As an unsaturated lipid, cholesterol is sensitive to air oxidation by free radical processes in the same manner as polyunsaturated fatty acids and their esters. The sensitivity of cholesterol to autoxidation under relatively mild conditions has compromised studies of the sterol throughout the 20th century up to the present time. Studies of the organic chemistry of cholesterol have not been so bothered by autoxidation, but studies of cholesterol metabolism have been greatly troubled by the intrusion of artificial oxidations upon enzymic processes. Now expanding interests in the potential biological activities of cholesterol autoxidation products render it essential that cholesterol autoxidation and its possible occurrence in foods and potential role in endogenous metabolism be fully understood.


Electron Spin Resonance Peroxyl Radical Free Radical Process Sodium Stearate Sterol Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1.)
    S. Bergström, “On the Oxidation of Cholesterol and Other Unsaturated Sterols in Colloidal Aqueous Solution by Molecular Oxygen”, Arkiv Kemi, Mineral. Geol. 16A:1 (1942).Google Scholar
  2. (2.)
    S. Bergström and B. Samuelsson, “The Autoxidation of Cholesterol”, in Autoxidation and Antioxidants, W.O. Lundberg, Ed., Interscience Publishers, John Wiley & Sons, New York City, N.Y., Vol. 1 ( 1961 ), pp. 233–248.Google Scholar
  3. (3.)
    L.L. Smith, Cholesterol Autoxidation Plenum Press, New York City, N.Y., in preparation ( 1980 ).Google Scholar
  4. (4.)
    E. Ritter, “Beiträge zur Kenntnis des Sitosterins”, Z. Physiol. Chem. 34:461 (1901/1902).Google Scholar
  5. (5.)
    E. Schulze and E. Winterstein, “Über das Verhalten des Cholesterins gegen Licht”, Z. Physiol. Chem. 43:316 (1904).Google Scholar
  6. (6.)
    E. Schulze and E. Winterstein, “Liber das Verhalten des Cholesterins gegen Licht. II.”, Z. Physiol. Chem. 48:546 (1906).Google Scholar
  7. (7.)
    L.L. Engel and P. Brooks, “Cholesterol is Stable”, Steroids 17: 531 ( 1971 ).Google Scholar
  8. (8.)
    F.W. Lamb, “The Oxidation of Cholesterol”, J. Physiol. 48: lvi (1914).Google Scholar
  9. (9.)
    L.L. Smith, W.S. Matthews, J.C. Price, R.C. Bachmann, and B. Reynolds, “Thin-Layer Chromatographic Examination of Cholesterol Autoxidation”, J. Chromatog. 27:187 (1967).Google Scholar
  10. (10.)
    J.E. van Lier and L.L. Smith, “Sterol Metabolism. II. Gas Chromatographic Recognition of Cholesterol Metabolites and Artifacts”, Anal. Biochem. 24:419 (1968).Google Scholar
  11. (11.)
    J.E. van Lier and L.L. Smith, “Chromatography of Some Cholesterol Autoxidation Products on Sephadex LH-20”, J. Chromatog. 41:37 (1969).Google Scholar
  12. (12.)
    J.E. van Lier and L.L. Smith, “Autoxidation of Cholesterol via Hydroperoxide Intermediates”, J. Org. Chem. 35:2627 (1970).Google Scholar
  13. (13.)
    G.A.S. Ansari and L.L. Smith, “High-Performance Liquid Chromatography of Cholesterol Autoxidation Products”, J. Chromatog. 175:307 (1979).Google Scholar
  14. (14.)
    L.L. Smith and F.L. Hill, “Detection of Sterol Hydroperoxides on Thin-Layer Chromatoplates by Means of the Wurster Dyes”, J. Chromatog. 66:101 (1972).Google Scholar
  15. (15.)
    L.L. Smith, J.I. Teng, M.J. Kulig, and F.L. Hill, “Sterol Metabolism. XXIII. Cholesterol Oxidation by Radiation-Induced Processes”, J. Org. Chem. 38:1763 (1973).Google Scholar
  16. (16.)
    G.A.S. Ansari and L.L. Smith, “Sterol Metabolism. XLI. Cholesterol A-Ring Autoxidations”, Chem. Phys. Lipids 22:55 (1978).Google Scholar
  17. (17.)
    W. Gordy, “Electron Spin Resonance of Free Radicals in Irradiated Biochemicals”, Radiation Res. Suppl. 1: 491 ( 1959 ).Google Scholar
  18. (18.)
    A. Ehrenberg, L. Ehrenberg, and G. Löforth, “Nitric Oxide Titration of Free Radicals in Irradiated Materials”, Risö Report 16: 21 ( 1960 ).Google Scholar
  19. (19.)
    Hellinger, “Ekektron-Spin-Resonanz freier Radikale in röntgenbestrahltem Cholesterin und 5,6-Dihydrocholesterin”, Biophysik, 6: 63 ( 1969 ).CrossRefGoogle Scholar
  20. (20.)
    Hellinger, H. Heusinger, and 0. Hut, “Elektron-Spin-Resonanz-Utersuchungen der Reaktionskinetik strahleninduzierter freier Radikale des Cholesterins”, Biophysik 6: 193 ( 1970 ).Google Scholar
  21. (21.)
    J.E. van Lier and L.L. Smith, “Sterol Metabolism. XI. Thermal Decomposition of Some Cholesterol Hydroperoxides”, Steroids 15: 485 ( 1970 ).Google Scholar
  22. (22.)
    L.L. Smith, M.J. Kulig, and J.I. Teng, “Sterol Metabolism. XXVI. Pyrolysis of Some Sterol Allylic Alcohols and Hydroperoxides”, Steroids 22: 627 ( 1973 ).Google Scholar
  23. (23.)
    J.I. Teng, M.J. Kulig, G. Kan, and J.E. van Lier, “Sterol Metabolism. XX. Cholesterol 7ß-Hydroperoxide”, J. Org. Chem. 38:119 (1973).Google Scholar
  24. (24.)
    J.I. Teng, M.J. Kulig, and L.L. Smith, “Sterol Metabolism. XXII. Gas Chromatographic Differentiation among Cholesterol Hydroperoxides”, J. Chromatog. 75:108 (1973).Google Scholar
  25. (25.)
    J.E. van Lier and L.L. Smith, “Crystalline Sterols Obtained by Gas Chromatography”, J. ChromatoR. 36:7 (1968).Google Scholar
  26. (26.)
    M. Kimura, Y. Jin, and T. Sawaya, “Autoxidation of Cholesterol and Behavior of Its Hydroperoxide in Aqueous Medium”, Chem. Pharm. Bull. 27:710 (1979).Google Scholar
  27. (27.)
    J.I. Teng and L.L. Smith, “Sterol Metabolism. XXIV. On the Unlikely Participation of Singlet Molecular Oxygen in Several Enzyme Oxygenations”, J. Am. Chem. Soc. 95: 4060 ( 1973 ).CrossRefGoogle Scholar
  28. (28.)
    L.L. Smith and J.I. Teng, “Sterol Metabolism. XXIX. On the Mechanism of Microsomal Lipid Peroxidation in Rat Liver”, J. Am. Chem. Soc. 96:2640 (1974).Google Scholar
  29. (29.)
    J.I. Teng and L.L. Smith, “Sterol Metabolism. XXXVII. On the Oxidation of Cholesterol by Dioxygenases”, Bioorganic Chem. 5: 99 ( 1976 ).Google Scholar
  30. (30.)
    J.E. van Lier and J. Rouseau, “Mechanism of Cholesterol Side-Chain Cleavage: Enzymic Rearrangement of 2013-Hydroperoxy-20isocholesterol to 203,21-Dihydroxy-20-isocholesterol”, FEBS Letters 70: 23 ( 1976 ).Google Scholar
  31. (31.)
    J.E. van Lier and L.L. Smith, “Sterol Metabolism. XIV. Cholesterol 24-Hydroperoxide”, J. Org. Chem. 36:1007 (1971).Google Scholar
  32. (32.)
    J.E. van Lier and G. Kan, “Cholesterol 26-Hydroperoxide”, J. Org. Chem. 37:145 (1972).Google Scholar
  33. (33.)
    J.E. van Lier, G. Kan, and R. Langlois, “The Epimeric 20Hydroperoxy-5-pregnen-3ß-ols: Thermal and Enzymatic Decomposition”, Steroids 21: 521 ( 1973 ).Google Scholar
  34. (34.)
    J.E. van Lier, A.L. Da Costa, and L.L. Smith, “Cholesterol Autoxidation: Identification of the Volatile Fragments”, Chem. Phys. Lipids 14:327 (1975).Google Scholar
  35. (35.)
    M.J. Kulig and L.L. Smith, “Sterol Metabolism. XXV. Cholesterol Oxidation by Singlet Molecular Oxygen”, J. Org. Chem. 38:3639 (1973).Google Scholar
  36. (36.)
    L.L. Smith and M.J. Kulig, “Sterol Metabolism. XXXIV. On the Derivation of Carcinogenic Sterols from Cholesterol”, Cancer Biochem. Biophys. 1:79 (1975).Google Scholar
  37. (37.)
    L.L. Smith and M.J. Kulig, “Singlet Molecular Oxygen from Hydrogen Peroxide”, J. Am. Chem. Soc. 98:1027 (1976).Google Scholar
  38. (38.)
    L.L. Smith, M.J. Kulig, D. Muller, and G.A.S. Ansari, “Oxidation of Cholesterol by Dioxygen Species”, J. Am. Chem. Soc., 100:6206 (1978).Google Scholar
  39. (39.)
    M. Kawata, M. Tohma, T. Sawaya, and M. Kimura, “A New Product of Cholesterol by Metal-free Autoxidation in Aqueous Dispersion”, Chem. Pharm. Bull. 24:3109 (1976).Google Scholar
  40. (40.)
    L. Sanche and J.E. van Lier, “Tracer Studies of Cholesterol Degradation Induced by Ionized Gases”, Chem. Phys. Lipids 16:225 (1976).Google Scholar
  41. (41.)
    L.L. Smith, M.J. Kulig, and J.I. Teng, “Sterol Metabolism. XL. On the Failure of Superoxide Radical Anion to React with Cholesterol”, Chem. Phys. Lipids 20:211 (1977).Google Scholar
  42. (42.)
    G.A.S. Ansari and L.L. Smith, “The Oxidation of Cholesterol by Hydroxyl Radical”, Photochem. Photobiol. 30:147 (1979).Google Scholar
  43. (43.)
    L.F. Fieser and B.K. Bhattacharyya, “Cholesterol and Companions. VI. Lathosterol, Cholestanetriol and Ketone 104 from a Variety of Sources”, J. Am. Chem. Soc. 75:4418 (1953).Google Scholar
  44. (44.)
    J.F. Pennock, G. Neiss, and H.R. Mahler, “Biochemical Studies on the Developing Avian Embryo.5.Ubiquinone and Some Other Unsaponifiable Lipids”, Biochem. J., 85:530 (1962).Google Scholar
  45. (45.)
    L. Acker and H. Greve, “Über die Photoxydation des Cholesterins in eihaltigen Lebensmitteln”, Fette Seifen Anstrich. 65: 1009 ( 1963 ).CrossRefGoogle Scholar
  46. (46.)
    E. Chicoye, W.D. Powrie, and O. Fennema, “Photoxidation of Cholesterol in Spray-dried Egg Yolk Upon Irradiation”, J. Food Sci. 33: 581 ( 1968 ).CrossRefGoogle Scholar
  47. (47.)
    L.S. Tsai, C.A. Hudson, K. Ijichi, and J.J. Meehan, “Quantitation of Cholesterol a-Oxide in Eggs by Gas Chromatography and High Performance Liquid Chromatography”, J. Am. Oil Chem. Soc., 56:185A (1979).Google Scholar
  48. (48.)
    C. Merritt, in Report on Workshop on Study and Review of Angiotoxic and Carcinogenic Sterols in Processed Food, Boston, Mass., October 12–14, 1977, pp. 79–82.Google Scholar
  49. (49.)
    V.P. Flanagan, A. Ferretti, D.P. Schwartz, and J.M. Ruth, “Characterization of Two Steroidal Ketones and Two Isoprenoid Alcohols in Dairy Products”, J. Lipid Res. 16:97 (1975).Google Scholar
  50. (50.)
    V.P. Flanagan and A. Ferretti, “Characterization of Two Steroidal Olefins in Nonfat Dry Milk”, Lipids 9: 471 ( 1974 ).Google Scholar
  51. (51.)
    O.W. Parks, D.P. Schwartz, M. Keeney, and J.N. Damico, “Isolation of A7-Cholesten-3-one from Butterfat”, Nature 210: 417 ( 1966 ).Google Scholar
  52. (52.)
    H. Roderbourg and S. Kuzdzal-Savoie, “The Hydrocarbons of Anhydrous Butterfat: Influence of Technological Treatments” J. Am. Oil Chem. Soc. 56:485 (1975).Google Scholar
  53. (53.)
    L.D. Williams and A.M. Pearson, “Unsaponifiable Fraction of Pork Fat as Related to Boar Odor”, J. Ag. Food Chem. 13:1573 (1965).Google Scholar
  54. (54.)
    W. Fürst, “Oxydationsprodukte des Ergosterins 3. Mitt. Abbau des Ergosterins bei der Lagerung von Trockenhefe”, Arch. Pharm. 300:144 (1967).Google Scholar
  55. (55.)
    H.R. Mahler, G. Neiss, P.P. Slonimski, and B. Mackler, “Biochemical Correlates of Respiratory Deficiency. III. The Level of Some Unsaponifiable Lipids in Different Strains of Baker’s Yeast”, Biochemistry 3: 893 ( 1964 ).Google Scholar
  56. (56.)
    M. Vajdi, W.W. Nawar, and C. Merritt, “Identification of Radiolytic Compounds form Beef”, J. Am. Oil Chem. Soc. 56:611 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Leland L. Smith
    • 1
  1. 1.Division of BiochemistryUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations