DNA Processing and Replication during Plasmid Transfer between Gram-Negative Bacteria

  • Brian Wilkins
  • Erich Lanka


This chapter concerns the processing and synthesis of plasmid DNA during its transmission between conjugating gram-negative bacteria, focusing on conjugation systems specified by plasmids isolated in or transferred experimentally to enterobacteria. This extensive collection of plasmids can be classified into more than 25 different incompatibility (Inc) groups (34), each of which is generally associated with a distinct conjugation system (158). Only a few of these systems have been investigated at the biochemical and molecular levels, but studies have identified unifying themes as well as an interesting diversity of enzymatic strategies for the conjugative processing of plasmid DNA.


Recipient Cell Plasmid Transfer Conjugative Plasmid Integration Host Factor Bacterial Conjugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Monem, M., Taucher-Scholz, G., and Klinkert, M.-Q.,1983, Identification of Escherichia coli DNA helicase I as the trat gene product of the F sex factor, Proc. Natl. Acad. Sci. USA 80: 4659–4663.Google Scholar
  2. 2.
    Abo, T., Inamoto, S., and Ohtsubo, E., 1991, Specific DNA binding of the TraM protein to the orlT region of plasmid R100, J. Bacteriol. 173: 6347–6354.PubMedGoogle Scholar
  3. 3.
    Achtman, M., Morelli, G., and Schwuchow, S., 1978, Cell-cell interactions in conjugating Escherichia coli: role of F pili and fate of mating aggregates, J. Bacteriol. 135: 1053–1061.PubMedGoogle Scholar
  4. 4.
    Achtman, M., Willem, N., and Clark, A. J., 1972, Conjugational complementation analysis of transfer-deficient mutants of Flac in Escherichia coli, J. Bacteriol. 110: 831–842.PubMedGoogle Scholar
  5. 5.
    Al-Doori, Z., Watson, M., and Scaife, J., 1982, The orientation of transfer of the plasmid RP4, Genet. Res. Camb. 39: 99–103.CrossRefGoogle Scholar
  6. 6.
    Archer, J. A. K., 1985, Sequence analysis of plasmid CoIK, Ph.D. thesis, University of Glasgow, United Kingdom.Google Scholar
  7. 7.
    Bagdasarian, M., Bailone, A., Bagdasarian, M. M., Manning, P. A., Lurz, R., Timmis, K. N., and Devoret, R., 1986, An inhibitor of SOS induction specified by a plasmid locus in Escherichia coli, Proc. Nati. Acad. Sci. USA 83: 5723–5726.CrossRefGoogle Scholar
  8. 8.
    Bagdasarian, M., Bailone, A., Angulo, J. F., Scholz, P, Bagdasarian, M., and Devoret, R., 1992, PsiB, an anti-SOS protein, is transiently expressed by the F sex factor during its transmission to an Escherichia coli K-12 recipient, Mol. Microbiol. 6: 885–893.PubMedCrossRefGoogle Scholar
  9. 9.
    Bailone, A., Bäckman, A., Sommer, S., Célérier, J., Bagdasarian, M. M., Bagdasarian, M., and Devoret, R., 1988, PsiB polypeptide prevents activation of RecA protein in Escherichia coli, Mol. Gen. Genet. 214: 389–395.PubMedCrossRefGoogle Scholar
  10. 10.
    Barlett, M. M., Erickson, M. J., and Meyer, R. J., 1990, Recombination between directly repeated origins of conjugative transfer cloned in M13 bacteriophage DNA models ligation of the transferred plasmid strand, Nucl. Acids Res. 18: 3579–3586.PubMedCrossRefGoogle Scholar
  11. 11.
    Barth, P. T., Tobin, L., and Sharpe, G. S., 1981, Development of broad host-range plasmid vectors, in: Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids ( S. B. Levy, R. C. Clowes, and E. L. Koenig, eds.), Plenum Press, New York,. pp. 439–448.Google Scholar
  12. 12.
    Bastia, D., 1978, Determination of restriction sites and the nucleotide sequence surrounding the relaxation site of ColE1, J. Mol. Biol. 124: 601–639.PubMedCrossRefGoogle Scholar
  13. 12a.
    Beijersbergen, A., Den Dulk-Ras, A., Schilperoort, R. A., and Hooykaas, P. J. J., 1992, Conjugative transfer by the virulence system of Agrobacterium rumefaciens, Science 256: 1324–1327.PubMedCrossRefGoogle Scholar
  14. 12b.
    Belogurov, A. A., Delver, E. P., and Rodzevich, O. V., 1992, IncN plasmid pKM101 and IncI1 plasmid Collb-P9 encode homologous antirestriction proteins in their leading regions, J. Bacteriol. 174: 5079–5085.PubMedGoogle Scholar
  15. 13.
    Bernardi, A., and Bernardi, F., 1984, Complete sequence of pSC101, Nucl. Acids Res. 12: 9415–9426.PubMedCrossRefGoogle Scholar
  16. 14.
    Bhattacharjee, M. K., and Meyer, R. J., 1991, A segment of a plasmid gene required for conjugal transfer encodes a site-specific, single-strand DNA endonuclease and ligase, Nucl. Acids Res. 19: 1129–1137.PubMedCrossRefGoogle Scholar
  17. 15.
    Bóldicke, T. W, Hillenbrand, G., Lanka, E., and Staudenbauer, W. L., 1981, Rifampicin-resistant initiation of DNA synthesis on the isolated strands of ColE plasmid DNA, Nucl. Acids Res. 9: 5215–5231.PubMedCrossRefGoogle Scholar
  18. 16.
    Bolland, S., Llosa, M., Avila, P., and de la Cruz, F, 1990, General organization of the conjugal transfer genes of the IncW plasmid R388 and interactions between R388 and IncN and IncP plasmids, J. Bacteriol. 172: 5795–5802.PubMedGoogle Scholar
  19. 17.
    Boulnois, G. J., and Wilkins, B. M., 1978, A CoII-specified product, synthesized in newly infected recipients, limits the amount of DNA transferred during conjugation of Escherichia coli K-12, J. Bacteriol. 133: 1–9.PubMedGoogle Scholar
  20. 18.
    Boulnois, G. J., Wilkins, B. M., and Lanka, E., 1982, Overlapping genes at the DNA primase locus of the large plasmid Coll, Nucl. Acids Res. 10: 855–869.PubMedCrossRefGoogle Scholar
  21. 19.
    Bowie, J. U., and Sauer, R. T., 1990, TraY proteins of F and related episomes are members of the Arc and Mnt repressor family, J. Mol. Biol. 211: 5–6.PubMedCrossRefGoogle Scholar
  22. 20.
    Boyd, A. C., and Sherratt, D. J., 1986, Polar mobilization of the Escherichia coli chromosome by the ColEl transfer origin, Mol. Gen. Genet. 203: 496–504.PubMedCrossRefGoogle Scholar
  23. 21.
    Boyd, A. C., Archer, J. A. K., and Sherratt, D. J., 1989, Characterization of the ColE1 mobilization region and its protein products, Mol. Gen. Genet. 217: 488–498.PubMedCrossRefGoogle Scholar
  24. 22.
    Bradshaw, H. D., Jr., Traxler, B. A., Minkley, E. G., Jr., Nester, E. W, and Gordon, M. P., 1990, Nucleotide sequence of the trat (helicase I) gene from the sex factor F, J. Bacteriol. 172: 4127–4131.PubMedGoogle Scholar
  25. 23.
    Brasch, M. A., and Meyer, R. J., 1986, Genetic organization of plasmid R1162 DNA involved in conjugative mobilization, J Bacteriol. 167: 703–710.PubMedGoogle Scholar
  26. 24.
    Brasch, M. A., and Meyer, R. J., 1987, A 38 base-pair segment of DNA is required in cis for conjugative mobilization of broad-host-range plasmid RI162, J. Mol. Biol. 198: 361–369.PubMedCrossRefGoogle Scholar
  27. 25.
    Broome-Smith, J., 1980, RecA independent, site-specific recombination between ColE1 or Co1K and a miniplasmid they complement for mobilization and relaxation: implications for the mechanism of DNA transfer during mobilization, Plasmid 4: 51–63.PubMedGoogle Scholar
  28. 26.
    Chan, P. T., Obmori, H., Tomizawa, J., and Lebowitz, J., 1985, Nucleotide sequence and gene organization of ColE1 DNA, J. Biol. Chem. 260: 8925–8935.PubMedGoogle Scholar
  29. 27.
    Chase, J. W, and Williams, K. R., 1986, Single-stranded DNA binding proteins required for DNA replication, Annu. Rev. Biochem. 55: 103–136.PubMedCrossRefGoogle Scholar
  30. 28.
    Chase, J. W, Merrill, B. M., and Williams, K. R., 1983, F sex factor encodes a single-stranded DNA binding protein (SSB) with extensive sequence homology to Escherichia coli SSB, Proc. Natl. Acad. Sci. USA 80: 5480–5484.PubMedCrossRefGoogle Scholar
  31. 29.
    Chatfield, L. K., and Wilkins, B. M., 1984, Conjugative transfer of Incl1 plasmid DNA primase, Mol. Gen. Genet. 197: 461–466.PubMedCrossRefGoogle Scholar
  32. 30.
    Chatfield, L. K., On, E., Boulnois, G. J., and Wilkins, B. M., 1982, DNA primase of plasmid Collb is involved in conjugal DNA synthesis in donor and recipient bacteria, J. Bacteriol. 152: 1188–1195.PubMedGoogle Scholar
  33. 31.
    Clewell, D. B., and Helinski, D. R., 1969, Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an open circular DNA form, Proc. Natl. Acad. Sci. USA 62: 1159 1166.Google Scholar
  34. 31a.
    Cook, D. M., and Farrand, S. K., 1992, The oriT region of Agrobacterium tumefaciens Ti plasmid pTiC58 shares DNA sequence identity with the transfer origins of RSF1010 and RK2/RP4 and with T-region borders, J. Bacteriol. 174: 6238–6246.PubMedGoogle Scholar
  35. 32.
    Coupland, G. M., 1984, The conjugation system and insertion sequences of the IncN plasmid R46, Ph.D. thesis, University of Edinburgh, United Kingdom.Google Scholar
  36. 33.
    Coupland, G. M., Brown, A. M. C., and Willetts, N. S., 1987, The origin of transfer (orzi) of the conjugative plasmid R46: characterization by deletion analysis and DNA sequencing, Mol. Gen. Genet. 208: 219–225.PubMedCrossRefGoogle Scholar
  37. 34.
    Couturier, M., Bex, F., Bergquist, P L., and Maas, W. K., 1988, Identification and classification of bacterial plasmids, Microbiol. Rev. 52: 375–395.PubMedGoogle Scholar
  38. 35.
    Craig, N. L., and Nash, H. A., 1984, E. coli integration host factor binds to specific sites in DNA, Cell 39: 707–716.Google Scholar
  39. 36.
    Cram, D., Ray, A., O’Gorman, L., and Skurray, R., 1984, Transcriptional analysis of the leading region in F plasmid DNA transfer, Plasmid 11: 221–233.PubMedCrossRefGoogle Scholar
  40. 37.
    Curtiss R., III, and Fenwick R. G., Jr., 1975, Mechanism of conjugal plasmid transfer, in: Microbiology-1974 ( D. Schlessinger, ed.), American Society for Microbiology, Washington DC, pp. 156–165.Google Scholar
  41. 38.
    Delver, E. P., Kotova, V. U., Zavilgelsky, G. B., and Belogurov, A. A., 1991, Nucleotide sequence of the gene (ard) encoding the antirestriction protein of plasmid ColIb-P9, J. Bacteriol. 173: 5887–5892.PubMedGoogle Scholar
  42. 39.
    Dempsey, W. B., 1987, Integration host factor and conjugative transfer of the antibiotic resistance plasmid R100, J. Bacteriol. 169: 4391–4392.PubMedGoogle Scholar
  43. 40.
    Derbyshire, K. M., and Willetts, N. S., 1987, Mobilization of the non-conjugative plasmid RSF1010: a genetic analysis of its origin of transfer, Mol. Gen. Genet. 206: 154–160.PubMedCrossRefGoogle Scholar
  44. 41.
    Derbyshire, K. M., Hatfull, G., and Willetts, N., 1987, Mobilization of the non-conjugative plasmid RSF1010: a genetic and DNA sequence analysis of the mobilization region, Mol. Gen. Genet. 206: 161–168.PubMedCrossRefGoogle Scholar
  45. 42.
    Di Laurenzio, L., Frost, L. S., Finlay, B. B., and Paranchych, W., 1991, Characterization of the oriT region of the IncFV plasmid pED208, Mol. Microbiol. 5: 1779–1790.PubMedCrossRefGoogle Scholar
  46. 43.
    Dorrington, R. A., and Rawlings, D. E., 1990, Characterization of the minimum replicon of the broad-hostrange plasmid pTF-FC2 and similarity between pTF-FC2 and the IncQ plasmids, J. Bacteriol. 172: 56975705.Google Scholar
  47. 44.
    Drolet, M., and Lau, P. C. K., 1992, Mobilization protein-DNA binding and divergent transcription at the transfer origin of the Thiobacillus ferrooxidans pTF! plasmid, Mol. Microbiol. 6: 1061–1071.PubMedCrossRefGoogle Scholar
  48. 45.
    Drolet, M., Zanga, P., and Lau, P C. K., 1990, The mobilization and origin of transfer regions of a Thiobacillus ferrooxidans plasmid: relatedness to plasmids RSF1010 and pSC101, Mol. Microbiol. 4: 1381 1391.Google Scholar
  49. 46.
    Dutreix, M., Backman, A., Célérier, J., Bagdasarian, M. M., Sommer, S., Bailone, A., Devoret, R., and Bagdasarian, M., 1988, Identification of psiB genes on plasmids F and R6–5. Molecular basis for psiB enhanced expression in plasmid R6–5, Nucl. Acids Res. 16: 10669–10679.PubMedCrossRefGoogle Scholar
  50. 47.
    Everett, R., and Willetts, N., 1980, Characterization of an in vivo system for nicking at the origin of conjugal DNA transfer of the sex factor F, J. Mol. Biol. 136: 129–150.PubMedCrossRefGoogle Scholar
  51. 48.
    Everett, R., and Willetts, N., 1982, Cloning, mutation and location of the F origin of conjugal transfer, EMBO J. 1: 747–753.PubMedGoogle Scholar
  52. 49.
    Finlay, B. B., Frost, L. S., and Paranchych, W, 1986, Origin of transfer of IncF plasmids and nucleotide sequences of the type II oriT, traM, and traY alleles from Co1B4–K98 and the type IV traY allele from R100–1, J. Bacteriol. 168: 132–139.PubMedGoogle Scholar
  53. 50.
    Flensburg, J., and Calendar, R., 1987, Bacteriophage P4 DNA replication, nucleotide sequence of the P4 replication gene and the cis replication region, J Mol. Biol. 195: 439–445.PubMedCrossRefGoogle Scholar
  54. 51.
    Fu, Y-H. F., Tsai, M.-M., Luo, Y, and Deonier, R. C., 1991, Deletion analysis of the F plasmid oriT locus, J. Bacteriol. 173: 1012–1020.PubMedGoogle Scholar
  55. 52.
    Fürste, J. P., Ziegelin, G., Pansegrau, W, and Lanka, E., 1987, Conjugative transfer of promiscuous plasmid RP4: plasmid-specified functions essential for formation of relaxosomes, in: DNA Replication and Recombination (R. McMacken and T. J. Kelly, eds.), UCLA Symposia on Molecular Cell Biology, New Series Vol. 47, Alan R. Liss, New York, pp. 553–564.Google Scholar
  56. 53.
    Fürste, J. P, Pansegrau, W, Ziegelin, G., Kroger, M., and Lanka, E., 1989, Conjugative transfer of promiscuous IncP plasmids: interaction of plasmid-encoded products with the transfer origin, Proc. Natl. Acad. Sci USA 86: 1771–1775.PubMedCrossRefGoogle Scholar
  57. 54.
    Furuya, N., and Komano, T., 1991, Determination of the nick site at oriT of IncIl plasmid R64: global similarity of oriT structures of Incll and IncP plasmids, J. Bacteriol. 173: 6612–6617.PubMedGoogle Scholar
  58. 55.
    Furuya, N., Nisioka, T., and Komano, T., 1991, Nucleotide sequence and functions of the oriT operon in IncIl plasmid R64, J. Bacteriol. 173: 2231–2237.PubMedGoogle Scholar
  59. 56.
    Gamas, P., Caro, L., Galas, D., and Chandler, M., 1987, Expression of F transfer functions depends on the Escherichia coli integration host factor, Mol. Gen. Genet. 207: 302–305.PubMedCrossRefGoogle Scholar
  60. 57.
    Geider, K., and Hoffmann-Berling, H., 1981, Proteins controlling the helical structure of DNA, Annu. Rev. Biochem. 50: 233–260.PubMedCrossRefGoogle Scholar
  61. 58.
    Gellert, M., 1981, DNA topoisomerases, Annu. Rev. Biochem. 50: 879–910.PubMedCrossRefGoogle Scholar
  62. 59.
    Gilbert, W, and Dressler, D., 1968, DNA replication: the rolling circle model, Cold Spring Harbor Symp. Quant. Biol. 33: 473–484.PubMedCrossRefGoogle Scholar
  63. 60.
    Göldner, A., Graus, H., and Högenauer, G., 1987, The origin of transfer of P307, Plasmid 18: 76–83.PubMedCrossRefGoogle Scholar
  64. 61.
    Golub, E. I., and Low, K. B., 1985, Conjugative plasmids of enteric bacteria from many different incompatibility groups have similar genes for single-stranded DNA-binding proteins, J. Bacteriol. 162: 235–241.PubMedGoogle Scholar
  65. 62.
    Golub, E. I., and Low, K. B., 1986, Derepression of single-stranded DNA-binding protein genes on plasmids derepressed for conjugation, and complementation of an E. coli ssb-mutation by these genes, Mol. Gen. Genet. 204: 410–416.PubMedCrossRefGoogle Scholar
  66. 63.
    Golub, E., Bailone, A., and Devoret, R., 1988, A gene encoding an SOS inhibitor is present in different conjugative plasmids, J. Bacteriol. 170: 4392–4394.PubMedGoogle Scholar
  67. 64.
    Grinter, N., 1981, Analysis of chromosome mobilization using hybrids between plasmid RP4 and a fragment of bacteriophage X carrying ISI, Plasmid 5: 267–276.PubMedCrossRefGoogle Scholar
  68. 65.
    Gruss, A., and Ehrlich, S. D., 1989, The family of highly interrelated single-stranded deoxyribonucleic acid plasmids, Microbiol. Rev. 53: 231–241.PubMedGoogle Scholar
  69. 66.
    Guiney, D. G., and Lanka, E., 1989, Conjugative transfer of IncP plasmids, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C. M. Thomas, ed.), Academic Press, London, pp. 27–56.Google Scholar
  70. 67.
    Guiney, D. G., and Yakobson, E., 1983, Location and nucleotide sequence of the transfer origin of the broad host range plasmid RK2, Proc. Natl. Acad. Sci. USA 80: 3595–3598.PubMedCrossRefGoogle Scholar
  71. 68.
    Haring, V., and Scherzinger, E., 1989, Replication proteins of the IncQ plasmid RSF1010, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C. M. Thomas, ed.), Academic Press, London, pp. 95–124.Google Scholar
  72. 69.
    Hiraga, S., and Saitoh, T, 1975, F deoxyribonucleic acid transferred to recipient cells in the presence of rifampin, J. Bacteriol. 121: 1000–1006.PubMedGoogle Scholar
  73. 70.
    Hooper, D. C., Wolfson, J. S., Tung, C., Souza, K. S., and Swartz, M. N., 1989, Effects of inhibition of the B subunit of DNA gyrase on conjugation in Escherichia coli, J. Bacteriol. 171: 2235–2237.PubMedGoogle Scholar
  74. 71.
    Horowitz, B., and Deonier, R. C., 1985, Formation of 0 tra F’ plasmids: specific recombination at or:T, J. Mol. Biol. 108: 267–274.CrossRefGoogle Scholar
  75. 72.
    Howland, C. J., and Wilkins, B. M., 1988, Direction of conjugative transfer of IncIl plasmid Collb-P9, J. Bacteriol. 170: 4958–4959.PubMedGoogle Scholar
  76. 73.
    Howland, C. J., Rees, C. E. D., Barth, P T., and Wilkins, B. M., 1989, The ssb gene of plasmid Collb-P9, J. Bacteriol. 171: 2466–2473.PubMedGoogle Scholar
  77. 74.
    Inamoto, S., and Ohtsubo, E., 1990, Specific binding of the TraY protein to or:T and the promoter region for the traY gene of plasmid R100, J. Biol. Chem. 265: 6461–6466.PubMedGoogle Scholar
  78. 75.
    Inamoto, S., Yoshioka, Y., and Ohtsubo, E., 1991, Site-and strand-specific nicking in vitro at orzT by the Tray Trai endonuclease of plasmid R100, J. Biol. Chem. 266: 10086–10092.PubMedGoogle Scholar
  79. 76.
    Ippen-Ihler, K. A., and Minkley, E. G., Jr., 1986, The conjugation system of F, the fertility factor of Escherichia coli, Annu. Rev. Genet. 20: 593–624.PubMedCrossRefGoogle Scholar
  80. 77.
    Jalajakumari, M. B., and Manning, P A., 1989, Nucleotide sequence of the traD region in the Escherichia coli F sex factor, Gene 81: 195–202.PubMedCrossRefGoogle Scholar
  81. 78.
    Jones, A. L., Barth, P. T., and Wilkins, B. M., 1992, Zygotic induction of plasmid ssb and psiB genes following conjugative transfer of IncIl plasmid Collb-P9, Mol. Microbiol. 6: 605–613.PubMedCrossRefGoogle Scholar
  82. 79.
    Kim, K., and Meyer, R. J., 1989, Unidirectional transfer of broad-host-range plasmid R1162 during conjugative mobilization. Evidence for genetically distinct events at oreT, J. Mol. Biol. 208: 501–505.PubMedCrossRefGoogle Scholar
  83. 80.
    Kingsman, A., and Willetts, N., 1978, The requirements for conjugal DNA synthesis in the donor strain during F lac transfer, J. Mol. Biol. 122: 287–300.PubMedCrossRefGoogle Scholar
  84. 81.
    Klinkert, M.-Q., Klein, A., and Abdel-Monem, M., 1980, Studies on the functions of DNA helicase I and DNA helicase II of Escherichia coli, J. Biol. Chem. 255: 9746–9752.PubMedGoogle Scholar
  85. 82.
    Kolodkin, A. L., Capage, M. A., Golub, E. I., and Low, K. B., 1983, F sex factor of Escherichia coli K-12 codes for a single-stranded DNA binding protein, Proc. Natl. Acad. Sci. USA 80: 4422–4426.PubMedCrossRefGoogle Scholar
  86. 83.
    Komano, T., Toyoshima, A., Moritz, K., and Nisioka, T, 1988, Cloning and nucleotide sequence of the ortT region of the Incil plasmid R64, J. Bacteriol. 170: 4385–4387.PubMedGoogle Scholar
  87. 84.
    Komano, T, Funayama, N., Kim, S.-R., and Nisioka, T, 1990, Transfer region of Incll plasmid R64 and role of shufflon in R64 transfer, J. Bacteriol. 172: 2230–2235.PubMedGoogle Scholar
  88. 85.
    Kornberg, A., and Baker, T A., 1992, DNA Replication ( 2nd ed. ). W H. Freeman, New York.Google Scholar
  89. 86.
    Krishnapillai, V., 1988, Molecular genetic analysis of bacterial plasmid promiscuity, FEMS Microbiol. Rev. 54: 223–238.CrossRefGoogle Scholar
  90. 87.
    Krishnapillai, V., Nash, J., and Lanka, E., 1984, Insertion mutations in the promiscuous IncP-1 plasmid R18 which affect its host range between Psuedomonas species, Plasmid 12: 170–180.PubMedCrossRefGoogle Scholar
  91. 88.
    Kuhn, B., Abdel-Monem, H., Krell, H., and Hoffmann-Berling, H., 1979, Evidence for two mechanisms for DNA unwinding catalyzed by DNA helicases, J. Biol. Chem. 254: 11343–11350.PubMedGoogle Scholar
  92. 89.
    Lahue, E. E., and Matson, S. W, 1988, Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction, J. Biol. Chem. 263: 3208–3215.Google Scholar
  93. 90.
    Lahue, E. E., and Matson, S. W, 1990, Purified Escherichia coli F-factor TraY protein binds orrT, J. Bacteriol. 172: 1385–1391.PubMedGoogle Scholar
  94. 91.
    Lanka, E., and Barth, P. T., 1981, Plasmid RP4 specifies a deoxyribonucleic acid primase involved in its conjugal transfer and maintenance, J. Bacteriol_ 148: 769–781.PubMedGoogle Scholar
  95. 92.
    Lanka, E., and Fürste, J. P., 1984, Function and properties of RP4 DNA primase, in: Proteins Involved in DNA Replication ( U. Hübscher and S. Spadari, eds.), Plenum Press, New York, pp. 265–280.Google Scholar
  96. 93.
    Lanka, E., Scherzinger, E., Günther, E., and Schuster, H., 1979, A DNA primase specified by I-like plasmids, Proc. Natl. Acad. Sci. USA 76: 3632–3636.PubMedCrossRefGoogle Scholar
  97. 94.
    Lanka, E., Lurz, R., Kroger, M., and Fürste, J. P., 1984, Plasmid RP4 encodes two forms of a DNA primase, Mol. Gen. Genet. 194: 65–72.PubMedCrossRefGoogle Scholar
  98. 95.
    Lessl, M., Balzer, D., Lurz, R., Waters, V. L., Guiney, D. G., and Lanka, E., 1992, Dissection of IncP conjugative plasmid transfer: definition of the transfer region Tra2 by mobilization of the Tral region in trans, J. Bacteriol. 174: 2493–2500.PubMedGoogle Scholar
  99. 95a.
    Lessl, M., Balzer, D., Pansegrau, W, and Lanka, E., 1992, Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer, J. Biol. Chem. 267:20, 47120, 480.Google Scholar
  100. 96.
    Llosa, M., Bolland, S., and de la Cruz, F., 1991, Structural and functional analysis of the origin of conjugal transfer of the broad-host-range IncW plasmid R388 and comparison to the related IncN plasmid R46, Mol. Gen. Genet. 226: 473–483.PubMedCrossRefGoogle Scholar
  101. 97.
    Loh, S. M., Cram, D. S., and Skurray, R. A., 1988, Nucleotide sequence and transcriptional analysis of a third function (Elm) involved in F-plasmid maintenance, Gene 66: 259–268.PubMedCrossRefGoogle Scholar
  102. 98.
    Loh, S., Cram, D., and Skurray, R., 1989, Nucleotide sequence of the leading region adjacent to the origin of transfer on plasmid F and its conservation among conjugative plasmids, Mol. Gen. Genet. 219: 177–186.PubMedCrossRefGoogle Scholar
  103. 99.
    Loh, S., Skurray, R., Célérier, J., Bagdasarian, M., Bailone, A., and Devoret, R., 1990, Nucleotide sequence of the psiA (plasmid SOS inhibition) gene located on the leading region of plasmids F and R6–5, Nucl. Acids Res. 18: 4597.PubMedCrossRefGoogle Scholar
  104. 100.
    Lovett, M. A., and Helinski, D. R., 1975, Relaxation complexes of plasmid DNA and protein. H. Characterization of the proteins associated with the unrelaxed and relaxed complexes of plasmid ColEi, J. Biol. Chem. 250: 8790–8795.PubMedGoogle Scholar
  105. 101.
    Manning, P. A., and Achtman, M., 1979, Cell-to-cell interactions in conjugating Escherichia coli: the involvement of the cell envelope, in: Bacterial Outer Membranes: Biogenesis and Functions ( M. Inouye, ed.), John Wiley and Sons, New York, pp. 409–447.Google Scholar
  106. 102.
    Marians, K. J., 1984, Enzymology of DNA in replication in prokaryotes, Crit. Rev. Biochem. 17: 153–215.CrossRefGoogle Scholar
  107. 103.
    Matson, S. W, and Kaiser-Rogers, K. A., 1990, DNA helicases, Annu. Rev. Biochem. 59: 289–329.PubMedCrossRefGoogle Scholar
  108. 104.
    Matson, S. W., and Morton, B. S., 1991, Escherichia coli DNA helicase I catalyzes a site-and strand-specific nicking reaction at the F plasmid oriT, J. Biol. Chem. 266: 16232–16237.Google Scholar
  109. 105.
    Matson, S. W, and Morton, B. S., 1993, Escherichia coli DNA helicase I is covalently bound to the 5’ side of the F plasmid onT nick site, EMBO J.,in press.Google Scholar
  110. 106.
    McIntire, S. A., and Dempsey, W. B., 1987, ornT sequence of the antibiotic resistance plasmid R100, J. Bacteriol. 169: 3829–3832.Google Scholar
  111. 107.
    Miele, L., Strack, B., Kruft, V., and Lanka, E., 1991, Gene organization and nucleotide sequence of the primase region of IncP plasmids RP4 and R751, DNA Sequence 2: 145–162.PubMedGoogle Scholar
  112. 108.
    Merryweather, A., Barth, R. T., and Wilkins, B. M., 1986, Role and specificity of plasmid RP4-encoded DNA primase in bacterial conjugation, J. Bacteriol. 167: 12–17.PubMedGoogle Scholar
  113. 109.
    Merryweather, A., Rees, C. E. D., Smith, N. M., and Wilkins, B. M., 1986, Role of sog polypeptides specified by plasmid ColIb-P9 and their transfer between conjugating bacteria, EMBO J. 5: 3007–3012.PubMedGoogle Scholar
  114. 110.
    Meyer, R., 1989, Site-specific recombination at oriT of plasmid R1162 in the absence of conjugative transfer, J. Bacteriol. 171: 799–806.PubMedGoogle Scholar
  115. 111.
    Morion, J., Chartier, M., Bidaud, M., and Lasdunski, C., 1988, The complete nucleotide sequence of the colicinogenic plasmid ColA. High extent of homology with ColE1, Mol. Gen. Genet. 211: 231–243.CrossRefGoogle Scholar
  116. 112.
    Motallebi-Veshareh, M., Balzer, D., Lanka, E., Jagura-Burdzy, G., and Thomas, C. M., 1992, Conjugative transfer functions of broad host range plasmid RK2 are coregulated with vegetative replication, Mol. Microbiol. 6: 907–920.PubMedCrossRefGoogle Scholar
  117. 113.
    Nash, J., and Krishnapillai, V, 1988, Role of IncP-1 plasmid primase in conjugation between Pseudomonas species, FEMS Microbiol. Lett. 49: 257–260.CrossRefGoogle Scholar
  118. 114.
    Nomura, N., Low, R. L., and Ray, D. S., 1982, Identification of ColE1 DNA sequences that direct single strand-to-double strand conversion by a (,X174 type mechanism, Proc. Natl. Acad. Sci. USA 79: 3153–3157.PubMedCrossRefGoogle Scholar
  119. 115.
    Nomura, N., Masai, H., Inuzuka, M., Miyazaki, C., Ohtsubo, E., Itoh, T, Sasamoto, S., Matsui, M., Ishizaki, R., and Arai, K., 1991, Identification of eleven single-strand initiation sequences (ssi) for priming of DNA replication in the F, R6K, R100 and COIE2 plasmids, Gene 108: 15–22.PubMedCrossRefGoogle Scholar
  120. 116.
    Ohki, M., and Tomizawa, J., 1968, Asymmetric transfer of DNA strands in bacterial conjugation, Cold Spring Harbor Symp. Quant. Biol. 33: 651–657.PubMedCrossRefGoogle Scholar
  121. 117.
    Ostermann, E., Kricek, F., and Högenauer, G., 1984, Cloning the origin of transfer region of the resistance plasmid RI, EMBO J. 3: 1731–1735.PubMedGoogle Scholar
  122. 118.
    Panicker, M. M., and Minkley, E. G., Jr., 1985, DNA transfer occurs during a cell surface contact stage of F sex factor-mediated bacterial conjugation, J. Bacteriol. 162: 584–590.PubMedGoogle Scholar
  123. 118a.
    Panicker, M. M., and Minkley, Jr., E. G., 1992, Purification and properties of the F sex factor TraD protein, an inner membrane conjugal transfer protein, J. Biol. Chem. 267: 12761–12766.PubMedGoogle Scholar
  124. 119.
    Pansegrau, W, Ziegelin, G., and Lanka, E., 1988, The origin of conjugative IncP plasmid transfer: interaction with plasmid-encoded products and the nucleotide sequence at the relaxation site, Biochim. Biophys. Acta 951: 365–374.Google Scholar
  125. 120.
    Pansegrau, W., Balzer, D., Kruft, V., Lurz, R., and Lanka, E., 1990, In vitro assembly of relaxosomes at the transfer origin of plasmid RP4, Proc. Natl. Acad. Sci. USA 87: 6555–6559.PubMedCrossRefGoogle Scholar
  126. 121.
    Pansegrau, W., and Lanka, E., 1991, Common sequence motifs in DNA relaxases and nick regions from a variety of DNA transfer systems, Nucl. Acids Res. 19: 3455.PubMedCrossRefGoogle Scholar
  127. 121a.
    Pansegrau, W„ and Lanka, E., 1992, A common sequence motif among prokaryotic DNA primases, Nucl. Acids Res. 20: 4931.PubMedCrossRefGoogle Scholar
  128. 122.
    Pansegrau, W., Ziegelin, G., and Lanka, E., 1990, Covalent association of the tral gene product of plasmid RP4 with the 5’-terminal nucleotide at the relaxation nick site, J. Biol. Chem. 265: 10637–10644.PubMedGoogle Scholar
  129. 123.
    Paterson, E. S., and Iyer, V. N., 1992, The orti’region of the conjugative transfer system of plasmid pCUI and specificity between it and the mob region of other N tra plasmids, J. Bacteriol. 174: 499–507.PubMedGoogle Scholar
  130. 124.
    Pettijohn, D. E., and Pfenninger, 0., 1980, Supercoils in prokaryotic DNA restrained in vivo, Proc. Natl. Acad. Sci. USA 77: 1331–1335.PubMedCrossRefGoogle Scholar
  131. 125.
    Read, T. D., Thomas, A. T, and Wilkins, B. M., 1992, Evasion of type I and type II restriction systems by Incll plasmid ColIb-P9 during transfer by bacterial conjugation, Mol. Microbiol. 6: 1933–1941.PubMedCrossRefGoogle Scholar
  132. 126.
    Rees, C. E. D., and Wilkins, B. M., 1989, Transfer of tra proteins into the recipient cell during conjugation mediated by plasmid Collb-P9, J. Bacteriol. 171: 3152–3157.PubMedGoogle Scholar
  133. 127.
    Rees, C. E. D., and Wilkins, B. M., 1990, Protein transfer into the recipient cell during bacterial conjugation: studies with F and RP4, Mol. Microbiol. 4: 1199–1205.PubMedCrossRefGoogle Scholar
  134. 128.
    Rees, C. E. D., Bradley, D. E., and Wilkins, B. M., 1987, Organization and regulation of the conjugation genes of IncIl plasmid Collb-P9, Plasmid 18: 223–236.PubMedCrossRefGoogle Scholar
  135. 129.
    Reygers, U., Wessel, R., Müller, H., and Hoffmann-Berling, H., 1991, Endonuclease activity of Escherichia coli DNA helicase I directed against the transfer origin of the F factor, EMBO J. 10: 2689–2694.PubMedGoogle Scholar
  136. 130.
    Rohrer, J., and Rawlings, D. E., 1992, Nucleotide sequence and functional analysis of the mobilization region of the broad-host-range plasmid pTF-FC2, J. Bacteriol. 174: 6230–6237.PubMedGoogle Scholar
  137. 131.
    Rose, R. E., 1988, The nucleotide sequence of pACYCI84, Nucl. Acids Res. 16: 355.PubMedCrossRefGoogle Scholar
  138. 132.
    Rupp, W. D., and Ihler, G., 1968, Strand selection during bacterial mating, Cold Spring Harbor Symp. Quant. Biol. 33: 647–650.PubMedCrossRefGoogle Scholar
  139. 133.
    Scherzinger, E., Lurz, R., Otto, S., and Dobrinski, B., 1992, In vitro cleavage of double-and single-stranded DNA by plasmid RSF1010-encoded mobilization proteins, Nucl. Acids Res. 20: 41–48.PubMedCrossRefGoogle Scholar
  140. 134.
    Schilf, W, and Krishnapillai, V, 1986, Genetic analysis of insertion mutations of the promiscuous IncP-1 plasmid R18 mapping near oriT which affect its host range, Plasmid 15: 48–56.PubMedCrossRefGoogle Scholar
  141. 135.
    Scholz, P., Haring, V., Wittmann-Liebold, B., Ashman, K., Bagdasarian, M., and Scherzinger, E., 1989, Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010, Gene 75: 271–288.PubMedCrossRefGoogle Scholar
  142. 136.
    Schwab, M., Gruber, H., and Högenauer, G., 1991, The TraM protein of plasmid R1 is a DNA-binding protein, Mol. Microbiol. 5: 439–446.PubMedCrossRefGoogle Scholar
  143. 137.
    Silver, S. D., Moody, E. E. M., and Clowes, R. C., 1965, Limits on material transfer during F+- x Fmatings in Escherichia coli K12, J. Mol. Biol. 12: 283–286.PubMedCrossRefGoogle Scholar
  144. 138.
    Silverman, P M., 1987, The structural basis of prokaryotic DNA transfer, in: Bacterial Outer Membranes as Model Systems (M. Inouye, ed.), John Wiley and Sons, New York, pp. 277–309.Google Scholar
  145. 139.
    Snijders, A., van Putten, A. J., Veltkamp, E., and Nijkamp, H. J. J., 1983, Localization and nucleotide sequence of the born region of Clo DF13, Mol. Gen. Genet. 192: 444–451.PubMedCrossRefGoogle Scholar
  146. 140.
    Strack, B., Lessl, M., Calendar, R., and Lanka, E., 1992, A common sequence motif, -E-G-Y-A-T-A-, identified within the primase domains of plasmid-encoded I- and P-type DNA primases and the a protein of the Escherichia coli satellite phage P4, J. Biol. Chem. 267: 13062–13072.PubMedGoogle Scholar
  147. 141.
    Thomas, C. D., Balson, D. F., and Shaw, W. V, 1990, In vitro studies of the initiation of staphylococcal plasmid replication, J. Biol. Chem. 265: 5519–5530.PubMedGoogle Scholar
  148. 142.
    Thompson, R., Taylor, L., Kelly, K., Everett, R., and Willens, N., 1984, The F plasmid origin of transfer: DNA sequence of wild-type and mutant origins and location of origin-specific nicks, EMBO J. 3: 1175–1180.PubMedGoogle Scholar
  149. 143.
    Thompson, T. L., Centola, M. B., and Deonier, R. C., 1989, Location of the nick at oriT of the F plasmid, J. Mol. Biol. 207: 505–512.PubMedCrossRefGoogle Scholar
  150. 144.
    Traxler, B. A., and Minkley, E. G., Jr., 1987, Revised genetic map of the distal end of the F transfer operon: implications for DNA helicase I, nicking at oriT, and conjugal DNA transport, J. Bacteriol. 169: 3251–3259.PubMedGoogle Scholar
  151. 145.
    Traxler, B. A., and Minkley, E. G., Jr., 1988, Evidence that DNA helicase I and oriT site-specific nicking are both functions of the F Tral protein, J. Mol. Biol. 204: 205–209.PubMedCrossRefGoogle Scholar
  152. 146.
    Tsai, M-M., Fu, Y.-H. F., and Deonier, R. C., 1990, Intrinsic bends and integration host factor binding at F plasmid oriT, J. Bacteriol. 172: 4603–4609.PubMedGoogle Scholar
  153. 147.
    Vapnek, D., and Rupp, W. D., 1970, Asymmetric segregation of the complementary sex-factor DNA strands during conjugation in Escherichia coli, J. Mol. Biol. 53: 287–303.PubMedCrossRefGoogle Scholar
  154. 148.
    Vapnek, D., Lipman, M. B., and Rupp, W. D., 1971, Physical properties and mechanism of transfer of R factors in Escherichia coli, J. Bacteriol. 108: 508–514.PubMedGoogle Scholar
  155. 149.
    Vogel, A. M., and Das, A., 1992, Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity, J. Bacteriol. 174: 303–308.PubMedGoogle Scholar
  156. 150.
    Warren, G. J., and Clark, A. J., 1980, Sequence-specific recombination of plasmid ColE1, Proc. Natl. Acad. Sci. USA 77: 6724–6728.Google Scholar
  157. 151.
    Warren, G. J., Twigg, A. J., and Sherratt, D. J., 1978, ColEI plasmid mobility and relaxation complex, Nature (London) 274: 259–261.CrossRefGoogle Scholar
  158. 152.
    Waters, V. L., Hirata, K. H., Pansegrau, W, Lanka, E., and Guiney, D. G., 1991, Sequence identity in the nick regions of IncP plasmid transfer origins and T-DNA borders of Agrobacterium Ti plasmids, Proc. Natl. Acad. Sci. USA 88: 1456–1460.PubMedCrossRefGoogle Scholar
  159. 153.
    Wessel, R., Müller, H., and Hoffmann-Berling, H., 1990, Electron microscopy of DNA • helicase-I complexes in the act of strand separation, Eur. J. Biochem. 189: 277–285.PubMedCrossRefGoogle Scholar
  160. 154.
    Wilkins, B. M., 1975, Partial suppression of the phenotype of Escherichia coli K-12 dnaG mutants by some I-like conjugative plasmids, J. Bacteriol. 122: 899–904.PubMedGoogle Scholar
  161. 155.
    Wilkins, B. M., Boulnois, G. J., and Lanka, E., 1981, A plasmid DNA primase active in discontinuous bacterial DNA replication, Nature (London) 290: 217–221.Google Scholar
  162. 156.
    Willetts, N., 1981, Sites and systems for conjugal DNA transfer in bacteria, in: Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids ( S. B. Levy, R. C. Clowes, and E. L. Koenig, eds.), Plenum Press, New York, pp. 207–215.Google Scholar
  163. 157.
    Willetts, N., and Maule, J., 1979, Investigations of the F conjugation gene tral: tral mutants and Xtral transducing phages, Mol. Gen. Genet. 169: 325–336.PubMedCrossRefGoogle Scholar
  164. 158.
    Willetts, N., and Maule, J., 1985, Specificities of IncF plasmid conjugation genes, Genet. Res. Camb. 47: 1–11.CrossRefGoogle Scholar
  165. 159.
    Willens, N., and Skurray, R., 1987, Structure and function of the F factor and mechanism of conjugation, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology ( F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, and H. E. Umbarger, eds.), American Society for Microbiology, Washington DC, pp. 1110–1133.Google Scholar
  166. 160.
    Willens, N., and Wilkins, B., 1984, Processing of plasmid DNA during bacterial conjugation, Microbiol. Rev. 48: 24–41.Google Scholar
  167. 161.
    Winans, S. C., 1992, Tivo-way chemical signaling in Agrobacrerium-plant interactions, Microbiol. Rev. 56: 12–31.PubMedGoogle Scholar
  168. 162.
    Winans, S. C., and Walker, G. C., 1985, Conjugal transfer system of the IncN plasmid pKM101, J. Bacteriol. 161: 402–410.PubMedGoogle Scholar
  169. 163.
    Womble, D. D., and Rownd, R. H., 1988, Genetic and physical map of plasmid NR1: comparison with other IncFII antibiotic resistance plasmids, Microbiol. Rev. 52: 433–451.PubMedGoogle Scholar
  170. 164.
    Yakobson, E., Deiss, C., Hirata, K., and Guiney, D. G., 1990, Initiation of DNA synthesis in the transfer origin region of RK2 by the plasmid-encoded primase: detection using defective M13 phage, Plasmid 23: 80–84.PubMedCrossRefGoogle Scholar
  171. 165.
    Yang, C.-C., and Nash, H. A., 1989, The interaction of E. coli IHF protein with its specific binding sites, Cell 57: 869–880.PubMedCrossRefGoogle Scholar
  172. 166.
    Yoshioka, Y., Fujita, Y., and Ohtsubo, E., 1990, Nucleotide sequence of the promoter-distal region of the tra operon of plasmid R100, including tral (DNA helicase I) and trap genes, J. Mol. Biol. 214: 39–53.PubMedCrossRefGoogle Scholar
  173. 167.
    Zambryski, P., 1988, Basic processes underlying Agrobacrerium-mediated DNA transfer to plant cells, Annu. Rev. Genet. 22: 1–30.PubMedCrossRefGoogle Scholar
  174. 168.
    Zavitz, K. H., and Marians, K. J., 1991, Dissecting the functional role of PriA protein-catalyzed primosome assembly in Escherichia coli DNA replication, Mol. Microbiol. 5: 2869–2873.PubMedCrossRefGoogle Scholar
  175. 169.
    Ziegelin, G., Firste, J. P., and Lanka, E., 1989, TraJ protein of plasmid RP4 binds to a 19-base pair invert sequence repetition within the transfer origin, J. Biol. Chem. 264: 11989–11994.PubMedGoogle Scholar
  176. 170.
    Ziegelin, G., Pansegrau, W, Lurz, R., and Lanka, E., 1992, TraK protein of conjugative plasmid RP4 forms a specialized nucleoprotein complex with the transfer origin, J. Biol. Chem. 267: 17279–17286.PubMedGoogle Scholar
  177. 171.
    Ziegelin, G., Pansegrau, W, Strack, B., Balzer, D., Kruger, M., Kruft, V., and Lanka, E., 1991, Nucleotide sequence and organization of genes flanking the transfer origin of promiscuous plasmid RP4, DNA Sequence 1: 303–327.PubMedGoogle Scholar
  178. 172.
    Zipursky, S. L., and Marians, K. J., 1981, Escherichia coli factor Y sites of plasmid pBR322 can function as origins of DNA replication, Proc. Natl. Acad. Sci. USA 78: 6111–6115.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Brian Wilkins
    • 1
  • Erich Lanka
    • 2
  1. 1.Department of GeneticsUniversity of LeicesterLeicesterUK
  2. 2.Max-Planck-Institut für Molekulare GenetikBerlin 33Federal Republic of Germany

Personalised recommendations