Broad Host Range Conjugative and Mobilizable Plasmids in Gram-Negative Bacteria

  • Donald G. Guiney


Bacterial conjugation mediates genetic exchange not only between cells of the same species but also between members of distantly related or even unrelated genera. These transfer events have been demonstrated among diverse members within both the gram-positive and gram-negative groups of organisms. Recently, experiments using natural conjugation systems have demonstrated gene transfer between gram-positive and gram-negative organisms, and even from bacteria to the lower eukaryote Saccharomyces cerevisiae (59, 124, 125). The significance of this promiscuous gene transfer is that it provides a mechanism for the availability of a huge pool of genes for bacterial evolution. A dramatic example of the ability of individual bacteria to acquire genes of selective value is the widespread development of resistance to antibiotics used in clinical medicine and agriculture.


Conjugation System Plasmid Transfer Transfer Region Broad Host Range Plasmid IncP Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albright, L.M., Yanofsky, M.F., Leroux, B. Ma, D., and Nester, E.W., 1987, Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA, J. Bacteriol. 169: 1046–1055.Google Scholar
  2. 2.
    Al-Doori, Z., Watson, M., and Scaife, J., 1982, The orientation of transfer of the plasmid RP4, Genet. Res. Camb. 39: 99–103.Google Scholar
  3. 3.
    Ayres, E., Saadi, S., Schreiner, H.C., Thomson, V.J., and Figurski, D.H., 1991, Differentiation of lethal and nonlethal, kor-regulated functions in the ki1B region of broad host-range plasmid RK2, Plasmid 25: 53–63.PubMedGoogle Scholar
  4. 4.
    Barlett, M., Rickson, M.J., and Meyer, R.J., 1990, Recombination between directly repeated origins of conjugative transfer cloned in M13 bacteriophage DNA models ligation of the transferred plasmid strand, Nucl. Acids Res. 18: 3579–3586.PubMedGoogle Scholar
  5. 5.
    Barsomian, G., and Lessie, T.G., 1986, Replicon fusions promoted by insertion sequences on Pseudomonas cepacia plasmid pTGL6, Mol. Gen. Genet. 204: 273–280.PubMedGoogle Scholar
  6. 6.
    Barth, P.T., 1979, Plasmid RP4, with Escherichia coli DNA inserted in vitro, mediates chromosomal transfer, Plasmid 2: 130–136.PubMedGoogle Scholar
  7. 7.
    Barth, P.T., 1979, RP4 and R300B as wide-host-range plasmid cloning vehicles, in: Plasmids of Medical, Environmental and Commercial Importance (K.N. Timmis and A. Pühler, eds. ), Elsevier/North-Holland Biomedical Press, pp. 399–410.Google Scholar
  8. 8.
    Barth, P.T., and Grinter, N.J., 1977, Map of plasmid RP4 derived by insertion of transposon C, J. Mol. Biol. 113: 455–474.PubMedGoogle Scholar
  9. 9.
    Barth, PT, Grinter, N.J., and Bradley, D.E., 1978, Conjugal transfer system of plasmid RP4: analysis by transposon 7 insertion, J. Bacteriol. 133: 43–52.PubMedGoogle Scholar
  10. 10.
    Beck, Y., Coetzee, W.F., and Coetzee, J.N., 1982, In vitro constructed RP4-prime plasmids mediate oriented mobilization of the Proteus morganii chromosome, J. Gen. Microbiol. 128: 1163–1169.PubMedGoogle Scholar
  11. 11.
    Beninger, P.R., Chikami, G., Tanabe, K., Roudier, C., Fierer, J., and Guiney, D.G., 1988, Physical and genetic mapping of the Salmonella dublin virulence plasmid pSDL2, J. Clin. Invest. 81: 1341–1347.PubMedGoogle Scholar
  12. 12.
    Bhattacharjee, M.K., and Meyer, R.J., 1991, A segment of a plasmid gene required for conjugal transfer encodes a site-specific, single-strand DNA endonuclease and ligase, Nucl. Acids Res. 19: 1129–1137.PubMedGoogle Scholar
  13. 13.
    Binns, A. N., and Tomashow, M.F., 1988, Cell biology of Agrobacterium infection and transformation of plants, Ann. Rev. Microbiol. 42: 575–606.Google Scholar
  14. 14.
    Bolland, S., Llosa, M., Avila, P, and de la Cruz, E, 1990, General organization of the conjugal transfer genes of the IncW plasmid R388 and interactions between R388 and IncN and IncP plasmids, J. Bacteriol. 172: 5795–5802.PubMedGoogle Scholar
  15. 15.
    Boulnois, G.J., Varley, J.M., Sharpe, G.S., and Franklin, F.C.H., 1985, Transposon donor plasmids, based on COIIB-p9, for use in Pseudomonas putida and a variety of other gram negative bacteria, Mol. Gen. Genet. 200: 65–67.PubMedGoogle Scholar
  16. 16.
