Skip to main content

Spin Trapping of Radical Species Involved in the Propagation of Lipid Peroxidation

  • Chapter
Autoxidation in Food and Biological Systems

Abstract

Lipid peroxidation is a naturally occurring process involving the generation of free radicals mainly derived from the polyunsaturated fatty acids that are incorporated into the phosphoglycerides of membranes. The peroxidative process has been shown to be a radical chain reactive sequence which has separate initiation, propagation and termination steps.1 Initiation is thought to occur either by a radical addition to a double bond or by abstraction of an allylic hydrogen by a reactive radical. In either case, generation of an appropriate chain initiating radical must preceed the propagation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Mead, Free radical mechanisms of lipid damage and consequences for cellular membranes, in: “Free Radicals in Biology”, W.A. Pryor, ed., Vol. I, Academic Press, New York, pp. 51 (1976).

    Google Scholar 

  2. E.D. Wills, Lipid peroxidation formation in microsomes, general considerations, Biochem. J. 113: 315 (1969).

    CAS  Google Scholar 

  3. P. Hochstein and L. Ernsters Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria, Biochem. Biophys. Res. Commun. 14: 323 (1963).

    Article  Google Scholar 

  4. B.A. Svingen, F.O. O’Neal and S.D. Aust, The role of superoxide and singlet oxygen in lipid peroxidation, Photochem. Photobiol. 28: 803 (1978).

    Article  CAS  Google Scholar 

  5. M.M. King, E.K. Lai and P.B. McCay, Singlet oxygen production associated with enzyme-catalyzed lipid peroxidation in liver microsomes, J. Biol. Chem. 250: 6496 (1975).

    CAS  Google Scholar 

  6. B.A. Svingen, J.A. Buege, F.O. O’Neal and S.D. Aust, The mechanism of NADPH-dependent lipid peroxidation, the propagation of lipid peroxidation, J. Biol. Chem. 254: 5892 (1979).

    CAS  Google Scholar 

  7. R.O. Recknagel and E.A. Glende, Jr., Carbon tetrachloride hepatoxicity: an example of lethal clevage, CRC Crit. Res. Toxicol. 2: 263 (1973).

    Article  Google Scholar 

  8. G. Sipes, G. Krishna and J.R. Gillette, Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P-450, Life Sci. 20: 1541 (1977).

    Article  CAS  Google Scholar 

  9. J.S.L. Fowler, Carbon tetrachloride metabolism in the rabbit, Brit. J. Pharmacol. 37: 733 (1969).

    Article  CAS  Google Scholar 

  10. N.E. Sladik and G.J. Mannering, Induction of drug metabolism II. Qualitative differences in the microsomal N-demethylating systems stimulated by polycyclic hydrocarbons and by phenobarbital, Mol. Pharmacol. 5: 186 (1969).

    Google Scholar 

  11. L. Pauling, “The Nature of the Chemical Bond,” Cornell University Press, N.Y., pp. 83 (1960).

    Google Scholar 

  12. E. Burdino, E. Gravela, G. Ugazio, V. Vannine and A. Calligaro, Initiation of free radical reactions and hepatotoxicity in rats poisoned with carbon tetrachloride or bromotrichloromethane, Agents Actions 3: 244 (1973).

    Article  CAS  Google Scholar 

  13. A. Calligero and V. Vannini, Electron spin resonance study of homolytic cleavage of carbon tetrachloride in rat liver: trichloromethyl free radicals, Pharmacol. Res. Commun. 7: 323 (1975).

    Article  Google Scholar 

  14. K.M. Saucier, Reply to: electron spin resonance study of homolytic cleavage of carbon tetrachloride in rat liver: trichloromethyl free radicals, Pharmacol. Res. Commun. 8: 424 (1976).

    Google Scholar 

  15. R.P. Mason, Free radical metabolites of foreign compounds and their toxicological significance, in: “Reviews in Biochemical Toxicology,” E. Hodgson, J.R. Bend and R.M. Philpot, eds., Elsevier/North Holland, New York, pp. 151, (1979).

    Google Scholar 

  16. A. Ingall, K.A.K. Lott, T.F. Slater, S. Finch and A. Stier, Metabolic activation of carbon tetrachloride to a free radical product: studies using a spin trap, Biochem. Soc. Trans. 6: 962 (1978).

    CAS  Google Scholar 

  17. J.L. Poyer, R.A. Floyd; P.B. McCay, E.G. Janzen and E.R. Davis, Spin trapping of the trichloromethyl radical produced during enzymic NADPH oxidation in the presence of carbon tetrachloride or bromotrichloromethane, Biochim. Biophys. Acta 539: 402 (1978).

    Article  CAS  Google Scholar 

  18. B. Kalyanaraman, R.P. Mason, E. Perez-Reyes, C.F. Chignell, C.R. Wolff and R.M. Philpot, Characterization of the free radical formed in aerobic microsomal incubations containing carbon tetrachloride, Biochem. Biophys. Res. Commun. 89: 1065 (1979).

    Article  CAS  Google Scholar 

  19. E.K. Lai, P.B. McCay, T. Noguchi and K.L. Fong, In vivo spin trapping of trichloromethyl radicals formed from CC14, Biochem. Pharmacol. 28: 2231 (1979).

    Google Scholar 

  20. E. Finkelstein, G.M. Rosen and E.J. Rauckman, Spin trapping of superoxide and hydroxyl radical: practical aspects, Arch. Biochem. Biophys. 200: in press (1980).

    Google Scholar 

  21. G.M. Rosen and E.J. Rauckman, Spin trapping of the primary radical involved in the activation of the carcinogen, Nhydroxy-2-acetylaminofluorene by cumene hydroperoxide hematin, Mol. Pharmacol. 17: in press (1980).

    Google Scholar 

  22. E. Finkelstein, G.M. Rosen, E.J. Rauckman and J. Paxton, Spin trapping of superoxide, Mol. Pharmacol. 16: 676 (1979).

    CAS  Google Scholar 

  23. E.J. Rauckman, G.M. Rosen, B.B. Kitchell and J.A. Moylan, Oxidation of hydroxylamines to nitroxides by mixed function amine oxidase, in: “Biological Oxidation of Nitrogen,” J.W. Gorrod, ed., Elsevier/North Holland, Amsterdam, pp. 484 (1978).

    Google Scholar 

  24. B. Halliwell, Superoxide dependent formation of hydroxyl radicals in the presence of iron chelates, FEBS. Lett. 92: 321 (1978).

    Article  CAS  Google Scholar 

  25. J.J.M.C. DeGroot, G.J. Garssen, J.F.G. Vliegenthart and J. Boldingh, The detection of linoleic acid radicals in the anaerobic reaction of lipoxygenase, Biochim. Biophys. Acta. 326: 279 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosen, G.M., Rauckman, E.J., Finkelstein, E. (1980). Spin Trapping of Radical Species Involved in the Propagation of Lipid Peroxidation. In: Simic, M.G., Karel, M. (eds) Autoxidation in Food and Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9351-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9351-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9353-6

  • Online ISBN: 978-1-4757-9351-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics