Analytical Methods Used in the Study of Autoxidation Processes

  • Edwin N. Frankel

Abstract

Fat autoxidation produces flavor deterioration in lipid-containing foods and may decrease assurance of their nutritional quality and safety. Although the classical problems of oxidative deterioration in foods have considerable economic importance, they are now overshadowed by the biological problems of lipid peroxidation that cause damage to membranes, enzymes, vitamins, proteins and vital cell functions. There is now evidence that singlet oxygen plays a role in initiating autoxidation in unsaturated fats.1–4 Singlet oxygen, superoxide and other species of activated oxygen have also been implicated in many biological oxidation processes,5–9 in aging,8,10 as well as in environmental pollution.11–13 For these reasons, there is renewed interest in the problems of fat autoxidation, and oxidation chemistry has become an intensively active area of research.14–19 This review discusses different analytical tools applied in our laboratory to the study of autoxidation. The last section of this review deals with some mechanistic implications of our results.

Keywords

Singlet Oxygen Methyl Oleate Methyl Linoleate Peroxide Value Secondary Oxidation Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. R. Rawls and P. J. Van Santen, A possible role for singlet oxygen in the initiation of fatty acid autoxidation, J. Am. Oil Chem. Soc. 47: 121 (1970).CrossRefGoogle Scholar
  2. 2.
    H. R. Rawls and P. J. Van Santen, A possible source of the original hydroperoxides in fatty acids, Ann. N.Y. Acad. Sci. 171: 135 (1970).CrossRefGoogle Scholar
  3. 3.
    A. H. Clements, R. H. Van den Engh, D. J. Frost, K. Hoogenhout, and J. R. Nooi, Participation of singlet oxygen in photosensitized oxidation of 1,4-dienoic systems and photo-oxidation of soybean oil, J. Am. Oil Chem. Soc. 50: 325 (1973).CrossRefGoogle Scholar
  4. 4.
    D. J. Carlsson, T. Suprunchuk, and D. M. Wiles, Photooxidation of unsaturated oils: Effect of singlet oxygen quenchers, J. Am. Oil Chem. Soc. 53: 656 (1976).CrossRefGoogle Scholar
  5. M. L. Kaplan, “Singlet” oxygen, Chem. Tech. 621 (1971).Google Scholar
  6. 6.
    C. S. Foote, Photosensitized oxidation and singlet oxygen: consequences in biological soybeans, in “Free Radicals in Biology,” W. A. Pryor, ed., Vol. II, Academic Press, New York (1976).Google Scholar
  7. 7.
    I. Fridovich, Oxygen radicals, hydrogen peroxide and oxygen toxicity, in “Free Radicals in Biology,” W. A. Pryor, ed., Vol. I, Academic Press, New York (1976).Google Scholar
  8. 8.
    J. Bland, Biochemical effects of excited state molecular oxygen, J. Chem. Ed. 53:274 (1976).Google Scholar
  9. N. I. Krinsky, Singlet oxygen in biological systems, Trends in Biochem. Sci. 2:35 (1977).Google Scholar
  10. L. Packer and J. Walton, Antioxidants vs. aging, Chem. Tech. 276 (1977).Google Scholar
  11. 11.
    P. A. Leighton, “Photochemistry of Air Pollution,” Academic Press, New York (1961).Google Scholar
  12. R. H. Kummler, M. H. Bortner, and T. Baurer, Hartley photolysis of ozone as a source of singlet oxygen in polluted atmosphere, Environ. Sci. Technol. 3:248 (1969).Google Scholar
  13. J. N. Pitts, Jr., A. V. Khan, E. B. Smith, and R. P. Wayne, Singlet oxygen in the environmental sciences: singlet molecular oxygen and photochemical air pollution, Environ. Sci. Technol. 3:241 (1969).Google Scholar
  14. 14.
    W. A. Pryor, The role of free radical reactions in biological systems, in “Free Radicals in Biology,” W. A. Pryor, ed., Vol. I, Academic Press, New York (1976).Google Scholar
  15. E. Lee-Ruff, The organic chemistry of superoxide, Chem. Soc. Rev. 6:195 (1977).Google Scholar
  16. M. B. Korycka-Dahl and T. Richardson, Activated oxygen species and oxidation of food constituents. CRC Crit. Rev. Food Sci. Nutr. 11:209 (1978).Google Scholar
  17. A. Singh and A. Petkan, eds., Singlet oxygen and related species in chemistry and biology, Photochem. Photobiol. 28:429934 (1978).Google Scholar
  18. 18.
    B. Ranby and J. F. Rabek, eds., “Singlet oxygen reactions with organic compounds and polymers,” John Wiley and Sons, New York (1978).Google Scholar
  19. 19.
    H. H. Wasserman and R. W. Murray, eds., “Singlet Oxygen,” Academic Press, New York (1979).Google Scholar
  20. 20.
    E. N. Frankel, C. D. Evans, D. G. McConnell, and E. P. Jones, Analyses of lipids and oxidation products by Partition chromatography. Fatty acid hydroperoxides, J. Am. Oil Chem. Soc. 38: 134 (1961).CrossRefGoogle Scholar
  21. 21.
    E. Selke, E. N. Frankel, and W. E. Neff, Thermal decomposition of methyl oleate hydroperoxides and identification of volatile components by gas chromatography-mass spectrometry, Lipids 13: 511 (1978).Google Scholar
  22. 22.
    P. Budowski, I. Bartov, Y. Dror, and E. N. Frankel, Lipid oxidation products and chick nutritional encephalopathy, Lipids 14: 768 (1979).Google Scholar
  23. 23.
    E. N. Frankel, Hydroperoxides, in “Symposium on Foods: Lipids and Their Oxidation,” H. W. Schultz, E. A. Day, and R. O. Sinnhuber, eds., Avi Publishing Co., Westport (1962).Google Scholar
  24. 24.
    E. N. Frankel, J. Nowakowska, and C. D. Evans, Formation of methyl azelaaldehydate on autoxidation of lipids, J. Am. Oil Chem. Soc. 38: 161 (1961).CrossRefGoogle Scholar
  25. E. N. Frankel, C. D. Evans, D. G. McConnell, E. Selke, and H. J. Dutton, Autoxidation of methyl linolenate. Isolation and characterization of hydroperoxides, J. Org. Chem. 26:4663 (1961).Google Scholar
  26. J. Mercier, Etude des hydroperoxydes formes par autoxydation de l’oleate de méthyle, et, mise en evidence d’hydroperoxydes cis-a-ethyléniques, Comp. Rend. Acad. Sci. Paris 269:1002 (1969).Google Scholar
  27. M. Piretti, P. Capella, and V. Pallotta, Contribution to the study of hydroperoxides formation in the course of fats autoxidation. Note 1. Rivista Ital. Sostanze Grasse 46:652 (1969).Google Scholar
  28. 28.
    R. F. Garwood, B. P. S. Khambay, B. C. L. Weedon, and E. N. Frankel, Allylic hydroperoxides from the autoxidation of methyl oleate, J. Chem. Soc., Chem. Commun. 364 (1977).Google Scholar
  29. 29.
    E. N. Frankel, W. E. Neff, W. K. Rohwedder, B. P. S. Khambay, R. F. Garwood, and B. C. L. Weedon, Analyses of autoxidized fats by gas chromatography-mass spectrometry: I. Methyl oleate, Lipids 12: 901 (1977).CrossRefGoogle Scholar
  30. 30.
    E. N. Frankel, W. E. Neff, W. K. Rohwedder, B. P. S. Khambay, R. F. Garwood, and B. C. L. Weedon, Analysis of autoxidized fats by gas chromatography-mass spectrometry: II. Methyl linoleate. Lipids 12: 908 (1977).CrossRefGoogle Scholar
  31. 31.
    E. N. Frankel, W. E. Neff, W. K. Rohwedder, B. P. S. Khambay, R. F. Garwood, and B. C. L. Weedon, Analysis of autoxidized fats by gas chromatography-mass spectrometry: III. Methyl linolenate. Lipids 12: 1055 (1977).CrossRefGoogle Scholar
  32. 32.
    E. N. Frankel, W. E. Neff, and T. R. Bessler, Analysis of autoxidized fats by gas chromatography-mass spectrometry. V. Photosensitized oxidation. Lipids 14: 961 (1979).CrossRefGoogle Scholar
  33. 33.
    H. W.-S. Chan and G. Levett, Autoxidation of methyl linolenate. Analyses of methyl hydroxylinolenate isomers by high performance liquid chromatography. Lipids 12: 837 (1977).CrossRefGoogle Scholar
  34. 34.
    E. N. Frankel and W. E. Neff, Analysis of autoxidized fats by gas chromatography-mass spectrometry. IV. Soybean oil methyl esters. Lipids 14: 39 (1979).CrossRefGoogle Scholar
  35. 35.
    C. S. Foote, Photosensitized oxygenation and the role of singlet oxygen, Acc. Chem. Res. 1: 104 (1968).CrossRefGoogle Scholar
  36. 36.
    D. Cobern, J. S. Hobbs, R. A. Lucas, and D. J. Mackenzie, Location of hydroperoxide groups in monohydroperoxides formed by chlorophyll-photosensitized oxidation of unsaturated esters, J. Chem. Soc. (C) 1897 (1966).Google Scholar
  37. 37.
    H. W.-S. Chan, Photo-sensitized oxidation of unsaturated fatty acid methyl esters. The identification of different pathways. J. Am. Oil Chem. Soc. 54: 100 (1977).CrossRefGoogle Scholar
  38. 38.
    J. Terao and S. Matsushita, Products formed by photosensitized oxidation of unsaturated fatty acid esters, J. Am. Oil Chem. Soc. 54: 234 (1977).CrossRefGoogle Scholar
  39. 39.
    S. Matsushita, Photosensitized oxidation of oils and effects of beta-carotene and tocopherols, Paper presented at International Workshop on “Autoxidation Processes in Food and Related Biological Systems, ” U.S. Army Natick RandD Command, Natick, Ma., October 29–31 (1979).Google Scholar
  40. 40.
    D. Bellus, Quenchers of singlet oxygen, in “Singlet Oxygen Reactions with Organic Compounds and Polymers,” B. Rânby and J. F. Rabek, eds., John Wiley and Sons, New York (1978).Google Scholar
  41. 41.
    G. W. Grams, K. Eskins, and G. E. Inglett, Dye-sensitized photooxidation of a-tocopherol, J. Am. Chem. Soc. 94: 866 (1972).CrossRefGoogle Scholar
  42. 42.
    G. W. Grams and G. E. Inglett, Sensitized photooxidation of a-tocopherol and of 2,2,5,7,8-pentamethyl-6-chromanol in ethyl acetate, Lipids 7: 442 (1972).CrossRefGoogle Scholar
  43. 43.
    R. L. Clough, B. G. Yee, and C. S. Foote, Chemistry of singlet oxygen. 30. The unstable primary product of tocopherol photooxidation. J. Am. Chem. Soc. 101: 683 (1979).CrossRefGoogle Scholar
  44. 44.
    E. N. Frankel, W. E. Neff, E. Selke, unpublished work.Google Scholar
  45. 45.
    W. E. Neff, E. N. Frankel, C. R. Scholfield, and D. Weisleder, High-pressure liquid chromatography of autoxidized lipids. I. Methyl oleate and linoleate, Lipids 13: 415 (1978).CrossRefGoogle Scholar
  46. 46.
    W. E. Neff and E. N. Frankel, High-pressure liquid chromatography of autoxidized lipids. II. Methyl linolenate. Unpublished work.Google Scholar
  47. 47.
    E. N. Frankel and W. E. Neff, unpublished work.Google Scholar
  48. H. W.-S. Chan and G. Levett, Oxidation of methyl oleate: separation of isomeric methyl hydroperoxyoctadecenoates and methyl hydroxystearates by high performance liquid chromatography, Chem. Ind. (London) 692 (1977).Google Scholar
  49. 49.
    W. E. Neff and E. N. Frankel, Quantitative analyses of hydro-peroxides by high-pressure liquid chromatography of autoxidized and photosensitized-oxidized fatty esters. Paper presented at ISF-AOCS Congress, New York, April 27-May 1 (1980).Google Scholar
  50. 50.
    E. N. Frankel, R. F. Garwood, B. P. S. Khambay, and B. C. L. Weedon, Stereochemical synthesis of dienol isomers for mechanistic studies of linoleate autoxidation. Paper presented at 14th World Congress of the International Society of Fat Research, Brighton, England, September 1722 (1978). Abstract 0618.Google Scholar
  51. W. H. Tallent, J. Harris, I. A. Wolff, and R. E. Lundin, (R)13-Hydroxy-cis-9, trans-ll-octadecadienoic acid, the principal fatty acid from Coriaria nepalensis Wall. seed oil, Tetrah. Lett. 4329 (1966).Google Scholar
  52. 52.
    J. L. Bolland and H. P. Koch, The course of autoxidation reactions in polyisoprenes and allied compounds. IX. The primary thermal oxidation product of ethyl linoleate, J. Chem. Soc. 445 (1945).Google Scholar
  53. 53.
    S. Bergstrom, On the oxidation of the methyl ester of linoleic acid, Arkiv For Kemi, Mineralogi Och Geologi 21A: 1 (1945).Google Scholar
  54. 54.
    W. O. Lundberg, J. R. Chipault, and M. J. Richardson, Observations on the mechanism of the autoxidation of methyl linoleate, J. Am. Oil Chem. 26: 109 (1949).CrossRefGoogle Scholar
  55. 55.
    S. Privett, W. O. Lundberg, N. A. Khan, W. E. Tolberg, and D. H. Wheeler, Structure of hydroperoxides obtained from autoxidized methyl linoleate, J. Am. Oil Chem. 30: 61 (1953).CrossRefGoogle Scholar
  56. 56.
    N. A. Khan, W. O. Lundberg, and R. T. Holman, Displacement analysis of lipids. IX. Products of the oxidation of methyl linoleate, J. Am. Chem. Soc. 76: 1779 (1954).CrossRefGoogle Scholar
  57. 57.
    E. N. Frankel, Autoxidation, in “Fatty Acids,” E. H. Pryde, ed., AOCS Monograph, American Oil Chemists’ Society, Champaign, Ill. (1979).Google Scholar
  58. 58.
    G. O. Schenck, 0.-A. Neumuller, and W. Eisfeld, A5-Steroid-7ahydroperoxyde and-7-Ketone durch allylumlagerung von A6steroid-5-u-hydroperoxyden, Justus Liebigs Am. Chem. 618: 202 (1958).Google Scholar
  59. 59.
    W. F. Brill, The isolation and rearragement of pure acyclic allylic hydroperoxides, J. Am. Chem. Soc. 87: 3286 (1965).CrossRefGoogle Scholar
  60. H. W.-S. Chan, G. Levett, and J. A. Matthew, The mechanism of the rearrangement of linoleate hydroperoxides, Chem. Phys. Lipids 24:245 (1979).Google Scholar
  61. P. Haverkamp Begemann, W. J. Woestenburg, and S. Leer, Structure of four methyl linolenate diperoxides, J. Agric. Food Chem. 16:679 (1968).Google Scholar
  62. 62.
    W. A. Pryor, J. P. Stanley, and E. Blair, Autoxidation of polyunsaturated fatty acids: II. Suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides, Lipids 11: 370 (1976).Google Scholar
  63. 63.
    N. A. Porter, M. O. Funk, D. Gilmore, R. Isaac, and J. Nixon, The formation of cyclic peroxides from unsaturated hydro-peroxides: models for prostaglandin biosynthesis, J. Am. Chem. Soc. 98: 6000 (1976).CrossRefGoogle Scholar
  64. 64.
    J. E. Baldwin, Rules for ring closure, J. Chem. Soc. Chem. Comm. 734 (1976).Google Scholar
  65. 65.
    V. P. Maier and A. L. Tappel, Products of unsaturated fatty acid oxidation catalyzed by hematin compounds, J. Am. Oil Chem. Soc. 36: 12 (1959).CrossRefGoogle Scholar
  66. H. W. Gardner, Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with nonenzymic. J. Agric. Food Chem. 23:129 (1975).Google Scholar
  67. 67.
    H. W. Gardner, D. Weisleder, and R. Kleiman, Formation of trans-12,13-epoxy-9-hydroperoxy-trans-10-octadecenoic acid from 13 L-hydroperoxy-cis-9,trans-l1-octadecadienoic acid catalyzed by either a soybean extract or cysteine-FeC13, Lipids 13: 246 (1978).Google Scholar
  68. 68.
    P. A. T. Swoboda and K. E. Peers, trans-4,5-epoxyhept-trans-2enal. The major volatile compound formed by the copper and a-tocopherol induced oxidation of butterfat, J. Sci. Fd. Agric. 29: 803 (1978).CrossRefGoogle Scholar
  69. 69.
    E. Selke, W. K. Rohwedder, and H. J. Dutton, Volatile components from trilinolein heated in air, J. Am. Oil Chem. Soc., in press.Google Scholar
  70. 70.
    S. Patton, I. J. Barnes, and L. E. Evans, n-Deca2,4-dienal. Its origin from linoleate and flavor significance in fats, J. Am. Oil Chem. Soc. 36: 280 (1959).CrossRefGoogle Scholar
  71. H. T. Badings, Principles of autoxidation processes in lipids with special regard to the development of autoxidized off-flavors, Neth. Milk Dairy J. 14:215 (1960).Google Scholar
  72. 72.
    A. M. Gaddis, R. Ellis, and G. T. Currie, Carbonyl in oxidizing fats. V. The composition of neutral volatile monocarbonyl compounds from autoxidized oleate, linoleate, linolenate esters, and fats, J. Am. Oil Chem. Soc. 38: 371 (1961).Google Scholar
  73. 73.
    C. A. Riely, G. Cohen, and M. Lieberman, Ethane evolution: a new index of lipid peroxidation, Science 183: 208 (1974).Google Scholar
  74. 74.
    C. J. Dillard, E. E. Dumelin, and A. L. Tappel, Effect of dietary vitamin E on expiration of pentane and ethane by the rat, Lipids 12: 109 (1977).Google Scholar
  75. 75.
    D. G. Haferman and W. G. Hoekstra, Protection against carbon tetrachloride induced lipid peroxidation in the rat by dietary vitamin E, selenium, and methionine as measured by ethane evolution, J. Nutrit. 107: 656 (1977).Google Scholar
  76. 76.
    W. G. Hoekstra, Stimulation of and protection against lipid peroxidation in animals in vivo, Paper presented at International Workshop on “Autoxidation Processes in Food and Related Biological Systems, ” U.S. Army Nattick R and D Command, Natick, Ma., October 29–31 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Edwin N. Frankel
    • 1
  1. 1.Agricultural Research Science and Education Administration, U.S. Department of AgricultureNorthern Regional Research CenterPeoriaUSA

Personalised recommendations