    Bowen, A.R.S.G., and Pemberton, J.M., 1985, Mercury resistance transposon Tn813 mediates chromosome transfer in Rhodopseudomonas sphaeroides and intergeneric transfer of pBR322, in: Plasmids in Bacteria ( D.R. Helinski, S.N. Cohen, D.B. Clewell, D.B. Jackson, and A. Hollaender, eds), Plenum Press, New York, pp. 105–115.Google Scholar
  17. 17.
    Bradley, D.E., 1974, Adsorption of bacteriophages specific for Pseudomonas aeruginosa R factors RP1 and RI822, Biochim. Biophys. Res. Commun. 57: 893–900.Google Scholar
  18. 18.
    Bradley, D.E., 1980, Morphological and serological relationships of conjugative pili, Plasmid 4: 155–169.PubMedGoogle Scholar
  19. 19.
    Bradley, D.E., and Rutherford, E.L., 1975, Basic characterization of a lipid-containing bacteriophage specific for plasmids of the P, N and W compatibility groups, Can. J. Microbiol. 21: 152–163.Google Scholar
  20. 20.
    Bradley, D.E., Taylor, D.E., and Cohen, D.R., 1980, Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12, J. Bacteriol. 143: 1466–1470.PubMedGoogle Scholar
  21. 21.
    Brasch, M.A., and Meyer, R.J., 1986, Genetic organization of plasmid R1162 DNA involved in conjugative mobilization, J. Bacteriol. 167: 703–710.PubMedGoogle Scholar
  22. 22.
    Brasch, M.A., and Meyer, R. J., 1987, A 38 base-pair segment of DNA is required in cis for conjugative mobilization of broad host-range plasmid R1162, J. Mol. Biol. 198: 361–369.PubMedGoogle Scholar
  23. 23.
    Breton, A.M., Jaona, S., and Guespin-Michel, J., 1985, Transfer of plasmid RP4 to Myxococcusxanthus and evidence for its integration into the chromosome, J. Bacteriol. 161: 523–528.PubMedGoogle Scholar
  24. 24.
    Brown, A.C., and Willetts, N.S., 1981, A physical and genetic map of the IncN plasmid R46, Plasmid 5: 188–201.PubMedGoogle Scholar
  25. 25.
    Buchanan-Wollaston, V, Passiatore, J.E., and Cannon, F., 1987, The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants, Nature, London, 328: 172–175.Google Scholar
  26. 26.
    Burkardt, H.J., Riess, G., and Pühler, A.,1979, Relationships of group Pl plasmids revealed by heteroduplex experiments: RP1, RP4, R68 and RK2 are identical, J. Gen. Microbiol. 114: 341–348.Google Scholar
  27. 27.
    Chileami, G.K., Fierer, J., Guiney, D.G., 1985, Plasmid-mediated virulence in Salmonella dublin demonstrated by use of a Tn5-oriT construct, Infect. Immun. 50: 420–422.Google Scholar
  28. 28.
    Christie, P.J., Ward, J.E. Jr., Gordon, M.P., and Nester, E.W., 1989, A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity, Proc. Natl. Acad. Sci. USA 86: 9677–9681.PubMedGoogle Scholar
  29. 29.
    Coupland, G.M., Brown, A.M.C., and Willetts, N.S., 1987, The origin of transfer (onT) of the conjugative plasmid R46: characterization of deletion analysis and DNA sequencing, Mol. Gen. Genet. 208: 219–225.PubMedGoogle Scholar
  30. 30.
    Courturier, M., Bex, E, Bergquist, P.L., and Maas, W.K., 1988, Identification and classification of bacterial plasmids, Microbiol. Rev. 52: 375–395.Google Scholar
  31. 31.
    Dana, N., and Hedges, R.W., 1972, Host ranges of R factor, J. Gen. Microbiol. 70: 453–460.Google Scholar
  32. 32.
    Depicker, A., de Block, M., Inze, D., van Montagu, M., and Schell, J., 1980, IS-like element IS8 in RP4 plasmid and its involvement in cointegration, Gene 10: 329–338.PubMedGoogle Scholar
  33. 33.
    Derbyshire, K.M., Hatfull, G., and Willetts, N., 1987, Mobilization of the non-conjugative plasmid RSF1010: a genetic and DNA sequence analysis of the mobilization region, Mol. Gen. Genet. 206: 161–168.PubMedGoogle Scholar
  34. 34.
    Derbyshire, K.M., and Willens, N.S., 1987, Mobilization of the nonconjugative plasmid RSF1010: a genetic analysis of its origin of transfer, Mol. Gen. Genet. 206: 154–160.PubMedGoogle Scholar
  35. 35.
    Drolet, M., Zanga, P, and Lau, P.C.K., 1990, The mobilization and origin of transfer regions of a thiobacillus ferrooxidans plasmid: relatedness to plasmids RSF1010 and pSC101, Mol. Microbiol. 4:1381I391.Google Scholar
  36. 36.
    Durland, R. H., and Helinski, D.R., 1990, Replication of the broad-host-range plasmid RK2: direct measurement of intracellular concentrations of essential TrfA proteins and their effect on plasmid copy number, J. Bacteriol. 172: 3849–3858.PubMedGoogle Scholar
  37. 37.
    Durrenberger, F., Crameri, A., Hohn, B., and Koukolilova-Nocola, Z., 1989, Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation, Proc. Natl. Acad. Sci. USA 886: 9154–9158.Google Scholar
  38. 38.
    Figurski, D.H., and Helinski, D., 1979, Replication of an origin containing derivative of plasmid RK2 dependent on ‘a plasmid function in trans, Proc. Natl. Acad. Sci. USA 76: 1648–1652.PubMedGoogle Scholar
  39. 39.
    Figurski, D., Meyer, R., Miller, D.S.> Helinski, D.R., 1976, Generation in vitro of deletions in the broadhost-range plasmid RK2 using phage Mu insertions and a restriction endonuclease, Gene 1: 107–119.Google Scholar
  40. 40.
    Figurski, D.H., Pohlman, R.F., Bechhofer, D. H., Prince, A.S., and Kelton, C.A., 1982, Broad host range plasmid RK2 encodes multiple kil genes potentially lethal to Escherichia coli host cells, Proc. Natl. Acad. Sci. USA 79: 1935–1939.PubMedGoogle Scholar
  41. 41.
    Finger, J., and Krishnapillai, V., 1980, Host range, entry exclusion, and incompatibility of Pseudomonas FP plasmids, Plasmid 3: 332–342.PubMedGoogle Scholar
  42. 42.
    Fong, S.T., and Stanisich, V.A., 1989, Location and characterization of two functions on RP1 that inhibit the fertility of the IncW plasmid R388, J. Gen. Microbiol. 135: 499–502.PubMedGoogle Scholar
  43. 43.
    Frey, J., and Bagdasarian, M., 1989, The molecular biology of IncQ plasmids, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 79–94.Google Scholar
  44. 44.
    Fürste, J.P., Pansegrau, W., Ziegelin, G., Kröger, M., and Lanka, E., 1989, Conjugative transfer of promiscuous IncP plasmids: interaction of plasmid-encoded products with the transfer origin, Proc. Natl. Acad. Sci. USA 86: 1771–1775.PubMedGoogle Scholar
  45. 45.
    Gerlitz, M., Hrabak, O., and Schwab, H., 1990, Partitioning of broad host-range plasmid RP4 is a complex system involving site-specific recombination, J. Bacteriol. 172: 6194–6203.PubMedGoogle Scholar
  46. 46.
    Goncharoff, P., Saadi, S., Chang, C., Saltman, L.H., and Figurski, D.H., 1991, Structural, molecular, and genetic analysis of the kilA operon of broad-host-range plasmid RK2, J. Bacteriol. 173: 3463–3477.PubMedGoogle Scholar
  47. 47.
    Grinter, N., 1981, Analysis of chromosome mobilization using hybrids between plasmid RP4 and a fragment of bacteriophage carrying IS1, Plasmid 5: 267–276.PubMedGoogle Scholar
  48. 48.
    Guiney, D.G., 1982, Host range of conjugation and replication functions of Escherichia coli sex plasmid F lac: comparison with the broad host range plasmid RK2, J. Mol. Biol. 162: 699–703.PubMedGoogle Scholar
  49. 49.
    Guiney, D.G., Deiss, C., and Simnad, V., 1988, Location of the relaxation complex nick site within the minimal origin of transfer of RK2, Plasmid 20: 259–265.PubMedGoogle Scholar
  50. 50.
    Guiney, D.G., Deiss, C. Simnad, V, Yee, L., Pansegrau, W., and Lanka, E., 1989, Mutagenesis of the Tral core region of RK2 by using Tn5: identification of plasmid-specific transfer genes, J. Bacteriol. 171: 41004103.Google Scholar
  51. 51.
    Guiney, D.G., Hasegawa, P., and Davis, C.E., 1984, Plasmid transfer from Escherichia coli to Bacteroides fragilis: differential expression of antibiotic resistance phenotypes, Proc. Natl. Acad. Sci. USA 81: 72037206.Google Scholar
  52. 52.
    Guiney, D.G., and Helinski, D.R., 1975, Relaxation complexes of plasmid DNA and protein. III. Association of protein with the 5’ terminus of the broken DNA strand in the relaxed complex of plasmid ColE1, J. Biol. Chem. 250: 8796–8803.PubMedGoogle Scholar
  53. 53.
    Guiney, D.G., and Helinski, D.R., 1979, The DNA-protein relaxation complex of the plasmid RK2: location of the site-specific nick in the region of the proposed origin of transfer. Mol. Gen. Genet. 176: 183–189.PubMedGoogle Scholar
  54. 54.
    Guiney, D.G., and Lanka, E., 1989, Conjugative transfer of IncP plasmids, in: Promiscuous Plasmids of Gram-negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 27–56.Google Scholar
  55. 55.
    Guiney, D.G., and Yakobson, E., 1983, Location and nucleotide sequence of the transfer origin of the broad host range plasmid RK2, Proc. Natl. Acad. Sci. USA 80: 3595–3598.PubMedGoogle Scholar
  56. 56.
    Haas, D., and Reimmann, C., 1989. Use of IncP plasmids in chromosomal genetics of gram-negative bacteria, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 185–206.Google Scholar
  57. 57.
    Haas, D., Watson, J., Krieg, R., and Leisinger, T., 1981, Isolation of an Hfr donor of Pseudomonas aeruginosa PAO by insertion of the plasmid RPI into the tryptophan synthase gene, Mol. Gen. Genet. 182: 240–244.PubMedGoogle Scholar
  58. 58.
    Haring, V, and Scherzinger, E., 1989, Replication proteins of the IncQ plasmid RSF1010, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 95–124.Google Scholar
  59. 59.
    Heinemann, J.A., and Sprague, G.E. Jr., 1989, Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast, Nature 340, 205–209.PubMedGoogle Scholar
  60. 60.
    Herrera-Estrella, A., Chen, Z., Van Montagu, M., and Wang, K., 1988, VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5’ terminus of T-strand molecules, EMBO J. 7: 4055–4062.PubMedGoogle Scholar
  61. 61.
    Howard, E.A., Winsor, B.A., DeVos, G., and Zambryski, P., 1989, Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: tight association of VirD2 with the 5’ ends of T-strand, Proc. Natl. Acad. Sci. USA 86: 4017–4021.PubMedGoogle Scholar
  62. 62.
    Iyer, V.N., 1989, IncN group plasmids and their genetic systems, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 165–183.Google Scholar
  63. 63.
    Jacob, A.E., Shapiro, J.A., Yamamoto, L., Smith, D.L.., Cohen, S.N., and Berg, D., 1977, Plasmids studied in Escherichia coli and other enteric bacteria, in: DNA Insertion Elements, Plasmids and Episomes ( A.I. Bukhari, J.A. Shapiro, and S.L. Adhya, eds.), Cold Spring Harbor Laboratory, New York, pp. 607–638.Google Scholar
  64. 64.
    Jacoby, G.A., and Shapiro, J.A., 1977, Plasmids studies in Pseudomonas aeruginosa and other Pseudomonads, in: DNA Insertion Elements, Plasmids and Episomes ( A.I. Bukhari, J.A. Shapiro, and S.L. Adhya, eds.), Cold Spring Harbor Laboratory, New York, pp. 639–656.Google Scholar
  65. 65.
    Julliot, J.S., and Boistard, P., 1979, Use of RP4-prime plasmids constructed in vitro to promote a polarized transfer of the chromosome in Escherichia coli and Rhizobium meliloti, Mol. Gen. Genet. 173: 289–298.PubMedGoogle Scholar
  66. 66.
    Kim, K., and Meyer, R.J., 1989, Unidirectional transfer of broad host-range plasmid R1162 during conjugative mobilization Evidence for genetically distinct events at orz ’, J. Mol. Biol. 122: 287–300.Google Scholar
  67. 67.
    Kittell, B.L., and Helinski, D.R., 1991, Iteron inhibition of plasmid RK2 replication in vitro: evidence for intermolecular coupling of replication origins as a mechanism for RK2 replication control, Proc. Natl. Acad. Sci. USA 88: 1389–1393.PubMedGoogle Scholar
  68. 68.
    Krishnapillai, V., 1988, Molecular genetic analysis of bacterial plasmid promiscuity, FEMS Microbiol. Rev. 54: 223–238.Google Scholar
  69. 69.
    Krishnapallai, V., Nash, J., and Lanka, E., 1984, Insertion mutations in the promiscuous IncP-1 plasmid R18 which affect its host range between Pseudomonas species, Plasmid 12: 170–180.Google Scholar
  70. 70.
    Kuldau, G.A., De Vos, G., Owen, J., McCaffrey, G., and Zambryski, P, 1990, The virB operon of Agrobacterium tubefaciens pTiC58 encodes 11 open reading frames, Mol. Gen. Genet. 221: 256–266.PubMedGoogle Scholar
  71. 71.
    Lanka, E., and Barth, P.T., 1981, Plasmid RP4 specifies a deoxyribonucleic acid primase involved in its conjugal transfer and maintenance, J. Bacteriol. 148: 769–781.PubMedGoogle Scholar
  72. 72.
    Lanka, E., Fürste, J.P., Yakobson, E., and Guiney, D.G., 1985, Conserved regions at the DNA primase locus of the IncPa and IncP plasmids, Plasmid 14: 217–223.PubMedGoogle Scholar
  73. 73.
    Lanka, E., Luz, R. Króger, M., and Fürste, J.P., 1984, Plasmid RP4 encodes two forms of a DNA primase, Mol. Gen. Genet. 194: 65–72.PubMedGoogle Scholar
  74. 74.
    Lazraq, R., Clavel-Seres, S., David, H.L., and Roulland-Dussoix, D., 1990, Conjugative transfer of a shuttle plasmid for Escherichia coli to Mycobacterium smegmatis, FEMS Microbiol. Leu. 69: 135–138.Google Scholar
  75. 75.
    Leemans, J., Villarroel, R., Silva, B., Van Montagu, M., and Schell, J., 1980, Direct repetition of a 1.2 Md DNA sequence is involved in site-specific recombination by the PI plasmid R68, Gene 10: 319–328.PubMedGoogle Scholar
  76. 76.
    Lejeune, P., Mergeay, M., Van Gijsegem, F., Faelen, M., Geritis, J., and Toussaint, A., 1983, Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4::mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fiuorescens 6.2, J. Bacteriol. 155: 1015–1026.PubMedGoogle Scholar
  77. 77.
    Lessi, M., Balzer, D., Lurz, R., Waters, V, Guiney, D.G., and Lanka, E., 1992, Dissection of IncP conjugation plasmid transfer definition of the transfer region Tra2 by mobilization of the Tra2 region in trans, J. Bacteriol. 174: 2493–2500.Google Scholar
  78. 78.
    Lessi, M., Krishnapillai, V., and Schilf, W, 1991, Identification and characterization of two entry exclusion genes of the promiscuous IncP plasmid R18, Mol. Gen. Genet. 227: 120–126.Google Scholar
  79. 79.
    Llosa, M., Bolland, S., and de la Cruz, E, 1990, Structural and functional analysis of the origin of conjugal transfer of the broad-host-range IncW plasmid R388 and comparison to the related IncN plasmid R46, Mol. Gen. Genet.,in press.Google Scholar
  80. 80.
    Lyras, D., Palombo, E.A., and Stanisich, V.A., 1992, Characterization of a Tra2 function of RP1 that affects growth of Pseudomonas aeruginosa PAO and surface exclusion in Escherichia coli K12, Plasmid 27: 105–108.PubMedGoogle Scholar
  81. 81.
    Mazodier, P., Petter, R., and Thompson, C., 1989, Intergeneric conjugation between Escherichia coli and Streptomyces species, J. Bacteriol. 171: 3583–3585.PubMedGoogle Scholar
  82. 82.
    Mergeay, M., Lejeune, P., Sadouk, A., Gerits, J., and Fabry, L., 1987, Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB113, Mol. Gen. Genet. 209: 61–70.PubMedGoogle Scholar
  83. 83.
    Mergeay, M., Springael, D., and Top, E., 1990, Gene transfer in polluted soils, in: Bacterial Genetics in Natural Environments ( IC. Fry and M.J. Day, ed.), Chapman and Hall, London, New York, pp. 152–171.Google Scholar
  84. 84.
    Merryweather, A., Barth, P.T., and Wilkins, B.M., 1986, Role and specificity of plasmid RP4-encoded DNA primase in bacterial conjugation, J. Bacteriol. 167: 12–17.PubMedGoogle Scholar
  85. 85.
    Meyer, R., 1989, Site-specific recombination at oriT of plasmid R1162 in the absence of conjugative transfer, J. Bacteriol. 171: 799–806.PubMedGoogle Scholar
  86. 86.
    Miele, L., Strack, B., Kruft, V, and Lanka, E., 1991, Gene organization and nucleotide sequence of the primase region of IncP plasmids RP4 and R751, DNA Sequence 2: 145–162.PubMedGoogle Scholar
  87. 87.
    Miller, J., Lanka, E., Malamy, M., 1985, F-factor inhibition of conjugal transfer of broad-host-range plasmid RP4: requirement for the protein product of pif operon regulatory gene pifC, J. Bacteriol. 163: 1067 1073.Google Scholar
  88. 88.
    Motallebi-Veshareh, M., Balzer, D., Lanka, E., Jagura-Burdzy, G., and Thomas, C.M., 1992, Conjugative transfer functions of broad host range plasmid RK2 are coregulated with vegetative replication, Mol. Microbiol. 6: 907–920.PubMedGoogle Scholar
  89. 89.
    Nash, J., and Krishnapillai, V., 1988, Role of IncP-1 plasmid primase in conjugation between Pseudomonas species, FEMS Microbiol. Len. 49: 257–260.Google Scholar
  90. 90.
    Nayudu, M., and Holloway, B.W., 1981, Isolation and characterization of R-plasmid variants with enhanced chromosomal mobilization ability in Escherichia coli K12, Plasmid 6: 53–66.PubMedGoogle Scholar
  91. 91.
    O’Hoy, K., and Krishnapillai, V., 1985, Transposon mutagenesis of the Pseudomonas aeruginosa PAO chromosome and the isolation of high frequency of recombination donors, FEMS Microbiol. Len. 29: 299–303.Google Scholar
  92. 92.
    Olsen, R.H., Siak, J., and Gray, R.H., 1974, Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage, J. Virol. 14: 689–699.PubMedGoogle Scholar
  93. 93.
    Olsen, R.H., and Thomas, D.D., 1973, Characteristics and purification of PRR1, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistance plasmid, J. Virol. 12: 1560–1567.PubMedGoogle Scholar
  94. 94.
    Palombo, E.A., 1990, Genetic and molecular analysis of the Tra2 and Tra2-Tra3 regions of the plasmid RP1, Ph.D. dissertation, LaTrobe Univeristy, Bundoora, Australia, pp. 78–95.Google Scholar
  95. 95.
    Palombo, E.A., Yusoff, K., Stanisich, V.A., Krishnapillai, V, and Willetts, N.S., 1989, Cloning and genetic analysis of tra cistrons of the Tra2/Tra3 region of plasmid RP1, Plasmid 22: 59–69.PubMedGoogle Scholar
  96. 96.
    Pansegrau, W., Balzer, D., Kruft, V., Lurz, R., and Lanka, E., 1990, In vitro assembly of relaxosomes at the transfer origin of plasmid RP4, Proc. Natl. Acad. Sci. USA 87: 6555–6559.PubMedGoogle Scholar
  97. 97.
    Pansegrau, W., Miele, L., Lurz, R., and Lanka, E., 1987, Nucleotide sequence of the kanamycin resistance determinant of plasmid RP4: homology of other aminoglycoside 3’-phosphotransferase, Plasmid 18: 193–204.PubMedGoogle Scholar
  98. 98.
    Pansegrau, W, Ziegelin, G., and Lanka, E., 1988, The origin of conjugative IncP plasmid transfer: interaction with plasmid-encoded products and the nucleotide sequence at the relaxation site, Biochim. Biophys. Acta 951: 365–374.PubMedGoogle Scholar
  99. 99.
    Pansegrau, W., Ziegelin, G., and Lanka, E., 1990, Covalent association of the tral gene product of plasmid RP4 with the 5’-terminal nucleotide at the relaxation nick site, J. Biol. Chem. 265: 10637–10644.PubMedGoogle Scholar
  100. 100.
    Rees, C.E.D., and Wilkins, B.M., 1990, Protein transfer into the recipient cell during bacterial conjugation: studies with F and RP4, Mol. Microbiol. 4: 1199–1205.PubMedGoogle Scholar
  101. 101.
    Reimmann, C., and Haas, D., 1986, IS21 insertion in the trfA replication control gene of chromosomally integrated plasmid RP1: a property of stable Pseudomonas aeruginosa Hfr strains, Mol. Gen. Genet. 203: 511–519.PubMedGoogle Scholar
  102. 102.
    Reimmann, C., and Haas, D., 1987, Mode of replicon fusion mediated by the duplicated insertion sequence IS21, in Escherichia coli, Genetics 115: 619–625.Google Scholar
  103. 103.
    Reimann, C., and Haas, D., 1990, The istA gene of insertion sequence IS21 is essential for cleavage at the inner 3’ ends of tandemly repeated IS21 elements in vitro, EMBO J. 9: 4055–4063.Google Scholar
  104. 104.
    Reimmann, C., Moore, R., Little, S., Savioz, A., Willetts, N.S., and Haas, D., 1989, Genetic structure, function and regulation of the transposable element IS21, Mol. Gen. Genet. 215: 416–424.PubMedGoogle Scholar
  105. 105.
    Riess, G., Holloway, B.W., and Phler, A., 1980, R68.45, a plasmid with chromosome mobilizing ability (Cma) carries a tandem duplication, Genet. Res. 36: 99–109.PubMedGoogle Scholar
  106. 106.
    Riess, G., Masepohl, B., and Phler, A., 1983, Analysis of IS21-mediated mobilization of plasmid pACYC184 by R68.45 in Escherichia coli, Plasmid 10: 111–118.PubMedGoogle Scholar
  107. 107.
    Roberts, R.C., Burioni, R., and Helinski, D.R., 1990, Genetic characterization of the stabilizing functions of a region of broad-host-range plasmid RK2, J. Bacteriol. 172, 6204–6216.PubMedGoogle Scholar
  108. 108.
    Scherzinger, E., Lurz, R., Otto, S., and Dobrinski, R., 1992, In vitro cleavage of double-and single-stranded DNA by plasmid RSF1010-encoded mobilization proteins, Nucl. Acids Res. 20: 41–48.PubMedGoogle Scholar
  109. 109.
    Schilf, W, and Krishnapillai, V, 1986, Genetic analysis of insertion mutations of the promiscuous IncP-1 plasmid R18 mapping onT which affect its host range, Plasmid 15: 48–56.PubMedGoogle Scholar
  110. 110.
    Scholz, P., Haring, V., Wittmann-Liebold, B., Ashman, K., Bagdasarian, M., and Scherzinger, E., 1989, Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010, Gene 75: 271–288.PubMedGoogle Scholar
  111. 111.
    Schurter, W, and Holloway, B.W., 1987, Interactions between the transposable element IS21 on R68.45 and Tn7 in Pseudomonas aeruginosa PAO, Plasmid 17: 61–64.PubMedGoogle Scholar
  112. 112.
    Shoemaker, N., Guthrie, E., Salyers, A., and Gardener, J., 1985, Evidence that the clindamycinerythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element, J. Bacteriol. 162: 626–632.PubMedGoogle Scholar
  113. 113.
    Simon, R., 1984, High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon, Mol. Gen. Genet. 196: 413–420.PubMedGoogle Scholar
  114. 114.
    Smith, C.A., and Thomas, C.M., 1985, Comparison of the nucleotide sequences of the vegetative replication origins of broad host range IncP plasmids R751 and RK2 reveals conserved features of probably functional significance, Nucl. Acids Res. 13: 557–572.PubMedGoogle Scholar
  115. 115.
    Stachel, S.E., and Zambryski, P., 1986, Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation, Cell 47: 155–157.Google Scholar
  116. 116.
    Stanisich, V.A., 1974, The properties and host range of male-specific bacteriophages of Pseudomonas aeruginosa, J. Gen. Microbiol. 84: 332–342.PubMedGoogle Scholar
  117. 117.
    Tanimoto, K., and Iino, T., 1983, Transfer inhibition of RP4 by F-factor, Mol. Gen. Genet. 192: 104–109.PubMedGoogle Scholar
  118. 118.
    Tanimoto, K., lino, T., Ohtsubo, H., and Ohtsubo, E., 1985, Identification of a gene, tir, of R100, functionally homologous to the F3 gene of F in the inhibition of RP4 transfer, Mol. Gen. Genet. 198: 356–357.PubMedGoogle Scholar
  119. 119.
    Thrdiff, G., and Grant, R.B., 1983, Transfer of plasmids from Escherichia coli to Pseudomonas aeruginosa: characterization of a Pseudomonas aeruginosa mutant with enhanced recipient ability for enterobacterial plasmids, Antimicrob. Ag. Chemother. 24: 201–208.Google Scholar
  120. 120.
    Thomas, C.M., and Helinski, D.R., 1989, Vegetative replication and stable inheritance of IncP plasmids, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 1–25.Google Scholar
  121. 121.
    Thomas, C.M., Theophilus, B.D., Johnston, L., Jagura-Burdzy, G. Schilf, W., Lurz, R., and Lanka, E., 1990, Identification of a seventh operon on plasmid RK2 regulated by the korA gene product, Gene 89: 29–35.Google Scholar
  122. 122.
    Thompson, D.V., Melchers, L.S., Idler, K.B., Schilperoort, R.A., and Hooykaas, P.J.J., 1988, Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon, Nucl. Acids Res. 16: 46214636.Google Scholar
  123. 123.
    Top, E., Mergeay, M., Springael, D., and Verstraete, W, 1990, Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples, Appl. Environ. Microbiol. 56: 2471–2479.PubMedGoogle Scholar
  124. 124.
    Trieu-Cuot, P., Carlier, C., and Courvalin, P., 1988, Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli, J. Bacteriol. 170: 4388–4391.PubMedGoogle Scholar
  125. 125.
    Trieu-Cuot, P., Carlier, C., Martin, P., and Courvalin, E, 1987, Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria, FEMS Microbiol. Lett. 48: 289–294.Google Scholar
  126. 126.
    Valentine, C.R., and Kado, C.I., 1989, Molecular genetics of IncW plasmids, in: Promiscuous Plasmids of Gram Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 125–163.Google Scholar
  127. 127.
    Van Gijsegem, F., Toussaint, A., 1982, Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae and Proteus mirabilis, Plasmid 7: 30–44.PubMedGoogle Scholar
  128. 128.
    Villarroel, R., Hedges, R.W., Maenhaut, R., Leemans, J., Engler, G., Van Montagu, M., and Schell, J., 1983, Heteroduplex analysis of P-plasmid evolution: the role of insertion and deletion of transposable elements, Mol. Gen. Genet. 189: 390–399.PubMedGoogle Scholar
  129. 129.
    Walter, E.G., Thomas, C.M., Ibbotson, J.P., and Taylor, D.E., 1991, Transcriptional analysis, translational analysis, and sequence of the kiiA-tellurite resistance region of plasmid RK25er, J. Bacteriol. 173: 1111–1119.PubMedGoogle Scholar
  130. 130.
    Wang, K., Stachel, S.E., Timmerman, B., Van Montagu, M., and Zambryski, P.C., 1987, Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression, Science 235: 587–591.PubMedGoogle Scholar
  131. 131.
    Ward, J.E., Akiyoshi, D., Regier, D., Dana, A., Gordon, M.P., and Nester, E.W., 1988, Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid, J. Biol. Chem. 263: 5804–5814.PubMedGoogle Scholar
  132. 132.
    Waters, V.L., Hirata, K., Pansegrau, W, Lanka, E., and Guiney, D.G., 1991, Sequence identity in the nick regions of IncP plasmid transfer origins and T-DNA borders of Agrobacterium Ti plasmids, Proc. Natl. Acad. Sci. USA 88: 1456–1460.PubMedGoogle Scholar
  133. 133.
    Willens, N.S., and Crowther, C., 1981, Mobilization of the nonconjugative IncQ plasmid RSFI010, Genet. Res. 37: 311–316.Google Scholar
  134. 134.
    Willetts, N.S., Crowther, C., and Holloway, B.W., 1981, The insertion sequence IS21 of R68.45 and the molecular basis for mobilization of the bacterial chromosome, Plasmid 6: 30–52.PubMedGoogle Scholar
  135. 135.
    Williams, D.R., Young, D.I., and Young, M., 1990, Conjugative plasmid transfer form Escherichia coli to Clostridium acetobutylicum, J. Gen. Microbiol. 136: 819–826.PubMedGoogle Scholar
  136. 136.
    Winans, S.C., and Walker, G.C., 1985a, Conjugal transfer system of the IncN plasmid pKM101, J. Bacreriol. 161: 402–410.Google Scholar
  137. 137.
    Winans, S.C., and Walker, G.C., 1985b, Entry exclusion determinants of IncN plasmid pKM101, J. Bacreriol. 161: 411–416.Google Scholar
  138. 138.
    Winans, S.C., and Walker, G.C., 1985c, Fertility inhibition of RP1 by IncN plasmid pKM101, J. Bacteriol. 161: 425–427.PubMedGoogle Scholar
  139. 139.
    Wolk, C.P., Vonshak, A., Kehoe, P., and Elhai, J., 1984, Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria, Proc. Natl. Acad. Sci. USA 81: 1561–1565.PubMedGoogle Scholar
  140. 140.
    Yakobson, E., Deiss, C., Hirata, K., and Guiney, D.G., 1990, Initiation of DNA synthesis in the transfer origin region of RK2 by the plasmid-encoded primase: detection using defective M13 phage, Plasmid 23: 80–84.PubMedGoogle Scholar
  141. 141.
    Yakobson, E., and Guiney, D., 1983, Homology in the transfer origins of broad-host-range IncP plasmids: definition of two subgroups of P-plasmids, Mol. Gen. Genet. 192: 436–438.PubMedGoogle Scholar
  142. 142.
    Yakobson, E., and Guiney, D.G., 1984, Conjugal transfer of bacterial chromosomes mediated by the RK2 plasmid transfer origin cloned into transposon Tn5, J. Bacreriol. 160: 451–453.Google Scholar
  143. 143.
    Yanofsky, M.F., Porter, S.G., Young, C., Albright, L.M., Gordon, M.P., and Nester, E.W, 1986, The virD operon of Agrobacterium tumefaciens encode a site-specific endonuclease, Cell 47: 471–477.PubMedGoogle Scholar
  144. 144.
    Young, C., and Nester, E.W., 1988, Association of the virD2 protein with the 5’ end of T-strands in Agrobacterium tumefaciens, J. Bacteriol. 170: 3367–3374.PubMedGoogle Scholar
  145. 145.
    Yusoff, K., and Stanisich, V, 1984, Location of a function on RP1 that fertility inhibits IncW plasmids, Plasmid 11: 178–181.PubMedGoogle Scholar
  146. 146.
    Zambryski, P., 1988, Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells, Annu. Rev. Genet. 22: 1–30.PubMedGoogle Scholar
  147. 147.
    Ziegelin, G., Fürste, J.P., and Lanka, E., 1989, TraJ protein of plasmid RP4 binds to a 19-base pair invert sequence repetition within the transfer origin, J. Biol. Chem. 264: 11989–11994.PubMedGoogle Scholar
  148. 148.
    Ziegelin, G., Pansegrau, W, Strack, B., Balzer, D., Kröger, M., Kruft, V., and Lanka, E., 1990, Nucleotide sequence and organization of genes flanking the transfer origin of promiscuous plasmid RP4, DNA Sequence 1: 303–327.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Donald G. Guiney
    • 1
  1. 1.Department of Medicine and Center for Molecular GeneticsUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations