Skip to main content

Broad Host Range Conjugative and Mobilizable Plasmids in Gram-Negative Bacteria

  • Chapter
Bacterial Conjugation

Abstract

Bacterial conjugation mediates genetic exchange not only between cells of the same species but also between members of distantly related or even unrelated genera. These transfer events have been demonstrated among diverse members within both the gram-positive and gram-negative groups of organisms. Recently, experiments using natural conjugation systems have demonstrated gene transfer between gram-positive and gram-negative organisms, and even from bacteria to the lower eukaryote Saccharomyces cerevisiae (59, 124, 125). The significance of this promiscuous gene transfer is that it provides a mechanism for the availability of a huge pool of genes for bacterial evolution. A dramatic example of the ability of individual bacteria to acquire genes of selective value is the widespread development of resistance to antibiotics used in clinical medicine and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, L.M., Yanofsky, M.F., Leroux, B. Ma, D., and Nester, E.W., 1987, Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA, J. Bacteriol. 169: 1046–1055.

    CAS  Google Scholar 

  2. Al-Doori, Z., Watson, M., and Scaife, J., 1982, The orientation of transfer of the plasmid RP4, Genet. Res. Camb. 39: 99–103.

    CAS  Google Scholar 

  3. Ayres, E., Saadi, S., Schreiner, H.C., Thomson, V.J., and Figurski, D.H., 1991, Differentiation of lethal and nonlethal, kor-regulated functions in the ki1B region of broad host-range plasmid RK2, Plasmid 25: 53–63.

    PubMed  CAS  Google Scholar 

  4. Barlett, M., Rickson, M.J., and Meyer, R.J., 1990, Recombination between directly repeated origins of conjugative transfer cloned in M13 bacteriophage DNA models ligation of the transferred plasmid strand, Nucl. Acids Res. 18: 3579–3586.

    PubMed  CAS  Google Scholar 

  5. Barsomian, G., and Lessie, T.G., 1986, Replicon fusions promoted by insertion sequences on Pseudomonas cepacia plasmid pTGL6, Mol. Gen. Genet. 204: 273–280.

    PubMed  CAS  Google Scholar 

  6. Barth, P.T., 1979, Plasmid RP4, with Escherichia coli DNA inserted in vitro, mediates chromosomal transfer, Plasmid 2: 130–136.

    PubMed  CAS  Google Scholar 

  7. Barth, P.T., 1979, RP4 and R300B as wide-host-range plasmid cloning vehicles, in: Plasmids of Medical, Environmental and Commercial Importance (K.N. Timmis and A. Pühler, eds. ), Elsevier/North-Holland Biomedical Press, pp. 399–410.

    Google Scholar 

  8. Barth, P.T., and Grinter, N.J., 1977, Map of plasmid RP4 derived by insertion of transposon C, J. Mol. Biol. 113: 455–474.

    PubMed  CAS  Google Scholar 

  9. Barth, PT, Grinter, N.J., and Bradley, D.E., 1978, Conjugal transfer system of plasmid RP4: analysis by transposon 7 insertion, J. Bacteriol. 133: 43–52.

    PubMed  CAS  Google Scholar 

  10. Beck, Y., Coetzee, W.F., and Coetzee, J.N., 1982, In vitro constructed RP4-prime plasmids mediate oriented mobilization of the Proteus morganii chromosome, J. Gen. Microbiol. 128: 1163–1169.

    PubMed  CAS  Google Scholar 

  11. Beninger, P.R., Chikami, G., Tanabe, K., Roudier, C., Fierer, J., and Guiney, D.G., 1988, Physical and genetic mapping of the Salmonella dublin virulence plasmid pSDL2, J. Clin. Invest. 81: 1341–1347.

    PubMed  CAS  Google Scholar 

  12. Bhattacharjee, M.K., and Meyer, R.J., 1991, A segment of a plasmid gene required for conjugal transfer encodes a site-specific, single-strand DNA endonuclease and ligase, Nucl. Acids Res. 19: 1129–1137.

    PubMed  CAS  Google Scholar 

  13. Binns, A. N., and Tomashow, M.F., 1988, Cell biology of Agrobacterium infection and transformation of plants, Ann. Rev. Microbiol. 42: 575–606.

    CAS  Google Scholar 

  14. Bolland, S., Llosa, M., Avila, P, and de la Cruz, E, 1990, General organization of the conjugal transfer genes of the IncW plasmid R388 and interactions between R388 and IncN and IncP plasmids, J. Bacteriol. 172: 5795–5802.

    PubMed  CAS  Google Scholar 

  15. Boulnois, G.J., Varley, J.M., Sharpe, G.S., and Franklin, F.C.H., 1985, Transposon donor plasmids, based on COIIB-p9, for use in Pseudomonas putida and a variety of other gram negative bacteria, Mol. Gen. Genet. 200: 65–67.

    PubMed  CAS  Google Scholar 

  16. Bowen, A.R.S.G., and Pemberton, J.M., 1985, Mercury resistance transposon Tn813 mediates chromosome transfer in Rhodopseudomonas sphaeroides and intergeneric transfer of pBR322, in: Plasmids in Bacteria ( D.R. Helinski, S.N. Cohen, D.B. Clewell, D.B. Jackson, and A. Hollaender, eds), Plenum Press, New York, pp. 105–115.

    Google Scholar 

  17. Bradley, D.E., 1974, Adsorption of bacteriophages specific for Pseudomonas aeruginosa R factors RP1 and RI822, Biochim. Biophys. Res. Commun. 57: 893–900.

    CAS  Google Scholar 

  18. Bradley, D.E., 1980, Morphological and serological relationships of conjugative pili, Plasmid 4: 155–169.

    PubMed  CAS  Google Scholar 

  19. Bradley, D.E., and Rutherford, E.L., 1975, Basic characterization of a lipid-containing bacteriophage specific for plasmids of the P, N and W compatibility groups, Can. J. Microbiol. 21: 152–163.

    CAS  Google Scholar 

  20. Bradley, D.E., Taylor, D.E., and Cohen, D.R., 1980, Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12, J. Bacteriol. 143: 1466–1470.

    PubMed  CAS  Google Scholar 

  21. Brasch, M.A., and Meyer, R.J., 1986, Genetic organization of plasmid R1162 DNA involved in conjugative mobilization, J. Bacteriol. 167: 703–710.

    PubMed  CAS  Google Scholar 

  22. Brasch, M.A., and Meyer, R. J., 1987, A 38 base-pair segment of DNA is required in cis for conjugative mobilization of broad host-range plasmid R1162, J. Mol. Biol. 198: 361–369.

    PubMed  CAS  Google Scholar 

  23. Breton, A.M., Jaona, S., and Guespin-Michel, J., 1985, Transfer of plasmid RP4 to Myxococcusxanthus and evidence for its integration into the chromosome, J. Bacteriol. 161: 523–528.

    PubMed  CAS  Google Scholar 

  24. Brown, A.C., and Willetts, N.S., 1981, A physical and genetic map of the IncN plasmid R46, Plasmid 5: 188–201.

    PubMed  CAS  Google Scholar 

  25. Buchanan-Wollaston, V, Passiatore, J.E., and Cannon, F., 1987, The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants, Nature, London, 328: 172–175.

    CAS  Google Scholar 

  26. Burkardt, H.J., Riess, G., and Pühler, A.,1979, Relationships of group Pl plasmids revealed by heteroduplex experiments: RP1, RP4, R68 and RK2 are identical, J. Gen. Microbiol. 114: 341–348.

    Google Scholar 

  27. Chileami, G.K., Fierer, J., Guiney, D.G., 1985, Plasmid-mediated virulence in Salmonella dublin demonstrated by use of a Tn5-oriT construct, Infect. Immun. 50: 420–422.

    Google Scholar 

  28. Christie, P.J., Ward, J.E. Jr., Gordon, M.P., and Nester, E.W., 1989, A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity, Proc. Natl. Acad. Sci. USA 86: 9677–9681.

    PubMed  CAS  Google Scholar 

  29. Coupland, G.M., Brown, A.M.C., and Willetts, N.S., 1987, The origin of transfer (onT) of the conjugative plasmid R46: characterization of deletion analysis and DNA sequencing, Mol. Gen. Genet. 208: 219–225.

    PubMed  CAS  Google Scholar 

  30. Courturier, M., Bex, E, Bergquist, P.L., and Maas, W.K., 1988, Identification and classification of bacterial plasmids, Microbiol. Rev. 52: 375–395.

    Google Scholar 

  31. Dana, N., and Hedges, R.W., 1972, Host ranges of R factor, J. Gen. Microbiol. 70: 453–460.

    Google Scholar 

  32. Depicker, A., de Block, M., Inze, D., van Montagu, M., and Schell, J., 1980, IS-like element IS8 in RP4 plasmid and its involvement in cointegration, Gene 10: 329–338.

    PubMed  CAS  Google Scholar 

  33. Derbyshire, K.M., Hatfull, G., and Willetts, N., 1987, Mobilization of the non-conjugative plasmid RSF1010: a genetic and DNA sequence analysis of the mobilization region, Mol. Gen. Genet. 206: 161–168.

    PubMed  CAS  Google Scholar 

  34. Derbyshire, K.M., and Willens, N.S., 1987, Mobilization of the nonconjugative plasmid RSF1010: a genetic analysis of its origin of transfer, Mol. Gen. Genet. 206: 154–160.

    PubMed  CAS  Google Scholar 

  35. Drolet, M., Zanga, P, and Lau, P.C.K., 1990, The mobilization and origin of transfer regions of a thiobacillus ferrooxidans plasmid: relatedness to plasmids RSF1010 and pSC101, Mol. Microbiol. 4:1381I391.

    Google Scholar 

  36. Durland, R. H., and Helinski, D.R., 1990, Replication of the broad-host-range plasmid RK2: direct measurement of intracellular concentrations of essential TrfA proteins and their effect on plasmid copy number, J. Bacteriol. 172: 3849–3858.

    PubMed  CAS  Google Scholar 

  37. Durrenberger, F., Crameri, A., Hohn, B., and Koukolilova-Nocola, Z., 1989, Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation, Proc. Natl. Acad. Sci. USA 886: 9154–9158.

    Google Scholar 

  38. Figurski, D.H., and Helinski, D., 1979, Replication of an origin containing derivative of plasmid RK2 dependent on ‘a plasmid function in trans, Proc. Natl. Acad. Sci. USA 76: 1648–1652.

    PubMed  CAS  Google Scholar 

  39. Figurski, D., Meyer, R., Miller, D.S.> Helinski, D.R., 1976, Generation in vitro of deletions in the broadhost-range plasmid RK2 using phage Mu insertions and a restriction endonuclease, Gene 1: 107–119.

    Google Scholar 

  40. Figurski, D.H., Pohlman, R.F., Bechhofer, D. H., Prince, A.S., and Kelton, C.A., 1982, Broad host range plasmid RK2 encodes multiple kil genes potentially lethal to Escherichia coli host cells, Proc. Natl. Acad. Sci. USA 79: 1935–1939.

    PubMed  CAS  Google Scholar 

  41. Finger, J., and Krishnapillai, V., 1980, Host range, entry exclusion, and incompatibility of Pseudomonas FP plasmids, Plasmid 3: 332–342.

    PubMed  CAS  Google Scholar 

  42. Fong, S.T., and Stanisich, V.A., 1989, Location and characterization of two functions on RP1 that inhibit the fertility of the IncW plasmid R388, J. Gen. Microbiol. 135: 499–502.

    PubMed  CAS  Google Scholar 

  43. Frey, J., and Bagdasarian, M., 1989, The molecular biology of IncQ plasmids, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 79–94.

    Google Scholar 

  44. Fürste, J.P., Pansegrau, W., Ziegelin, G., Kröger, M., and Lanka, E., 1989, Conjugative transfer of promiscuous IncP plasmids: interaction of plasmid-encoded products with the transfer origin, Proc. Natl. Acad. Sci. USA 86: 1771–1775.

    PubMed  Google Scholar 

  45. Gerlitz, M., Hrabak, O., and Schwab, H., 1990, Partitioning of broad host-range plasmid RP4 is a complex system involving site-specific recombination, J. Bacteriol. 172: 6194–6203.

    PubMed  CAS  Google Scholar 

  46. Goncharoff, P., Saadi, S., Chang, C., Saltman, L.H., and Figurski, D.H., 1991, Structural, molecular, and genetic analysis of the kilA operon of broad-host-range plasmid RK2, J. Bacteriol. 173: 3463–3477.

    PubMed  CAS  Google Scholar 

  47. Grinter, N., 1981, Analysis of chromosome mobilization using hybrids between plasmid RP4 and a fragment of bacteriophage carrying IS1, Plasmid 5: 267–276.

    PubMed  CAS  Google Scholar 

  48. Guiney, D.G., 1982, Host range of conjugation and replication functions of Escherichia coli sex plasmid F lac: comparison with the broad host range plasmid RK2, J. Mol. Biol. 162: 699–703.

    PubMed  CAS  Google Scholar 

  49. Guiney, D.G., Deiss, C., and Simnad, V., 1988, Location of the relaxation complex nick site within the minimal origin of transfer of RK2, Plasmid 20: 259–265.

    PubMed  CAS  Google Scholar 

  50. Guiney, D.G., Deiss, C. Simnad, V, Yee, L., Pansegrau, W., and Lanka, E., 1989, Mutagenesis of the Tral core region of RK2 by using Tn5: identification of plasmid-specific transfer genes, J. Bacteriol. 171: 41004103.

    Google Scholar 

  51. Guiney, D.G., Hasegawa, P., and Davis, C.E., 1984, Plasmid transfer from Escherichia coli to Bacteroides fragilis: differential expression of antibiotic resistance phenotypes, Proc. Natl. Acad. Sci. USA 81: 72037206.

    Google Scholar 

  52. Guiney, D.G., and Helinski, D.R., 1975, Relaxation complexes of plasmid DNA and protein. III. Association of protein with the 5’ terminus of the broken DNA strand in the relaxed complex of plasmid ColE1, J. Biol. Chem. 250: 8796–8803.

    PubMed  CAS  Google Scholar 

  53. Guiney, D.G., and Helinski, D.R., 1979, The DNA-protein relaxation complex of the plasmid RK2: location of the site-specific nick in the region of the proposed origin of transfer. Mol. Gen. Genet. 176: 183–189.

    PubMed  CAS  Google Scholar 

  54. Guiney, D.G., and Lanka, E., 1989, Conjugative transfer of IncP plasmids, in: Promiscuous Plasmids of Gram-negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 27–56.

    Google Scholar 

  55. Guiney, D.G., and Yakobson, E., 1983, Location and nucleotide sequence of the transfer origin of the broad host range plasmid RK2, Proc. Natl. Acad. Sci. USA 80: 3595–3598.

    PubMed  CAS  Google Scholar 

  56. Haas, D., and Reimmann, C., 1989. Use of IncP plasmids in chromosomal genetics of gram-negative bacteria, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 185–206.

    Google Scholar 

  57. Haas, D., Watson, J., Krieg, R., and Leisinger, T., 1981, Isolation of an Hfr donor of Pseudomonas aeruginosa PAO by insertion of the plasmid RPI into the tryptophan synthase gene, Mol. Gen. Genet. 182: 240–244.

    PubMed  CAS  Google Scholar 

  58. Haring, V, and Scherzinger, E., 1989, Replication proteins of the IncQ plasmid RSF1010, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 95–124.

    Google Scholar 

  59. Heinemann, J.A., and Sprague, G.E. Jr., 1989, Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast, Nature 340, 205–209.

    PubMed  CAS  Google Scholar 

  60. Herrera-Estrella, A., Chen, Z., Van Montagu, M., and Wang, K., 1988, VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5’ terminus of T-strand molecules, EMBO J. 7: 4055–4062.

    PubMed  CAS  Google Scholar 

  61. Howard, E.A., Winsor, B.A., DeVos, G., and Zambryski, P., 1989, Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: tight association of VirD2 with the 5’ ends of T-strand, Proc. Natl. Acad. Sci. USA 86: 4017–4021.

    PubMed  CAS  Google Scholar 

  62. Iyer, V.N., 1989, IncN group plasmids and their genetic systems, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 165–183.

    Google Scholar 

  63. Jacob, A.E., Shapiro, J.A., Yamamoto, L., Smith, D.L.., Cohen, S.N., and Berg, D., 1977, Plasmids studied in Escherichia coli and other enteric bacteria, in: DNA Insertion Elements, Plasmids and Episomes ( A.I. Bukhari, J.A. Shapiro, and S.L. Adhya, eds.), Cold Spring Harbor Laboratory, New York, pp. 607–638.

    Google Scholar 

  64. Jacoby, G.A., and Shapiro, J.A., 1977, Plasmids studies in Pseudomonas aeruginosa and other Pseudomonads, in: DNA Insertion Elements, Plasmids and Episomes ( A.I. Bukhari, J.A. Shapiro, and S.L. Adhya, eds.), Cold Spring Harbor Laboratory, New York, pp. 639–656.

    Google Scholar 

  65. Julliot, J.S., and Boistard, P., 1979, Use of RP4-prime plasmids constructed in vitro to promote a polarized transfer of the chromosome in Escherichia coli and Rhizobium meliloti, Mol. Gen. Genet. 173: 289–298.

    PubMed  CAS  Google Scholar 

  66. Kim, K., and Meyer, R.J., 1989, Unidirectional transfer of broad host-range plasmid R1162 during conjugative mobilization Evidence for genetically distinct events at orz ’, J. Mol. Biol. 122: 287–300.

    Google Scholar 

  67. Kittell, B.L., and Helinski, D.R., 1991, Iteron inhibition of plasmid RK2 replication in vitro: evidence for intermolecular coupling of replication origins as a mechanism for RK2 replication control, Proc. Natl. Acad. Sci. USA 88: 1389–1393.

    PubMed  CAS  Google Scholar 

  68. Krishnapillai, V., 1988, Molecular genetic analysis of bacterial plasmid promiscuity, FEMS Microbiol. Rev. 54: 223–238.

    CAS  Google Scholar 

  69. Krishnapallai, V., Nash, J., and Lanka, E., 1984, Insertion mutations in the promiscuous IncP-1 plasmid R18 which affect its host range between Pseudomonas species, Plasmid 12: 170–180.

    Google Scholar 

  70. Kuldau, G.A., De Vos, G., Owen, J., McCaffrey, G., and Zambryski, P, 1990, The virB operon of Agrobacterium tubefaciens pTiC58 encodes 11 open reading frames, Mol. Gen. Genet. 221: 256–266.

    PubMed  CAS  Google Scholar 

  71. Lanka, E., and Barth, P.T., 1981, Plasmid RP4 specifies a deoxyribonucleic acid primase involved in its conjugal transfer and maintenance, J. Bacteriol. 148: 769–781.

    PubMed  CAS  Google Scholar 

  72. Lanka, E., Fürste, J.P., Yakobson, E., and Guiney, D.G., 1985, Conserved regions at the DNA primase locus of the IncPa and IncP plasmids, Plasmid 14: 217–223.

    PubMed  CAS  Google Scholar 

  73. Lanka, E., Luz, R. Króger, M., and Fürste, J.P., 1984, Plasmid RP4 encodes two forms of a DNA primase, Mol. Gen. Genet. 194: 65–72.

    PubMed  CAS  Google Scholar 

  74. Lazraq, R., Clavel-Seres, S., David, H.L., and Roulland-Dussoix, D., 1990, Conjugative transfer of a shuttle plasmid for Escherichia coli to Mycobacterium smegmatis, FEMS Microbiol. Leu. 69: 135–138.

    CAS  Google Scholar 

  75. Leemans, J., Villarroel, R., Silva, B., Van Montagu, M., and Schell, J., 1980, Direct repetition of a 1.2 Md DNA sequence is involved in site-specific recombination by the PI plasmid R68, Gene 10: 319–328.

    PubMed  CAS  Google Scholar 

  76. Lejeune, P., Mergeay, M., Van Gijsegem, F., Faelen, M., Geritis, J., and Toussaint, A., 1983, Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4::mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fiuorescens 6.2, J. Bacteriol. 155: 1015–1026.

    PubMed  CAS  Google Scholar 

  77. Lessi, M., Balzer, D., Lurz, R., Waters, V, Guiney, D.G., and Lanka, E., 1992, Dissection of IncP conjugation plasmid transfer definition of the transfer region Tra2 by mobilization of the Tra2 region in trans, J. Bacteriol. 174: 2493–2500.

    Google Scholar 

  78. Lessi, M., Krishnapillai, V., and Schilf, W, 1991, Identification and characterization of two entry exclusion genes of the promiscuous IncP plasmid R18, Mol. Gen. Genet. 227: 120–126.

    Google Scholar 

  79. Llosa, M., Bolland, S., and de la Cruz, E, 1990, Structural and functional analysis of the origin of conjugal transfer of the broad-host-range IncW plasmid R388 and comparison to the related IncN plasmid R46, Mol. Gen. Genet.,in press.

    Google Scholar 

  80. Lyras, D., Palombo, E.A., and Stanisich, V.A., 1992, Characterization of a Tra2 function of RP1 that affects growth of Pseudomonas aeruginosa PAO and surface exclusion in Escherichia coli K12, Plasmid 27: 105–108.

    PubMed  CAS  Google Scholar 

  81. Mazodier, P., Petter, R., and Thompson, C., 1989, Intergeneric conjugation between Escherichia coli and Streptomyces species, J. Bacteriol. 171: 3583–3585.

    PubMed  CAS  Google Scholar 

  82. Mergeay, M., Lejeune, P., Sadouk, A., Gerits, J., and Fabry, L., 1987, Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB113, Mol. Gen. Genet. 209: 61–70.

    PubMed  CAS  Google Scholar 

  83. Mergeay, M., Springael, D., and Top, E., 1990, Gene transfer in polluted soils, in: Bacterial Genetics in Natural Environments ( IC. Fry and M.J. Day, ed.), Chapman and Hall, London, New York, pp. 152–171.

    Google Scholar 

  84. Merryweather, A., Barth, P.T., and Wilkins, B.M., 1986, Role and specificity of plasmid RP4-encoded DNA primase in bacterial conjugation, J. Bacteriol. 167: 12–17.

    PubMed  CAS  Google Scholar 

  85. Meyer, R., 1989, Site-specific recombination at oriT of plasmid R1162 in the absence of conjugative transfer, J. Bacteriol. 171: 799–806.

    PubMed  CAS  Google Scholar 

  86. Miele, L., Strack, B., Kruft, V, and Lanka, E., 1991, Gene organization and nucleotide sequence of the primase region of IncP plasmids RP4 and R751, DNA Sequence 2: 145–162.

    PubMed  CAS  Google Scholar 

  87. Miller, J., Lanka, E., Malamy, M., 1985, F-factor inhibition of conjugal transfer of broad-host-range plasmid RP4: requirement for the protein product of pif operon regulatory gene pifC, J. Bacteriol. 163: 1067 1073.

    Google Scholar 

  88. Motallebi-Veshareh, M., Balzer, D., Lanka, E., Jagura-Burdzy, G., and Thomas, C.M., 1992, Conjugative transfer functions of broad host range plasmid RK2 are coregulated with vegetative replication, Mol. Microbiol. 6: 907–920.

    PubMed  CAS  Google Scholar 

  89. Nash, J., and Krishnapillai, V., 1988, Role of IncP-1 plasmid primase in conjugation between Pseudomonas species, FEMS Microbiol. Len. 49: 257–260.

    CAS  Google Scholar 

  90. Nayudu, M., and Holloway, B.W., 1981, Isolation and characterization of R-plasmid variants with enhanced chromosomal mobilization ability in Escherichia coli K12, Plasmid 6: 53–66.

    PubMed  CAS  Google Scholar 

  91. O’Hoy, K., and Krishnapillai, V., 1985, Transposon mutagenesis of the Pseudomonas aeruginosa PAO chromosome and the isolation of high frequency of recombination donors, FEMS Microbiol. Len. 29: 299–303.

    Google Scholar 

  92. Olsen, R.H., Siak, J., and Gray, R.H., 1974, Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage, J. Virol. 14: 689–699.

    PubMed  CAS  Google Scholar 

  93. Olsen, R.H., and Thomas, D.D., 1973, Characteristics and purification of PRR1, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistance plasmid, J. Virol. 12: 1560–1567.

    PubMed  CAS  Google Scholar 

  94. Palombo, E.A., 1990, Genetic and molecular analysis of the Tra2 and Tra2-Tra3 regions of the plasmid RP1, Ph.D. dissertation, LaTrobe Univeristy, Bundoora, Australia, pp. 78–95.

    Google Scholar 

  95. Palombo, E.A., Yusoff, K., Stanisich, V.A., Krishnapillai, V, and Willetts, N.S., 1989, Cloning and genetic analysis of tra cistrons of the Tra2/Tra3 region of plasmid RP1, Plasmid 22: 59–69.

    PubMed  CAS  Google Scholar 

  96. Pansegrau, W., Balzer, D., Kruft, V., Lurz, R., and Lanka, E., 1990, In vitro assembly of relaxosomes at the transfer origin of plasmid RP4, Proc. Natl. Acad. Sci. USA 87: 6555–6559.

    PubMed  CAS  Google Scholar 

  97. Pansegrau, W., Miele, L., Lurz, R., and Lanka, E., 1987, Nucleotide sequence of the kanamycin resistance determinant of plasmid RP4: homology of other aminoglycoside 3’-phosphotransferase, Plasmid 18: 193–204.

    PubMed  CAS  Google Scholar 

  98. Pansegrau, W, Ziegelin, G., and Lanka, E., 1988, The origin of conjugative IncP plasmid transfer: interaction with plasmid-encoded products and the nucleotide sequence at the relaxation site, Biochim. Biophys. Acta 951: 365–374.

    PubMed  CAS  Google Scholar 

  99. Pansegrau, W., Ziegelin, G., and Lanka, E., 1990, Covalent association of the tral gene product of plasmid RP4 with the 5’-terminal nucleotide at the relaxation nick site, J. Biol. Chem. 265: 10637–10644.

    PubMed  CAS  Google Scholar 

  100. Rees, C.E.D., and Wilkins, B.M., 1990, Protein transfer into the recipient cell during bacterial conjugation: studies with F and RP4, Mol. Microbiol. 4: 1199–1205.

    PubMed  CAS  Google Scholar 

  101. Reimmann, C., and Haas, D., 1986, IS21 insertion in the trfA replication control gene of chromosomally integrated plasmid RP1: a property of stable Pseudomonas aeruginosa Hfr strains, Mol. Gen. Genet. 203: 511–519.

    PubMed  CAS  Google Scholar 

  102. Reimmann, C., and Haas, D., 1987, Mode of replicon fusion mediated by the duplicated insertion sequence IS21, in Escherichia coli, Genetics 115: 619–625.

    Google Scholar 

  103. Reimann, C., and Haas, D., 1990, The istA gene of insertion sequence IS21 is essential for cleavage at the inner 3’ ends of tandemly repeated IS21 elements in vitro, EMBO J. 9: 4055–4063.

    Google Scholar 

  104. Reimmann, C., Moore, R., Little, S., Savioz, A., Willetts, N.S., and Haas, D., 1989, Genetic structure, function and regulation of the transposable element IS21, Mol. Gen. Genet. 215: 416–424.

    PubMed  CAS  Google Scholar 

  105. Riess, G., Holloway, B.W., and Phler, A., 1980, R68.45, a plasmid with chromosome mobilizing ability (Cma) carries a tandem duplication, Genet. Res. 36: 99–109.

    PubMed  CAS  Google Scholar 

  106. Riess, G., Masepohl, B., and Phler, A., 1983, Analysis of IS21-mediated mobilization of plasmid pACYC184 by R68.45 in Escherichia coli, Plasmid 10: 111–118.

    PubMed  CAS  Google Scholar 

  107. Roberts, R.C., Burioni, R., and Helinski, D.R., 1990, Genetic characterization of the stabilizing functions of a region of broad-host-range plasmid RK2, J. Bacteriol. 172, 6204–6216.

    PubMed  CAS  Google Scholar 

  108. Scherzinger, E., Lurz, R., Otto, S., and Dobrinski, R., 1992, In vitro cleavage of double-and single-stranded DNA by plasmid RSF1010-encoded mobilization proteins, Nucl. Acids Res. 20: 41–48.

    PubMed  CAS  Google Scholar 

  109. Schilf, W, and Krishnapillai, V, 1986, Genetic analysis of insertion mutations of the promiscuous IncP-1 plasmid R18 mapping onT which affect its host range, Plasmid 15: 48–56.

    PubMed  CAS  Google Scholar 

  110. Scholz, P., Haring, V., Wittmann-Liebold, B., Ashman, K., Bagdasarian, M., and Scherzinger, E., 1989, Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010, Gene 75: 271–288.

    PubMed  CAS  Google Scholar 

  111. Schurter, W, and Holloway, B.W., 1987, Interactions between the transposable element IS21 on R68.45 and Tn7 in Pseudomonas aeruginosa PAO, Plasmid 17: 61–64.

    PubMed  CAS  Google Scholar 

  112. Shoemaker, N., Guthrie, E., Salyers, A., and Gardener, J., 1985, Evidence that the clindamycinerythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element, J. Bacteriol. 162: 626–632.

    PubMed  CAS  Google Scholar 

  113. Simon, R., 1984, High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon, Mol. Gen. Genet. 196: 413–420.

    PubMed  CAS  Google Scholar 

  114. Smith, C.A., and Thomas, C.M., 1985, Comparison of the nucleotide sequences of the vegetative replication origins of broad host range IncP plasmids R751 and RK2 reveals conserved features of probably functional significance, Nucl. Acids Res. 13: 557–572.

    PubMed  CAS  Google Scholar 

  115. Stachel, S.E., and Zambryski, P., 1986, Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation, Cell 47: 155–157.

    CAS  Google Scholar 

  116. Stanisich, V.A., 1974, The properties and host range of male-specific bacteriophages of Pseudomonas aeruginosa, J. Gen. Microbiol. 84: 332–342.

    PubMed  CAS  Google Scholar 

  117. Tanimoto, K., and Iino, T., 1983, Transfer inhibition of RP4 by F-factor, Mol. Gen. Genet. 192: 104–109.

    PubMed  CAS  Google Scholar 

  118. Tanimoto, K., lino, T., Ohtsubo, H., and Ohtsubo, E., 1985, Identification of a gene, tir, of R100, functionally homologous to the F3 gene of F in the inhibition of RP4 transfer, Mol. Gen. Genet. 198: 356–357.

    PubMed  CAS  Google Scholar 

  119. Thrdiff, G., and Grant, R.B., 1983, Transfer of plasmids from Escherichia coli to Pseudomonas aeruginosa: characterization of a Pseudomonas aeruginosa mutant with enhanced recipient ability for enterobacterial plasmids, Antimicrob. Ag. Chemother. 24: 201–208.

    Google Scholar 

  120. Thomas, C.M., and Helinski, D.R., 1989, Vegetative replication and stable inheritance of IncP plasmids, in: Promiscuous Plasmids of Gram-Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 1–25.

    Google Scholar 

  121. Thomas, C.M., Theophilus, B.D., Johnston, L., Jagura-Burdzy, G. Schilf, W., Lurz, R., and Lanka, E., 1990, Identification of a seventh operon on plasmid RK2 regulated by the korA gene product, Gene 89: 29–35.

    CAS  Google Scholar 

  122. Thompson, D.V., Melchers, L.S., Idler, K.B., Schilperoort, R.A., and Hooykaas, P.J.J., 1988, Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon, Nucl. Acids Res. 16: 46214636.

    Google Scholar 

  123. Top, E., Mergeay, M., Springael, D., and Verstraete, W, 1990, Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples, Appl. Environ. Microbiol. 56: 2471–2479.

    PubMed  CAS  Google Scholar 

  124. Trieu-Cuot, P., Carlier, C., and Courvalin, P., 1988, Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli, J. Bacteriol. 170: 4388–4391.

    PubMed  CAS  Google Scholar 

  125. Trieu-Cuot, P., Carlier, C., Martin, P., and Courvalin, E, 1987, Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria, FEMS Microbiol. Lett. 48: 289–294.

    CAS  Google Scholar 

  126. Valentine, C.R., and Kado, C.I., 1989, Molecular genetics of IncW plasmids, in: Promiscuous Plasmids of Gram Negative Bacteria ( C.M. Thomas, ed.), Academic Press, London, pp. 125–163.

    Google Scholar 

  127. Van Gijsegem, F., Toussaint, A., 1982, Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae and Proteus mirabilis, Plasmid 7: 30–44.

    PubMed  Google Scholar 

  128. Villarroel, R., Hedges, R.W., Maenhaut, R., Leemans, J., Engler, G., Van Montagu, M., and Schell, J., 1983, Heteroduplex analysis of P-plasmid evolution: the role of insertion and deletion of transposable elements, Mol. Gen. Genet. 189: 390–399.

    PubMed  CAS  Google Scholar 

  129. Walter, E.G., Thomas, C.M., Ibbotson, J.P., and Taylor, D.E., 1991, Transcriptional analysis, translational analysis, and sequence of the kiiA-tellurite resistance region of plasmid RK25er, J. Bacteriol. 173: 1111–1119.

    PubMed  CAS  Google Scholar 

  130. Wang, K., Stachel, S.E., Timmerman, B., Van Montagu, M., and Zambryski, P.C., 1987, Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression, Science 235: 587–591.

    PubMed  CAS  Google Scholar 

  131. Ward, J.E., Akiyoshi, D., Regier, D., Dana, A., Gordon, M.P., and Nester, E.W., 1988, Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid, J. Biol. Chem. 263: 5804–5814.

    PubMed  CAS  Google Scholar 

  132. Waters, V.L., Hirata, K., Pansegrau, W, Lanka, E., and Guiney, D.G., 1991, Sequence identity in the nick regions of IncP plasmid transfer origins and T-DNA borders of Agrobacterium Ti plasmids, Proc. Natl. Acad. Sci. USA 88: 1456–1460.

    PubMed  CAS  Google Scholar 

  133. Willens, N.S., and Crowther, C., 1981, Mobilization of the nonconjugative IncQ plasmid RSFI010, Genet. Res. 37: 311–316.

    Google Scholar 

  134. Willetts, N.S., Crowther, C., and Holloway, B.W., 1981, The insertion sequence IS21 of R68.45 and the molecular basis for mobilization of the bacterial chromosome, Plasmid 6: 30–52.

    PubMed  CAS  Google Scholar 

  135. Williams, D.R., Young, D.I., and Young, M., 1990, Conjugative plasmid transfer form Escherichia coli to Clostridium acetobutylicum, J. Gen. Microbiol. 136: 819–826.

    PubMed  CAS  Google Scholar 

  136. Winans, S.C., and Walker, G.C., 1985a, Conjugal transfer system of the IncN plasmid pKM101, J. Bacreriol. 161: 402–410.

    CAS  Google Scholar 

  137. Winans, S.C., and Walker, G.C., 1985b, Entry exclusion determinants of IncN plasmid pKM101, J. Bacreriol. 161: 411–416.

    CAS  Google Scholar 

  138. Winans, S.C., and Walker, G.C., 1985c, Fertility inhibition of RP1 by IncN plasmid pKM101, J. Bacteriol. 161: 425–427.

    PubMed  CAS  Google Scholar 

  139. Wolk, C.P., Vonshak, A., Kehoe, P., and Elhai, J., 1984, Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria, Proc. Natl. Acad. Sci. USA 81: 1561–1565.

    PubMed  CAS  Google Scholar 

  140. Yakobson, E., Deiss, C., Hirata, K., and Guiney, D.G., 1990, Initiation of DNA synthesis in the transfer origin region of RK2 by the plasmid-encoded primase: detection using defective M13 phage, Plasmid 23: 80–84.

    PubMed  CAS  Google Scholar 

  141. Yakobson, E., and Guiney, D., 1983, Homology in the transfer origins of broad-host-range IncP plasmids: definition of two subgroups of P-plasmids, Mol. Gen. Genet. 192: 436–438.

    PubMed  CAS  Google Scholar 

  142. Yakobson, E., and Guiney, D.G., 1984, Conjugal transfer of bacterial chromosomes mediated by the RK2 plasmid transfer origin cloned into transposon Tn5, J. Bacreriol. 160: 451–453.

    CAS  Google Scholar 

  143. Yanofsky, M.F., Porter, S.G., Young, C., Albright, L.M., Gordon, M.P., and Nester, E.W, 1986, The virD operon of Agrobacterium tumefaciens encode a site-specific endonuclease, Cell 47: 471–477.

    PubMed  CAS  Google Scholar 

  144. Young, C., and Nester, E.W., 1988, Association of the virD2 protein with the 5’ end of T-strands in Agrobacterium tumefaciens, J. Bacteriol. 170: 3367–3374.

    PubMed  CAS  Google Scholar 

  145. Yusoff, K., and Stanisich, V, 1984, Location of a function on RP1 that fertility inhibits IncW plasmids, Plasmid 11: 178–181.

    PubMed  CAS  Google Scholar 

  146. Zambryski, P., 1988, Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells, Annu. Rev. Genet. 22: 1–30.

    PubMed  CAS  Google Scholar 

  147. Ziegelin, G., Fürste, J.P., and Lanka, E., 1989, TraJ protein of plasmid RP4 binds to a 19-base pair invert sequence repetition within the transfer origin, J. Biol. Chem. 264: 11989–11994.

    PubMed  CAS  Google Scholar 

  148. Ziegelin, G., Pansegrau, W, Strack, B., Balzer, D., Kröger, M., Kruft, V., and Lanka, E., 1990, Nucleotide sequence and organization of genes flanking the transfer origin of promiscuous plasmid RP4, DNA Sequence 1: 303–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guiney, D.G. (1993). Broad Host Range Conjugative and Mobilizable Plasmids in Gram-Negative Bacteria. In: Clewell, D.B. (eds) Bacterial Conjugation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9357-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9357-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44376-3

  • Online ISBN: 978-1-4757-9357-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics