichia coli K12 Hfr strain during exponential growth, Plasmid 16: 168–174.PubMedCrossRefGoogle Scholar
  209. 209.
    Machida, Y., Machida, C., and Ohtsubo, E., 1982, A novel type of transposon generated by insertion element IS102 present in a pSC101 derivative, Cell 30: 29–36.PubMedCrossRefGoogle Scholar
  210. 210.
    Magnin, J.-P., 1987, Isolement d’une souche Hfr de la bactérie photosynthetique Rhodobacter capsulatus et cartographie du chromosome, Ph.D. Thesis, Université de Grenoble.Google Scholar
  211. 211.
    Manis, J., Kopecko, D., and Kline, B., 1980, Cloning of a Lack BamHI fragment into transposon Tn3 and transposition of the Tn3(lac) element, Plasmid 4: 170–174.PubMedCrossRefGoogle Scholar
  212. 212.
    Marrs, B., 1981, Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid, J. Bacteriol. 146: 1003–1012.PubMedGoogle Scholar
  213. 213.
    Martin, R. R., Thorlton, C. L., and Unger, L., 1981, Formation of Escherichia coli Hfr strains by integrative suppression with the P group plasmid RP1, J. Bacteriol. 145: 713–721.PubMedGoogle Scholar
  214. 214.
    Martinez, E., and de la Cruz, F., 1990, Genetic elements involved in Tn21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes, EMBO J. 9: 1275–1281.PubMedGoogle Scholar
  215. 215.
    Marvo, S. L., King, S. R., and Jaskunas, R. R., 1983, Role of short regions of homology in intermolecular illegitimate recombination events, Proc. Natl. Acad. Sci. USA 80: 2452–2456.PubMedCrossRefGoogle Scholar
  216. 216.
    Matsutani, S., Ohtsubo, H., Maeda, Y., and Ohtsubo, E., 1987, Isolation and characterization of IS elements repeated in the bacterial chromosome, J. Mol. Biol. 196: 445–455.PubMedCrossRefGoogle Scholar
  217. 217.
    Mazodier, P., Petter, R., and Thompson, C., 1989, Intergeneric conjugation between Escherichia coli and Streptomyces species, J. Bacteriol. 171: 3583–3585.PubMedGoogle Scholar
  218. 218.
    Mazodier, P., and Davies, J., 1991, Gene transfer between distantly related bacteria, Annu. Rev. Genet. 25: 147–171.PubMedCrossRefGoogle Scholar
  219. 219.
    McCormick, M., Wishart, W, Ohtsubo, H., Heffron, F., and Ohtsubo, E., 1981, Plasmid cointegrates and their resolution mediated by transposon Tn3 mutants, Gene 15: 103–118.PubMedCrossRefGoogle Scholar
  220. 220.
    McLaughlin, W, and Ahmad, M. H., 1986, Transfer of plasmids RP4 and R68.45 and chromosomal mobilization in cowpea rhizobia, Arch. Microbiol. 144: 408–411.CrossRefGoogle Scholar
  221. 221.
    Meade, H. M., and Signer, E. R., 1977, Genetic mapping of Rhizobium meliloti, Proc. Natl. Acad. Sci. USA 74: 2076–2078.PubMedCrossRefGoogle Scholar
  222. 222.
    Megias, M., Caviedes, M. A., Palomares, A. J., and Perez-Silva, J., 1982, Use of plasmid R68.45 for constructing a circular linkage map of the Rhizobium trifolii chromosome, J. Bacteriol. 149: 59–64.PubMedGoogle Scholar
  223. 223.
    Menou, G., Mahillon, J., Lecadet, M. M., and Lereclus, D., 1990, Structural and genetic organization of 15232, a new insertion sequence of Bacillus thuringiensis, J. Bacteriol. 172: 6689–6696.PubMedGoogle Scholar
  224. 224.
    Mercenier, A., and Chassy, B. M., 1988, Strategies for the development of bacterial transformation systems, Biochimie 70: 503–517.PubMedCrossRefGoogle Scholar
  225. 225.
    Mergeay, M., Lejeune, P., Sadouk, A., Gerits, J., and Fabry, L., 1987, Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB113, Mol. Gen. Genet. 209: 61–70.PubMedCrossRefGoogle Scholar
  226. 226.
    Meyer, R., 1989, Site-specific recombination at oriT of plasmid R1162 in the absence of conjugative transfer, J. Bacteriol. 171: 799–806.PubMedGoogle Scholar
  227. 227. Michel, B., Niaudet, B., and Ehrlich, S. D., 1983, Intermolecular recombination during transformation of Bacillus subtilis competent cells by monomeric and dimeric plasmids, Plasmid 10:1–10.Google Scholar
  228. 228.
    Miller, I. S., Fox, D., Saeed, N., Borland, P. A., Miles, C. A., and Sastry, G. R. K., 1986, Enlarged map of Agrobacterium tumefaciens C58 and the location of chromosomal regions which affect tumorigenicity, Mol. Gen. Genet. 205: 153–159.CrossRefGoogle Scholar
  229. 229.
    Miller, J. H., 1992, A Short Course in Bacterial Genetics, Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp. 2. 1–2. 67.Google Scholar
  230. 230.
    Miller, R. V., and Kokjohn, T. A., 1990, General microbiology of recA: Environmental and evolutionary significance, Annu. Rev. Microbiol. 44: 365–394.PubMedCrossRefGoogle Scholar
  231. 231.
    Mills, D., 1985, Transposon mutagenesis and its potential for studying virulence genes in plant pathogens, Annu. Rev. Phytopathol. 23: 297–320.CrossRefGoogle Scholar
  232. 232.
    Miura-Masuda, A., and Ikeda, H., 1990, The DNA gyrase of Escherichia coli participates in the formation of a spontaneous deletion by recA-independent recombination in vivo, Mol. Gen. Genet. 220: 345–352.PubMedCrossRefGoogle Scholar
  233. 233.
    Mizuuchi, K., 1992, Transpositional recombination: Mechanistic insights from studies of Mu and other elements, Annu. Rev. Biochem. 61: 1011–1051.PubMedCrossRefGoogle Scholar
  234. 234.
    Mötsch, S., and Schmitt, R., 1984, Replicon fusion mediated by a single-ended derivative of transposon Tn1721, Mol. Gen. Genet. 195: 281–287.PubMedCrossRefGoogle Scholar
  235. 235.
    Mötsch, S., Schmitt, R., Avila, P., de la Cruz, F, Ward, E., and Grinsted, J., 1985, Junction sequences generated by “one-ended transposition,” Nucleic Acids Res. 13: 3335–3342.PubMedCrossRefGoogle Scholar
  236. 236.
    Moody, E. E. M., and Runge, R., 1972, The integration of autonomous transmissible plasmids into the chromosome of Escherichia coli K12, Genet. Res. (Camb.) 19: 181–186.CrossRefGoogle Scholar
  237. 237.
    Moore, A. T, Nayudu, M., and Holloway, B. W, 1983, Genetic mapping in Methylophilus methylotrophus AS1, J. Gen. Microbiol. 129: 785–799.PubMedGoogle Scholar
  238. 238.
    Morgan, A. F, 1982, Isolation and characterization of Pseudomonas aeruginosa R’ plasmids constructed by interspecific mating, J. Bacteriol. 149: 654–661.PubMedGoogle Scholar
  239. 239.
    Müller, B., Jones, C., Kemper, B., and West, S. C., 1990, Enzymatic formation and resolution of Holliday junctions in vitro, Cell 60: 329–336.PubMedCrossRefGoogle Scholar
  240. 240.
    Nag, D. K., DasGupta, U., Adelt, G., and Berg, D. E., 1985, IS50-mediated inverse transposition: Specificity and precision, Gene 34: 17–26.PubMedCrossRefGoogle Scholar
  241. 241.
    Naito, A., Naito, S., and Ikeda, H., 1984, Homology is not required for recombination mediated by DNA gyrase of Escherichia coli, Mol. Gen. Genet. 193: 238–243.CrossRefGoogle Scholar
  242. 242.
    Nakazawa, T, Hayashi, E., Yokota, T, Ebina, Y., and Nakazawa, A., 1978, Isolation of TOL and RP4 recombinants by integrative suppression, J. Bacteriol. 134: 270–277.PubMedGoogle Scholar
  243. 243.
    Nakazawa, T, Inouye, S., and Nakazawa, A., 1980, Physical and functional mapping of RP4-TOL plasmid recombinants: Analysis of insertion and deletion mutants, J. Bacteriol. 144: 222–231.PubMedGoogle Scholar
  244. 244.
    Nakazawa, T, Kimoto, M., and Abe, M., 1990, Cloning, sequencing, and transcriptional analysis of the recA gene of Pseudomonas cepacia, Gene 94: 83–88.CrossRefGoogle Scholar
  245. 245.
    Nassif, X., Fournier, J-M., Arondel, J., and Sansonetti, P. J., 1989, Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor, Infect. Immun. 57: 546–552.PubMedGoogle Scholar
  246. 246.
    Nayudu, M., and Holloway, B. W, 1981, Isolation and characterization of R-plasmid variants with enhanced chromosomal mobilization ability in Escherichia coli K-12, Plasmid 6: 53–66.PubMedCrossRefGoogle Scholar
  247. 247.
    Nishimura, Y., Caro, L., Berg, C. M., and Hirota, Y., 1971, Chromosome replication in Escherichia coli. IV. Control of chromosome replication and cell division by an integrated episome, J. Mol. Biol. 55: 441–456.PubMedCrossRefGoogle Scholar
  248. 248.
    Nishimura, A., Nishimura, Y., and Caro, L., 1973, Isolation of Hfr strains from R+ and ColV2+ strains of Escherichia coli and derivation of an R’ lac factor by transduction, J. Bacteriol. 116: 1107–1112.PubMedGoogle Scholar
  249. 249.
    Nordeen, R. O., and Holloway, B. W, 1990, Chromosome mapping in Pseudomonas syringae pv syringae strain PS224, J. Gen. Microbiol. 136: 1231–1239.PubMedGoogle Scholar
  250. 250.
    Novick, R. P., Clowes, R. C., Cohen, S. N., Curtiss, III, R., Dana, N., and Falkow, S., 1976, Uniform nomenclature for bacterial plasmids: A proposal, Bacteriol. Rev. 40: 168–189.Google Scholar
  251. 251.
    Okahashi, N., Sasakawa, C., Okada, N., Yamada, M., Yoshikawa, M., Tokuda, M., Takahashi, I., and Koga, T, 1990, Construction of a Notl restriction map of the Streptococcus mutans genome, J. Gen. Microbiol. 136: 2217–2223.PubMedGoogle Scholar
  252. 252.
    Olasz, F, and Arber, W, 1989, A model for IS30-mediated transposition in E. coli, Experientia 45: A39.Google Scholar
  253. 253.
    O’Connor, M. B., and Malamy, H. M., 1984, Role of the F factor oriVI region in recA-independent illegitimate recombination: Stable replicon fusions of the F derivative pOX38 and pBR322-related plasmids, J. Mol. Biol. 175: 263–284.PubMedCrossRefGoogle Scholar
  254. 254.
    O’Connor, M. B., and Malamy, M. H., 1985, Mapping of DNA gyrase cleavage sites in vivo: Oxolinic acid induced cleavages in plasmid pBR322, J. Mol. Biol. 181:545.-550.Google Scholar
  255. 255.
    O’Connor, M. B., Kilbane, J. J., and Malamy, M. H., 1986, Site-specific and illegitimate recombination in the oriV1 region of the F factor: DNA sequences involved in recombination and resolution, J. Mol. Bid. 189: 85–102.CrossRefGoogle Scholar
  256. 256.
    O’Hoy, K., 1987, Genetic and physical analysis of the Pseudomonas aeruginosa PAO chromosome, Ph.D. Thesis, Monash University, Melbourne, Australia.Google Scholar
  257. 257.
    O’Hoy, K., and Krishnapillai, V., 1985, Transposon mutagenesis of the Pseudomonas aeruginosa PAO chromosome and the isolation of high frequency of recombination donors, FEMS Microbiol. Lett. 29: 299–303.CrossRefGoogle Scholar
  258. 258.
    O’Hoy, K., and Krishnapillai, V., 1987, Recalibration of the Pseudomonas aeruginosa strain PAO chromosome map in time units using high-frequency-of-recombination donors, Genetics 1. 15: 611–618.Google Scholar
  259. 259.
    Pansegrau, W, Miele, L., Lutz, R., and Lanka, E., 1987, Nucleotide sequence of the kanamycin resistance determinant of plasmid RP4: Homology to other aminoglycoside 3’-phosphotransferases, Plasmid 18: 193–204.PubMedCrossRefGoogle Scholar
  260. 260.
    Pearce, L. E., and Meynell, E., 1968, Specific chromosomal affinity of a resistance factor, J. Gen. Microbiol. 50: 159–172.PubMedGoogle Scholar
  261. 261.
    Pemberton, M. J., and Bowen, A. R. S. G., 1981, High-frequency chromosome transfer in Rhodopseudomonas sphaeroides promoted by broad-host-range plasmid RP1 carrying mercury transposon Tn501, J. Bacteriol. 147: 110–117.PubMedGoogle Scholar
  262. 262.
    Perkins, J. B., and Youngman, P. J., 1984, A physical and functional analysis of Tn917, a Streptococcus transposon in the Tn3 family that functions in Bacillus, Plasmid 12: 119–138.CrossRefGoogle Scholar
  263. 263.
    Peterson, B. C., Hashimoto, H., and Rownd, R. H., 1982, Cointegrate formation between homologous plasmids in Escherichia coli, J. Bacteriol. 151: 1086–1094.Google Scholar
  264. 264.
    Pischl, D. L., and Farrand, S. K., 1983, Transposon-facilitated chromosome mobilization in Agrobacterium tumefaciens, J. Bacteriol. 153: 1451–1460.Google Scholar
  265. 265.
    Pittard, J., Loutit, J. S., and Adelberg, E. A., 1963, Gene transfer by F’ strains of Escherichia coli K-12, J. Bacteriol. 85: 1394–1401.PubMedGoogle Scholar
  266. 266.
    Plasota, M., Piechucka, E., Kauc, B., and Wlodarczyk, M., 1984, R68.45 plasmid mediated conjugation in Thiobacillus A2, Microbios 41: 81–89.PubMedGoogle Scholar
  267. 267.
    Plasterk, R. H. A., 1991, Frameshift control of IS1 transposition, Trends Genet. 7: 203–204.PubMedGoogle Scholar
  268. 268.
    Prère, M.-F., Chandler, M., and Fayet, 0., 1990, Transposition in Shigella dysenteriae: Isolation and analysis of IS911, a new member of the IS3 group of insertion sequences, J. Bacteriol. 172: 4090–4099.PubMedGoogle Scholar
  269. 269.
    Priebe, S. D., and Lacks, S. A., 1989, Region of the streptococcal plasmid pMV158 required for conjugative mobilization, J. Bacteriol. 171: 4778–4784.PubMedGoogle Scholar
  270. 270.
    Priefer, U. B., 1989, Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39, J. Bacteriol. 171: 6161–6168.PubMedGoogle Scholar
  271. 271.
    Ratnaningsih, E., Dharmsthiti, S., Krishnapillai, V., Morgan, A., Sinclair, M., and Holloway, B. W., 1990, A combined physical and genetic map of Pseudomonas aeruginosa PAO, J. Gen. Microbiol. 136: 2351–2357.PubMedGoogle Scholar
  272. 272.
    Read, H. A., Sarnia, S. D., and Jaskunas, S. R., 1980, Fate of donor insertion sequence IS1 during transposition, Proc. Natl. Acad. Sci. USA 77: 2514–2518.PubMedCrossRefGoogle Scholar
  273. 273.
    Reimmann, C., and Haas, D., 1986, IS21 insertion in the trfA replication control gene of chromosomally integrated plasmid RPI: A property of stable Pseudomonas aeruginosa Hfr strains, Mol. Gen. Genet. 203: 511–519.PubMedCrossRefGoogle Scholar
  274. 274.
    Reimmann, C., and Haas, D., 1987, Mode of replicon fusion mediated by the duplicated insertion sequence IS21 in Escherichia coli, Genetics 115: 619–625.Google Scholar
  275. 275.
    Reimmann, C., and Haas, D., 1990, The istA gene of insertion sequence IS21 is essential for cleavage at the inner 3’ ends of tandemly repeated IS21 elements in vitro, EMBO J. 9: 4055–4063.Google Scholar
  276. 276.
    Reimmann, C., Rella, M., and Haas, D., 1988, Integration of replication-defective R68.45-like plasmids into the Pseudomonas aeruginosa chromosome, J. Gen. Microbiol. 134: 1515–1523.PubMedGoogle Scholar
  277. 277.
    Reimmann, C., Moore, R., Little, S., Savioz, A., Willens, N. S., and Haas, D., 1989, Genetic structure, function and regulation of the transposable element IS21, Mol. Gen. Genet. 215: 416–424.PubMedCrossRefGoogle Scholar
  278. 278.
    Riess, G., Holloway, B. W, and Pühler, A., 1980, R68.45, a plasmid with chromosome mobilizing ability (Cma) carries a tandem duplication, Genet. Res. (Camb.) 36: 99–109.CrossRefGoogle Scholar
  279. 279.
    Riess, G., Masepohl, B., and Pühler, A., 1983, Analysis of IS21-mediated mobilization of plasmid pACYC184 by R68.45 in Escherichia coli, Plasmid 10: 111–118.Google Scholar
  280. 280.
    Romero, D. A., Slos, P., Robert, C., Castellino, I., and Mercenier, A., 1987, Conjugative mobilization as an alternative vector delivery system for lactic streptococci, Appl. Environ. Microbiol. 53: 2405–2413.PubMedGoogle Scholar
  281. 281.
    Rosner, J. L., and Guyer, M. S., 1980, Transposition of ISI-XBIO-ISI from a bacteriophage k derivative carrying the ISI-cat-ISI transposon (Tn9), Mol. Gen. Genet. 178: 111–120.PubMedCrossRefGoogle Scholar
  282. 282.
    Sanderson, K. E., and MacLachlan, P R., 1987, F-mediated conjugation, F+ strains, and Hfr strains of Salmonella typhimurium and Salmonella abony, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Vol. 2 ( E. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D. C., pp. 1138–1144.Google Scholar
  283. 283.
    Sanderson, K. E., Ross, H., Ziegler, L., and Miceli, P. H., 1972, F+, Hfr, and F’ strains of Salmonella typhimurium and Salmonella abony, Bacteriol. Rev. 36: 608–637.Google Scholar
  284. 284.
    Sano, Y., and Kageyama, M., 1984, Genetic determinant of pyocin AP41 as an insert in the Pseudomonas aeruginosa chromosome, J. Bacteriol. 158: 562–570.PubMedGoogle Scholar
  285. 285.
    Scaife, J., and Gross, J. D., 1963, The mechanism of chromosome mobilization by an F-prime factor in Escherichia coli K12, Genet. Res. (Camb.) 4: 328–331.CrossRefGoogle Scholar
  286. 286.
    Schäfer, A., Kalinowski, J., Simon, R., Seep-Feldhaus, A-H., and Pühler, A., 1990, High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria, J. Bacteriol. 172: 1663–1666.PubMedGoogle Scholar
  287. 287.
    Schmitt, R., Mötsch, S., Rogowsky, P., de la Cruz, F, and Grinsted, J., 1985, On the transposition and evolution of Tn./721 and its relatives, in: Plasmids in Bacteria ( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), Plenum Press, New York, pp. 79–91.CrossRefGoogle Scholar
  288. 288.
    Schoonejans, E., and Toussaint, A., 1983, Utilization of plasmid pULB1I3 (RP4::mini-Mu) to construct a linkage map of Erwinia carotovora subsp. chrysanthemi, J. Bacteriol. 154: 1489–1492.Google Scholar
  289. 289.
    Schurter, W., and Holloway, B. W, 1986, Genetic analysis of promoters on the insertion sequence IS21 of plasmid R68.45, Plasmid 15: 8–18.PubMedCrossRefGoogle Scholar
  290. 290.
    Seeberg, A. H., and Wiedemann, B., 1984, Transfer of the chromosomal bla gene from Enterobacter cloacae to Escherichia coli by RP4::mini-Mu, J. Bacteriol. 157: 89–94.PubMedGoogle Scholar
  291. 291.
    Serebrijski, I. G., Kazakova, S. M., and Tsygankov, Y. D., 1989, Construction of Hfr-like donors of the obligate methanol-oxidizing bacterium Methylobacillus flagellatum KT, FEMS Microbiol. Lett. 59: 203–206.CrossRefGoogle Scholar
  292. 292.
    Shah, K. S., Kuykendall, L. D., and Kim, C.-H., 1989, R-prime plasmids from Bradyrhizobium japonicum and Rhizobium fredii, Arch. Microbiol. 152: 550–555.CrossRefGoogle Scholar
  293. 293.
    Shen, P., and Huang, H. V, 1986, Homologous recombination in Escherichia coli: Dependence on substrate length and homology, Genetics 112: 441–457.PubMedGoogle Scholar
  294. 294.
    Sherman, P. A., and Fyfe, J. A., 1990, Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity, Proc. Natl. Acad. Sci. USA 87: 5119–5123.CrossRefGoogle Scholar
  295. 295.
    Sherratt, D., 1989, Tn3 and related transposable elements: Site-specific recombination and transposition, in: Mobile DNA ( D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, D. C., pp. 163–184.Google Scholar
  296. 296.
    Shinomiya, T., Shiga, S., Kikuchi, A., and Kageyama, M., 1983, Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO: II. Physical characterization of pyocin R2 genes using R-prime plasmids constructed from R68.45, Mol. Gen. Genet. 189: 382–389.PubMedCrossRefGoogle Scholar
  297. 297.
    Simon, R., 1984, High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon, Mol. Gen. Genet. 196: 413–420.PubMedCrossRefGoogle Scholar
  298. 298.
    Simon, R., Priefer, U., and Pühler, A., 1983, A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram-negative bacteria, BiolTechnology 1: 784–790.CrossRefGoogle Scholar
  299. 299.
    Simon, R., O’Connell, M., Labes, M., and Pühler, A., 1986, Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria, Meth. Enzymol. 118: 640–659.PubMedCrossRefGoogle Scholar
  300. 300.
    Simon, R., Quandt, J., and Klipp, W, 1989, New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria, Gene 80: 161–169.PubMedCrossRefGoogle Scholar
  301. 301.
    Sistrom, W. R., 1977, Transfer of chromosomal genes mediated by plasmid R68.45 in Rhodopseudomonas sphaeroides, J. Bacteriol. 131: 526–532.Google Scholar
  302. 302.
    Skotnicki, M. L., Warr, R. G., Goodman, A. E., and Rogers, P. L., 1983, Development of geneticGoogle Scholar
  303. techniques and strain improvement in Zymomonas mobilis in: Genetics of Industrial Microorganisms (Y. Ikeda and T. Beppu, eds.), Kodansha Ltd., Tokyo, pp. 361–365.Google Scholar
  304. 303.
    Smith, C. J., Coote, J. G., and Parton, R., 1986, R-plasmid-mediated chromosome mobilization in Bordetella pertussis, J. Gen. Microbiol. 132: 2685–2692.Google Scholar
  305. 304.
    Smith, C. L., and Condemine, G., 1990, New approaches for physical mapping of small genomes, J. Bacteriol. 172: 1167–1172.PubMedGoogle Scholar
  306. 305.
    Smith, G. R., 1988, Homologous recombination in procaryotes, Microbiol. Rev. 52: 1–28.PubMedGoogle Scholar
  307. 306.
    Smith, G. R., 1991, Conjugational recombination in E. coli: Myths and mechanisms, Cell 64: 19–27.PubMedCrossRefGoogle Scholar
  308. 307.
    Smith, M. D., and Clewell, D. B., 1984, Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization, J. Bacteriol. 160: 1109–1114.PubMedGoogle Scholar
  309. 308.
    Soldati, L., Crockett, R., Carrigan, J. M., Leisinger, T., Holloway, B. W, and Haas, D., 1984, Revised locations of the his’ and pru (praline utilization) genes on the Pseudomonas aeruginosa chromosome map, Mol. Gen. Genet. 193: 431–436.PubMedCrossRefGoogle Scholar
  310. 309.
    Sosio, M., Madon, J., and Hütter, R., 1989, Excision of pä408 from the chromosome of Streptomyces glaucescens and its transfer into Streptomyces lividans, Mol. Gen. Genet. 218: 169–176.CrossRefGoogle Scholar
  311. 310.
    Sotomura, M., and Yoshikawa, M., 1975, Reinitiation of chromosome replication in the presence of chloramphenicol under an integratively suppressed state by R6K, J. Bacteriol. 122: 623–628.PubMedGoogle Scholar
  312. 311.
    Spielmann-Ryser, J., Moser, M., Kast, P., and Weber, H., 1991, Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence ‘S3 from Escherichia coli, Mol. Gen. Genet. 226: 441–448.Google Scholar
  313. 312.
    Srivastava, R., Sinha, V. B., and Srivastava, B. S., 1989, Chromosomal transfer and in vivo cloning of genes in Vibrio cholerae using RP4::mini-Mu, Gene 75: 253–259.PubMedCrossRefGoogle Scholar
  314. 313.
    Steele, J. L., and McKay, L. L., 1989, Conjugal transfer of genetic material in lactococci: A review, J. Dairy Sci. 72: 3388–3397.CrossRefGoogle Scholar
  315. 314.
    Stewart, G. J., and Carlson, C. A., 1986, The biology of natural transformation, Annu. Rev. Microbiol. 40: 211–235.PubMedCrossRefGoogle Scholar
  316. 315.
    Stout, V. G., and landolo, J. J., 1990, Chromosomal gene transfer during conjugation by Staphylococcus aureus is mediated by transposon-facilitated mobilization, J. Bacteriol. 172: 6148–6150.PubMedGoogle Scholar
  317. 316.
    Strom, A. D., Hirst, R., Petering, J., and Morgan, A., 1990, Isolation of high frequency of recombination donors from Tn5 chromosomal mutants of Pseudomonas putida PPN and recalibration of the genetic map, Genetics 126: 497–503.PubMedGoogle Scholar
  318. 317.
    Summers, D. K., and Withers, H. L., 1990, Electrotransfer: Direct transfer of bacterial plasmid DNA by electroporation, Nucleic Acids Res. 18: 2192.PubMedCrossRefGoogle Scholar
  319. 318.
    Suwanto, A., and Kaplan, S., 1989, Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: Presence of two unique circular chromosomes, J. Bacteriol. 171: 5850–5859.PubMedGoogle Scholar
  320. 319.
    Suwanto, A., and Kaplan, S., 1992, Chromosome transfer in Rhodobacter sphaeroides: Hfr formation and genetic evidence for two unique circular chromosomes, J. Bacteriol. 174: 1135–1145.PubMedGoogle Scholar
  321. 320.
    Tatra, P. K., and Goodwin, P. M., 1983, R-plasmid-mediated chromosome mobilization in the facultative methylotroph Pseudomonas AMI, J. Gen. Microbiol. 129: 2629–2632.Google Scholar
  322. 321.
    Taylor, A. F., 1992, Movement and resolution of Holliday junctions by enzymes from E. coli, Cell 69: 1063 1065.Google Scholar
  323. 322.
    Terawaki, Y., Kishi, H., and Nakaya, R., 1975, Integration of R plasmid Rtsl to the gal region of the Escherichia coli chromosome, J. Bacteriol. 121: 857–862.PubMedGoogle Scholar
  324. 323.
    Thompson, T. L., Centola, M. B., and Deonier, R. C., 1989, Location of the nick at oriT of the F plasmid, J. Mol. Biol. 207: 505–512.PubMedCrossRefGoogle Scholar
  325. 324.
    Tomcsanyi, T, Berg, C. M., Phadnis, S. H., and Berg, D. E., 1990, Intramolecular transposition by a synthetic IS50 (Tn5) derivative, J. Bacteriol. 172: 6348–6354.PubMedGoogle Scholar
  326. 325.
    Torres, O. R., Korman, R. Z., Zahler, S. A., and Dunny, G. M., 1991, The conjugative transposon Tn925: Enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis, Mol. Gen. Genet. 225: 395–400.Google Scholar
  327. 326.
    Tortolero, M., Santero, E., and Casadesus, J., 1983, Plasmid transfer and mobilization of nif markers in Azotobacter vinelandii, Microbios Lett. 22: 31–35.Google Scholar
  328. 327.
    Towner, K. J., 1978, Chromosome mapping in Acinetobacter calcoaceticus, J. Gen. Microbiol. 104: 175–180.Google Scholar
  329. 328.
    Towner, K. J., and Vivian, A., 1977, Plasmids capable of transfer and chromosome mobilization in Acinetobacter calcoaceticus, J. Gen. Microbiol. 101: 167–171.Google Scholar
  330. 329.
    Trieu-Cuot, P., Carlier, C., Martin, P., and Courvalin, P., 1987, Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria, FEMS Microbiol. Lett. 48: 289–294.CrossRefGoogle Scholar
  331. Trieu-Cuot, P, Carlier, C., and Courvalin, P,1988, Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli, J. Bacteriol. 170:4388–4391.Google Scholar
  332. 331.
    Tsygankov, Y. D., Kazakova, S. M., and Serebrijski, I. G., 1990, Genetic mapping of the obligate methylotroph Methylobacillus flagellatum: Characteristics of prime plasmids and mapping of the chromosome in time-of-entry units, J. Bacteriol. 172: 2747–2754.PubMedGoogle Scholar
  333. 332.
    Tucker, W. T., and Pemberton, J. M., 1979, Conjugation and chromosome transfer in Rhodopseudomonas sphaeroides mediated by W and P group plasmids, FEMS Microbiol. Leu. 5: 173–176.CrossRefGoogle Scholar
  334. 333.
    Umeda, M., and Ohtsubo, E., 1989, Mapping of insertion elements ISJ, IS2 and IS3 on the Escherichia coli K-12 chromosome, J. Mol. Biol. 208: 601–614.PubMedCrossRefGoogle Scholar
  335. 334.
    Van Gijsegem, F., and Toussaint, A., 1982, Chromosome transfer and R-prime formation by an RP4::miniMu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis, Plasmid 7: 30–44.CrossRefGoogle Scholar
  336. 335.
    Van Larebeke, N., Genetello, Ch., Hernaisteens, J. P, De Picker, A., Zaenen, I., Messen; E., Van Montagu, M., and Schell, J., 1977, Transfer of Ti plasmids between Agrobacterium strains by mobilisation with the conjugative plasmid RP4, Mol. Gen. Genet. 152: 119–124.Google Scholar
  337. 336.
    Van de Putte, P., and Gruijthuijsen, M., 1972, Chromosome mobilization and integration of F factors in the chromosome of recA strains of E. coli under the influence of bacteriophage Mu-1, Mol. Gen. Genet. 118: 173–183.PubMedCrossRefGoogle Scholar
  338. 337.
    Van der Lelie, D., Bron, S., Venema, G., and Oskam, L., 1989, Similarity of minus origins of replication and flanking open reading frames of plasmids pUB110, pTB913 and pMV158, Nucleic Acids Res. 17: 7283–7294.PubMedCrossRefGoogle Scholar
  339. 338.
    Van der Lelie, D., Wdsten, H. A. B., Bron, S., Oskam, L., and Venema, G., 1990, Conjugal mobilization of streptococcal plasmid pMV158 between strains of Lactococcus lactis subsp. lactis, J. Bacterial. 172: 42–52.Google Scholar
  340. 339.
    Varmus, H., and Brown, P., 1989, Retroviruses, in: Mobile DNA ( D. E. Berg and M. M. Howe, eds.), American Society for Microbiology, Washington, D. C., pp. 53–108.Google Scholar
  341. 340.
    Vivian, A., 1987, Acinetobacter calcoaceticus, in: Genetic Maps, Vol. 4 (S. J. O’Brien, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., pp. 240–241.Google Scholar
  342. 341.
    Warren, G., and Sherratt, D., 1977, Complementation of transfer deficient ColE1 plasmids, Mol. Gen. Genet. 151: 197–201.PubMedCrossRefGoogle Scholar
  343. 342.
    Watson, J. M., and Holloway, B. W, 1978, Chromosome mapping in Pseudomonas aeruginosa PAT, J. Bacterial. 133: 1113–1125.Google Scholar
  344. 343.
    Watson, M. D., and Scaife, J. G., 1978, Chromosomal transfer promoted by the promiscuous plasmid RP4, Plasmid 1: 226–237.PubMedCrossRefGoogle Scholar
  345. 344.
    Watson, M. D., and Scaife, J. G., 1980, Integrative compatibility: Stable coexistence of chromosomally integrated and autonomous derivatives of plasmid RP4, J. Bacteriol. 142: 462–466.PubMedGoogle Scholar
  346. 345.
    West, S. C., 1992, Enzymes and molecular mechanism of genetic recombination, Annu. Rev. Biochem. 61: 603–640.PubMedCrossRefGoogle Scholar
  347. 346.
    West, S. C., and Connolly, B., 1992, Biological roles of Escherichia coli RuvA and RuvC proteins revealed, Mol. Microbiol. 6: 2755–2759.PubMedCrossRefGoogle Scholar
  348. 347.
    Willetts, N. S., 1972, Location of the origin of transfer of the sex factor F, J. Bacteriol. 112: 773–778.PubMedGoogle Scholar
  349. 348.
    Willens, N. S., and Johnson, D., 1981, pED100, a conjugative F plasmid derivative without insertion sequences, Mol. Gen. Genet. 182: 520–522.Google Scholar
  350. 349.
    Willetts, N., and Skurray, R., 1987, Structure and function of the F factor and mechanism of conjugation, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Vol. 2 ( F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M., Schaechter, and H. E. Umbarger, eds.), American Society for Microbiology, Washington, D. C., pp. 1110–1133.Google Scholar
  351. 350.
    Willetts, N., and Wilkins, B., 1984, Processing of plasmid DNA during bacterial conjugation, Microbial. Rev. 48: 24–41.Google Scholar
  352. 351.
    Willens, N. S., Crowther, C., and Holloway, B. W., 1981, The insertion sequence IS2] of R68.45 and the molecular basis for mobilization of the bacterial chromosome, Plasmid 6: 30–52.CrossRefGoogle Scholar
  353. 352.
    Willison, J. C., Haddock, B. A., and Paraskeva, C., 1980, Transfer of chromosomal genes mediated by plasmid R68–45 in Paracoccus denitriftcans, Soc. Gen. Microbial. Q. 8: 14.Google Scholar
  354. 353.
    Willison, J. C., Ahombo, G., Chabert, J., Magnin, J-P., and Vignais, P. M., 1985, Genetic mapping of the Rhodopseudomonas capsulata chromosome shows nonclustering of genes involved in nitrogen fixation, J. Gen. Microbiol. 131: 3001–3015.Google Scholar
  355. 354.
    Yakobson, E. A., and Guiney, Jr., D. G., 1984, Conjugal transfer of bacterial chromosomes mediated by the RK2 plasmid transfer origin cloned into transposon TnS, J. Bacteriol. 160: 451–453.PubMedGoogle Scholar
  356. 355.
    Yoshikawa, M., 1974, Identification and mapping of the replication genes of an R factor, R100–1, integrated into the chromosome of Escherichia coli K-12, J. Bacteriol. 118: 1123–1131.PubMedGoogle Scholar
  357. 356.
    Youvan, D. C., Elder, J. T., Sandlin, D. E., Zsebo, K., Alder, D. P., Panopoulos, N. J., Marrs, B. L., and Hearst, J. E., 1982, R-prime site-directed transposon Tn7 mutagenesis of the photosynthetic apparatus in Rhodopseudomonas capsulata, J. Mol. Biol. 162: 17–41.CrossRefGoogle Scholar
  358. 357.
    Yu, P-L., Cullum, J., and Drews, G., 1981, Conjugational transfer systems of Rhodopseudomonas capsulate mediated by R plasmids, Arch. Microbiol. 128: 390–393.CrossRefGoogle Scholar
  359. 358.
    Zennaro, E., Marconi, A. M., Fochesato, N., Castelli, F., and Ruzzi, M., 1991, Identification and sequencing of a new IS element in Pseudomonas fluorescens strain ST, Pseudomonas 1991, Trieste (Italy), p. 235.Google Scholar
  360. 359.
    Zhang, C., and Holloway, B. W, 1992, Physical and genetic mapping of the catA region of Pseudomonas aeruginosa, J. Gen. Microbiol. 138: 1097–1107.Google Scholar
  361. 360.
    Zieg, J., Maples, V. E, and Kushner, S. R., 1978, Recombination levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes, J. Bacteriol. 134: 958–966.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Cornelia Reimmann
    • 1
  • Dieter Haas
    • 1
  1. 1.Mikrobiologisches InstitutEidgenössische Technische HochschuleZürichSwitzerland

Personalised recommendations